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1 Introduction
Many problems in computational sciences and related
areas can be formulated as equations defined on some
spaces using Mathematical modeling [2,4,5,7,12,22].
The closed form solution of such equations is desir-
able but rarely attainable. That is why, in practice we
utilize iterative methods. There is a plethora of lo-
cal as well as semi-local convergence results for New-
ton’s method under generalized Lipschitz-type con-
ditions [1–49]. Newton’s method defined for each
n = 0, 1, 2, . . . by

xn+1 = N(xn), (1.1)

is undoubtedly the most popular method for construct-
ing a sequence {xn} approximating a solution p of
nonlinear equation

F (x) = 0. (1.2)

Here x0 is an initial point, F : D ⊆ B1 −→ B2, D
is a convex subset of B1;B1,B2 are Banach spaces, F
is a Fréchet-differentiable operator and N(x) = x −
F ′(x)−1F (x).

Proinov in [31] presented a generalization for the
famous Banach contraction mapping principle with
arbitrary order of convergence of Picard’s iteration.
Then, later in [33] some general local convergence
results were reported for Picard’s iteration with ar-
bitrary order of convergence using an iteration func-
tion in a metric space. More recently, the semi-local
convergence was given in [32] with order of conver-
gence γ ≥ 1 for Picard’s iteration defined for each

n = 0, 1, 2, . . . by

xn+1 = P (xn), (1.3)

where P : D ⊂ B1 −→ B1 is an iteration function in
B1 satisfying the condition

H(P (x)) ≤ g(H(x)) for each x ∈ D (1.4)

with P (x) ∈ D and H(x) ∈ I, H : D −→ R+, I ⊆
R+ containing 0 and g is a gauge function of I (to
be precised in Section 2). H : D −→ R+ satisfy-
ing (1.4) is called a function of initial approximation
of P. Using g,H and P the local convergence of Pi-
card’s method was given in [31]. These results were
then specialized using w−versions of the Newton-
Kantorovich theorem [22]. These results extended
and unified earlier ones.

In the present study, we are motivated by work
in [33] and optimization considerations. Using our
new idea of restricted convergence regions we find a
more precise location, where the Newton iterates lie
than before. This way the resulting w− functions are
smaller than before leading to the following advan-
tages (A):

(A1) Extended region of convergence leading to a
wider choice of initial guesses.

(A2) At least as precise error bounds on the distances
‖xn− p‖ leading to fewer iterates to obtain a de-
sired error tolerance.

(A3) An at least as precise information on the location
of the solution p.
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Advantages (A) are obtained under the same compu-
tational effort, since in practice the computation of the
w−function in [33] requires the computation of our
new w−functions as special cases.

The rest of the study is structured as follows:
Some Mathematical background on gauge functions
and related materials is presented in Section 2. The lo-
cal convergence of Newton’s method is given in Sec-
tion 3.

2 Gauge functions and initial condi-
tions

In order to make the study as self contained as pos-
sible, we reproduce some gauge function related con-
cepts. More details can be found in [32, 33].

Definition 2.1 A function g : I −→ R+ is called
quasi-homogeneous of degree δ ≥ 0 on I if it satis-
fies the condition

g(λt) ≤ λδg(t) for each λ ∈ (0, 1) and t ∈ I.
(2.1)

Definition 2.2 A function g : I −→ R+ is called
gauge function of order δ ≥ 1 on I if it is quasi-
homogeneous of order δ on I and

g(t) ≤ t for each t ∈ I. (2.2)

Definition 2.3 Let P : D ⊂ B1 −→ B2. A function
H : D −→ R+ is called function of initial conditions
of P with a gauge function g on I if there exists a
function g : I −→ I such that

H(P (x)) ≤ g(H(x)) for eachx ∈ Dwith
P (x) ⊂ D andH(x) ∈ I (2.3)

Definition 2.4 Let P : D ⊂ B1 −→ B1 and let H :
D −→ R+ be a function of initial conditions of P
with a gauge function on I. Then a point x ∈ D is
called initial point of P if H(x) ∈ I and iterates Pnx
are well-defined and remain in D.

