Login



Other Articles by Authors

Ioannis K. Argyros
Santhosh George



Authors and WSEAS

Ioannis K. Argyros
Santhosh George


WSEAS Transactions on Mathematics


Print ISSN: 1109-2769
E-ISSN: 2224-2880

Volume 16, 2017

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.


Volume 16, 2017



Extended and Unified Local Convergence for Newton-Kantorovich Method Under w-Conditions with Applications

AUTHORS: Ioannis K. Argyros, Santhosh George

Download as PDF

ABSTRACT: The goal of this paper is to present a local convergence analysis of Newton’s method for approximating a locally unique solution of an equation in a Banach space setting. Using the gauge function theory and our new idea of restricted convergence regions we present an extended and unified convergence theory.

KEYWORDS: Newton’s method, Banach space, semilocal convergence, gauge function, convergence region, Newton-Kantorovich theorem

REFERENCES:

[1] S.Amat S. Busquier and S.Plaza , Dynamics of the King and Jarratt iterations , Aequationes Math. 69(3), (2005), 212–223 .

[2] S.Amat S. Busquier and S.Plaza , Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl. 366(1),(2010) pp. 24–32.

[3] I.K. Argyros, On the convergence and application of Newton’s method under weak Ho¨lder continuity assumptions, Int. J. Comput. Math. 80 (2003), 767-780.

[4] I.K. Argyros, J.M. Gutierrez, A unified approach ´ for enlarging the radius of convergence for Newton’s method and applications, Nonlinear Funct. Anal. Appl. 10 (2005), 555-563.

[5] I. K. Argyros and A. Magren˜an, Iterative meth- ´ ods and their dynamics with applications, CRC Press, New York, 2007.

[6] I. K. Argyros and S. Hillout, Weaker conditions for the convergence of Newton’s method. J. Complexity 28, 364–387, 2012.

[7] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer, New York, 1998.

[8] F. Cianciaruso, E. De Pascale, NewtonKantorovich approximations when the derivative is Holderian: old and new results, Numer. Funct. ¨ Anal. Optim. 24 (2003), 713-723.

[9] F. Cianciaruso, E. De Pascale, Estimates of majorizing sequences in the Newton-Kantorovich method, Numer. Funct. Anal. Optim. 27 (2006), 529-538.

[10] F. Cianciaruso, E. De Pascale, Estimates of majorizing sequences in the Newton-Kantorovich method: A further improvement, J. Math. Anal. Appl. 332 (2006), 329-335.

[11] E. De Pascale, P.P. Zabrejko, The convergence of the Newton-Kantorovich method under Vertgeim conditions: a new improvement, Z. Anal. Anwend. 17 (1998), 271-280.

[12] J.-P. Dedieu, Condition number analysis sor sparse polynomial systems, in: F. Cucker, M. Shub (Eds.), Foundations of Computational Mathematics, Springer, Berlin, 1997, 75-101.

[13] K. Doc˘ev, U¨ber Newtonsche Iterationen, C. R. Acad. Bulg. Sci. 36 (1962), 695-701.

[14] J. A. Ezquerro, M. A. Hernandez, General- ´ ized differentiability conditions for Newton’s method, IMA J. Numer. Anal. 22 (2002), 187- 205.

[15] J. A. Ezquerro, M. A. Hernandez, On the ´ Rorder of convergence of Newton’s method under mild differentiability conditions, J. Comput. Appl. Math. 197 (2006), 53-61.

[16] A. Galperin, On Convergence domain of Newton’s and modified Newton’s methods, Numer. Funct. Anal. Optim. 26 (2005), 385-405.

[17] W. B. Gragg, R. A. Tapia, Optimal error bounds for the Newton-Kantorovich theorem, SIAM J. Numer. Anal. 11 (1974), 10-13.

[18] M. A. Hernandez, The Newton method for op- ´ erators with Holder continuous first derivative, ¨ J. Optimization Theory Appl. 109 (2001), 631- 648.

[19] Z.D. Huang, The convergence ball of Newton’s method and uniqueness ball of equations under Ho¨lder-type continuous derivatives, Comput. Math. Appl. 47 (2004), 247-251.

[20] L.O. Jay, A note on Q-order of convergence, BIT 41 (2001), 422-429.

[21] B. Janko, Rezolvarea equatiilor operationale ´ neliniare in spatii Banach, Editura Academiei republicii socialiste Romania, Bucuresti, 1969.

[22] L.V. Kantorovich, G.P. Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982.

[23] H. B. Keller, Newton’s methods under mild differentiability conditions, J. Comput. System Sci. 4 (1970), 15-28.