We shall need the following auxiliary result (see
corollary 3.7 in [33]).

COROLLARY 2.5 Let T : D ⊂ X −→ X be an
operator on a metric space (X, d) and let µ ∈ D.
Suppose that

d(T (x), µ) ≤ ϕ(d(x, µ)) for each

x ∈ D with d(x, µ) ∈ I,
where ϕ is a strict gauge function of order δ ≥ 1 on
I. Then, µ is a unique fixed point of T in the set U =
{x ∈ D : d(x, µ) ∈ I}. Moreover, if T : U −→ U,
then for each x0 ∈ U the following items hold.

(i) Picard iteration xn+1 = T (xn) stays in U and
converges to µ with Q−order δ.

(ii) d(xn, µ) ≤ λsn(δ)d(x0, µ) for each n =
0, 1, 2, . . . where λ = φ(E(x0)) and φ is a non-
decreasing nonnegative function on I satisfying
ϕ(t) = tφ(t) for each t ∈ I.

(iii) d(xn+1, µ) ≤ ϕ(d(xn, µ)) for each n =
0, 1, 2, . . . .

3 Local convergence analysis
The local convergence analysis of Newton’s method is
based on generalized w− affine invariant conditions.
Let p be such that F (p) = 0 and F ′(p)−1 exists. Sup-
pose there exists function w0 : [0,+∞) −→ [0,+∞)
continuous and increasing with w0(0) = 0 such that
for each x ∈ D

‖F ′(p)−1(F ′(x)− F ′(p))‖ ≤ w0(‖x− p‖). (3.1)

Moreover, suppose equation

w0(t) = 1 (3.2)

has positive solutions. Denote by ρ the smallest pos-
itive solution of equation (3.2). Set D0 = D ∩
U(x0, ρ). Furthermore, suppose there exists function
w : [0, 2ρ) × [0, ρ] × [0, ρ) −→ [0,+∞) continuous
and nondecreasing with w(0, 0, 0) = 0 such that for
each x, y ∈ D0

‖F ′(p)−1(F ′(x)−F ′(y))‖ ≤ w(‖x−y‖, ‖x−p‖, ‖y−p‖).
(3.3)

Notice that function w0 depends on D, whereas w de-
pends on w0 and D0. The construction of function w
was not possible before, since w0 and D0 are needed
[3, 9, 10, 13, 22, 33]:

‖F ′(p)−1(F ′(x)− F ′(y))‖
≤ w̄(‖x− y‖, ‖x− p‖, ‖y − p‖) (3.4)

, for eachx, y ∈ D

where w̄ : [0,+∞)3 −→ [0,+∞) is a continuous and
nondecreasing function with w̄(0, 0, 0) = 0. We have
that for s, s1, s2, s3 ≥ 0

w0(s) ≤ w̄(s, s, s) (3.5)

and
w(s1, s2, s3) ≤ w̄(s1, s2, s3) (3.6)

since D0 ⊆ D and w̄
w0

can be arbitrarily large [3, 4].
Let us provide a motivational example to show that
(3.5) and (3.6) can hold as strict inequalities. LetB1 =
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B2 = R3, D = Ū(0, 1) and p = (0, 0, 0)T . Define
function F on D for v = (v1, v2, v3)T by

F (v) = (ev1 − 1,
e− 1

2
v2

2 + v2, v3)T . (3.7)

The Fréchet derivative is given by

F ′(v) =

 ev1 0 0
0 (e− 1)v2 + 1 0
0 0 1

 .
Then, conditions (3.1), (3.3) and (3.4) are satis-

fied for w0(t) = L0t, w(t, t, t) = e
1
L0 t, w̄(t, t, t) =

Lt, ρ = 1
L0
, L0 = e− 1 and L = e. Notice that

w0(t) < w(t, t, t) < w̄(t, t, t) (3.8)

holds for all t ∈ [0, ρ). The upper bound on the ex-
pression appearing in these studies using (3.4) is

‖F ′(p)−1(F (x)− F (p)− F ′(x)(x− p))‖

≤ ‖
∫ 1

0
F ′(p)−1(F ′(x)− F ′(p+ θ(x− p)))

×(x− p)dθ‖

≤
∫ 1

0
w̄(‖x− p‖, θ‖x− p‖, (1− θ)‖x− p‖)dθ

=

∫ ‖x−p‖
0

w̄(‖x− p‖, u, ‖x− p‖ − u)du (3.9)

However, using the more precise and actually needed
condition (3.3) instead of (3.4) we obtain instead of
(3.9) the more precise estimate (see also (3.6))

‖F ′(p)−1(F (x)− F (p)− F ′(x)(x− p))‖

≤ ‖
∫ 1

0
F ′(p)−1(F ′(x)− F ′(p+ θ(x− p)))

×(x− p)dθ‖

≤
∫ 1

0
w(‖x− p‖, θ‖x− p‖, (1− θ)‖x− p‖)dθ

=

∫ ‖x−p‖
0

w(‖x− p‖, u, ‖x− p‖ − u)du.(3.10)

Replacing (3.4) and (3.9) by (3.3) and (3.10), re-
spectively in the proof of the local convergence analy-
sis of Newton’s method in [33] we obtain a finer con-
vergence analysis with advantages as already stated in
the introduction of this study. The advantages are ob-
tained under the same computational effort as in [33],
since in practice the computation of function w̄ re-
quires the computation of functionw as a special case.

The results in this Section, in particular reduce
to the corresponding ones in Section 7 of [33], if
w0 = w = w̄. Otherwise, the new results constitute
an improvement (see also advantages (A) ).

LEMMA 3.1 Let F : D ⊂ B1 −→ B2 be a con-
tinuously Fréchect differentiable operator on an open
convex set D. Let p ∈ D be a simple zero of F and
the condition (3.1) and (3.3) are satisfied. Assume that
the real function

ϕ(t) =

∫ 1
0 w(t, u, t− u)du

1− w0(t)
(3.11)

is well-defined on the interval (0, ρ). Then

‖N(x)− p‖ ≤ ϕ(‖x− p‖) for each (3.12)
x ∈ D with ‖x− p‖ < ρ.

Proof. Let x ∈ D be such that ‖x − p‖ < ρ. Notice
that since function ϕ is well-defined on [0, ρ), then
w0(t) < 1 for each t ∈ [0, ρ). Using this and (3.1),
we get in turn that

‖F ′(p)−1(F ′(x)− F ′(p))‖ ≤ w0(‖x− p‖) < 1,

since 0 ≤ ‖x − p‖ < ρ. It then follows from the pre-
ceding inequality and the Banach Lemma on invert-
ible operators [5, 22] that F ′(x)−1 exists and

‖F ′(x)−1F ′(p)‖ ≤ 1

1− w0(‖x− p‖)
.

Moreover, we have that

‖T (x)− p‖
≤ ‖F ′(x)−1F ′(p)‖

×‖
∫ 1

0
F ′(p)−1(F ′(x)− F ′(p+ θ(x− p)))

(x− p)dθ‖
≤ ‖F ′(x)−1F ′(p)‖

×
∫ 1

0
w(‖x− p‖, ‖θ(x− p)‖,

‖x− (p+ θ(x− p))‖)dθ
≤ ‖F ′(x)−1F ′(p)‖

×
∫ ‖x−p‖

0
w(‖x− p‖, u, ‖x− p‖ − u)dθ.

The proof is completed if we combine the last two
inequalities.

�

THEOREM 3.2 Let F : D ⊂ B1 −→ B2 be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, ρ) ⊂ D, where p is a simple zero of F. Sup-
pose F ′ satisfies conditions (3.1) and (3.3) and the
real function ϕ defined by (3.11) is strict gauge func-
tion of order ξ + 1 for some ξ ≥ 0 on the interval
[0, ρ). Then for each x0 ∈ U(p, ρ) the following items
hold true:
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(i) Newton iteration (1.1) is well-defined, remains in
U(p, ρ) and converges to p with Q−order ξ + 1.