[24] Yu. V. Lysenko, The convergence conditionds of the Newton-Kantorovich method for nonlinear equations with Holder linearizations (Russian), ¨ Dokl. Akad. Nauk BSSR 38 (1994), 20-24.

[25] A. A. Magren˜an, Different anomalies in a Jarratt ´ family of iterative root finding methods, Appl. Math. Comput. 233, (2014), 29-38.

[26] A. A. Magren˜an, A new tool to study real dy- ´ namics: The convergence plane, Appl. Math. Comput. 248, (2014), 29-38.

[27] G. J. Miel, An update version of the Kantorovich theorem for Newton’s method, Computing 27 (1981), 237-244.

[28] A. M. Ostrowski, La methode de Newton dans ´ les espaces de Banach, C. R. Acad. Sci. Paris se´r A 272 (1971), 1251-1253.

[29] D. Petcu, On the Kantorovich hypothesis for Newton’s method, Informatika (Vilnius) 4 (1993) No. 1-2, 188-198.

[30] F. A. Potra, On the aposteriori error estimates for Newton’s method, Beitraege Numer. Math. 12 (1984), 125-138.

[31] P.D. Proinov, A generalization of the Banach contraction principle with high order of convergence of sucessive approximations, Nonlinear Anal. 67 (2007), 2361-2369.

[32] P.D. Proinov, New general convergence theory for iterative processes and its applications to Newton-Kantorivich-type theorems, J. Complexity, 25, (2009), 38–62.

[33] P.D. Proinov, General local convergence theory for a class of iterative processes and its applications to Newton’s method, J. Complexity, 25, (2009), 38–62.

[34] L.B. Rall, A note on the convergence of Newton’s method, SIAM J. Numer. Anal. 11 (1974), 34-36.

[35] W.C. Rheinboldt, An adaptive continuation process for solving systems of nonlinear equations, in: Banach center publications, Vol. 3, Polish Academy of science, Warsaw, 1977, 129-142.

[36] W. C. Rheinboldt, On a theorem of S. Smale about Newton’s method for analytic mappings, Appl. Math. Lett. 1 (1988), 69-72.

[37] E. Schro¨der, U¨ber unendlich viele Algorithmen zur Autlo¨sung der Glleichungen, Math. Anal. 2 (1870), 317-365.

[38] S. Smale, Newton’s method estimates from data at one point, in: R.E. Ewing, K.E. Gross, C.F. Martin (Eds.), The Merging of Disciplines: New Direction in Pure, Applied, and Computational Mathematics, Springer, New York, 1986, 185- 196.

[39] J.F. Traub, H.Wonzniakowski, Convergence and ´ complexity of Newton iteration for operator equations, J. Assoc. Comput. Mach. 26 (1979), 250-258.

[40] B. A. Vertgeim, On the Conditions for the applicability of Newton’s method (Russian), Dokl. Akad. Nauk SSSR 110 (1956), 719-722.

[41] B. A. Vertgeim, On some methods of the approximate solution of nonlinear functional equations in Banach spaces (Russian), Uspekhi Mat. Nauk 12 (1957), 166-169

[Engl. Transl: Amer. Math. Soc. Transl. 16 (1960), 378-382].

[42] X.H. Wang, The convergence of Newton’s method, Kexue Tongbao 25 (1980), 36-37 (in Chinese).

[43] X.H. Wang, Convergence of Newton’s method and uniqueness of the solution of the equations in Banach space, IMA J. Numer. Anal. 20 (2000), 123-134.

[44] X.H. Wang, D.F. Han, Criterion α and Newton’s method under weak conditions, Math. Numer. Sin. 19 (1997) 103-112 (in Chinese) English translation in: Chinese J. Numer. Math. Appl. 19 (1997), 96-105.

[45] X.H. Wang, C. Li, Convergence of Newton’s method and uniqueness of the solution of the equations in Banach space. II, Acta. Math. Sinica (Engl. Ser.) 19 (2003), 405-412.

[46] T. Yamamoto, A unified derivation of several error bounds for Newton’s process, J. Comput. Appl. Math. 12-13 (1985), 179-191.

[47] T. Yamamoto, Historical development in convergence analysis for Newton’s and Newton-like methods, J. Comput. Appl. Math. 124 (2000), 1- 23.

[48] J.-C. Yakoubsohn, Finding a cluster of zeros of univariate polynomials, J. Complexity 16 (2000), 603-638.

[49] T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (1984), 583-589.

WSEAS Transactions on Mathematics, ISSN / E-ISSN: 1109-2769 / 2224-2880, Volume 16, 2017, Art. #28, pp. 248-256


Copyright © 2017 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site