(ii) For all n ≥ 0 we have the following estimate

‖xn+1 − p‖ ≤ ϕ(‖xn − p‖). (3.13)

(iii) For all n ≥ 0 we have the following estimate

‖xn − p‖ ≤ λsn(p+1)‖x0 − p‖, (3.14)

where λ = φ(‖x0−p‖) and φ is a nondecreasing
function on I satisfying ϕ(t) = tφ(t).

(iv) If ρ is a fixed point of ϕ, then ρ is the optimal ra-
dius of the convergence ball of Newton’s method
under the condition (3.1) and (3.3) for some w
and w0.

Proof. Items (i)-(iii) follow from Corollary 2.5 and
Lemma 3.1. Item (iv) is shown in Theorem 4.1.

�

4 Special cases
We assume from now on that

w0(t) ≤ w1(t) for t ∈ [0, ρ). (4.1)

If
w1(t) ≤ w0(t) for t ∈ [0, ρ), (4.2)

where w1 is a nonnegative nondecreasing function of
[0, ρ). Then, the results that follow hold with w0 re-
placing w1. In the following theorems and corollaries
in this section we consider some interesting special
cases of Theorem 3.2.

THEOREM 4.1 Let F : D ⊂ B1 −→ B2 be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, ρ) ⊂ D, where p is a simple zero of F. Sup-
pose

‖F ′(p)−1(F ′(x)−F ′(y))‖ ≤ w1(‖x−p‖)−w1(‖y−p‖)
(4.3)

for all x, y ∈ U(p, ρ), where w1 is a real function
defined on [0, ρ] with w1(0) = 0. Moreover, suppose
that (3.1) holds. Furthermore, suppose that

ϕ(t) =
tw1(t)−

∫ 1
0 w1(u)du

1− w0(t)
(4.4)

is a strict gauge function of order ξ+1 for some p ≥ 0
on [0, r). Then starting from every x0 ∈ U(p, ρ) New-
ton iteration (1.1) is well defined, remains in U(p, ρ),
converges withQ−order ξ+1 to p and satisfies the es-
timates (4.1) and (4.4). Moreover, if ρ is a fixed point
of ϕ and w0, w1 are continuous, then ρ is the optimal
radius of the convergence ball of Newton’s method.

Proof.The first part of the Theorem follows immedi-
ately from Theorem 3.2. Let ρ be a fixed point of ϕ.
We shall show the exactness of ρ even if B1 = B2 =
R. Let p ∈ R+ be a arbitrary. Define function F on
D = Ū(p, ρ) by

F (x) = x− p− sign(x− p)
∫ ‖x−p‖

0
w1(t)dt,

where w1 is continuous on [0, ρ) with w1(0) =
0. Clearly, F is continuously differentiable with
F ′(x) = 1 − w1(|x − p|). Then, for all x ∈ U(p, ρ)
and y ∈ [p, x], we get

|F ′(p)−1(F ′(x)−F ′(y))‖ = w1(|x−p|)−w1(|y−p|)

which shows that (4.3) holds. Then, T (p + ρ) = p −
ϕ(ρ) = p − ρ and T (p − ρ) = p + ϕ(ρ) = p + ρ,
for T (x) = x− F ′(x)−1F (x). Hence, if x0 = p+ ρ,
then xn = p + (−)nρ. Therefore, Newton’s method
starting at x0 = p+ ρ fails to converge.

�

REMARK 4.2 Let us give a sufficient condition forϕ
defined by (4.4) to be a gauge function of order ξ+ 1.
It follows from the Example in section 3 that if w1 is
a nonnegative nondecreasing function on [0, ρ) such
that for all λ ∈ (0, 1) and all t, u ∈ [0, ρ) with t ≥ u
it satisfies w1(λt)−w1(λu) ≤ λξ[w1(t)−w1(u)] for
some ξ ≥ 0, then the function ϕ defined by (4.4) is a
strict gauge function of order ξ+ 1 on I provided that
ϕ(t) < t for all t ∈ (0, ρ).

Note that in the case w0(t0 = w1(t) = Lt con-
dition (4.3) coincides with (4.2) and we obtain Traub
and Woźniakowski’s result [39]. By putting w1(t) =∫ t

0 L(u)du, where L is nondecreasing on [0, ρ), we
immediately get some results of Wang [43, Theorem
3.1 and 5.1]. Theorem 4.1 is also an improvement
of a result by Wang and Li [45, Theorem 1.1] and
Proinov [33].

COROLLARY 4.3 Let F : D ⊂ B1 −→ B2 be a
continuously Fréchect differentiable operator on an
open ball U(p, ρ) ⊂ D, where p is a simple zero of
F. Suppose (4.3) holds with

w0(t) = L0t
ξ, (4.5)

w1(t) = L1t
ξ (ξ > 0.L0, L1 > 0) and

0 < r ≤ R =

(
ξ + 1

ξL1 + (ξ + 1)L0

)1/ξ

.

Define the real functions

ϕ(t) =
ξ

ξ + 1

L1t
ξ+1

1− L0tξ
and φ(t) =

ξ

ξ + 1

L1t
ξ

1− L0tξ
.

(4.6)
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Then starting from every x0 ∈ U(p, ρ) Newton iter-
ation (1.1) is well defined, remains in U(p, ρ), con-
verges with Q−order ξ + 1 to p and satisfies the es-
timates (4.1) and (4.4). Moreover, if ρ = R is the
optimal radius of the convergence ball of Newton’s
method under the condition (4.3) with w1 defined by
(4.5).

In the case when ξ = 1 and L0 = L1, we
again get the above mentioned result of Traub and
Woźniakowski [39] as well as the result of Rhein-
boldt [35], Wang [42] and Ypma [49]. If 0 < ξ ≤ 1,
then Corollary 4.3 leads to the results of Wang and
Li [45, Corollary 3.1], Huang [19, Theorem 2] and
Proinov [33]. If L0 < L1 the mentioned results are
improved.

COROLLARY 4.4 Let F : D ⊂ B1 −→ B2 be a
continuously Fréchect differentiable operator on an
open ball U(p, ρ) ⊂ D, where p is a simple zero of
F. Suppose that (3.1) and (4.3) hold with

w0(t) =
c0

(1− γ0t)2
, (4.7)

w1(t) =
c

(1− γt)2
, (γ > 0, L0, L1 > 0) with

c0 ≤ c and γ0 ≤ γ

Define the real function

Φ(t) =
ϕ(t)

t
(4.8)

and
0 < r ≤ R, (4.9)

where R is the smallest positive solution of ϕ(t) = t.
Then starting from every x0 ∈ U(p, ρ) Newton iter-
ation (1.1) is well defined, remains in U(p, ρ), con-
verges with Q−quadratically to p with the estimates
(4.1) and

‖xn − p‖ ≤ λ2n−1‖x0 − p‖ for all n ≥ 0, (4.10)

where λ = Φ(‖x0 − p‖). Moreover, if ρ = R is the
optimal radius of the convergence ball of Newton’s
method under the conditions (3.1) and (4.3).

Corollary 4.4 without the estimate (4.1) and for
L0 = L, γ0 = γ is due to Wang and Han [44]
(L = 1)and Wang [43, Example 1](L ≥ 0). Note
that the function Φ defined in 4.8) is strictly increasing
and continuous on the interval I = [0, R] and satisfies
Φ(I) = [0, 1]. Therefore, if we ignore the estimate
(4.1), then Corollary 4.4 is equivalent to the following
result of Wang [43, p.132]. However, if L0 < L and
γ0 < γ the mentioned results are improved.

COROLLARY 4.5 Let F : D ⊂ B1 −→ B2 be a
continuously Fréchect differentiable operator on an
open ball U(p, ρ) ⊂ D, where p is a simple zero of
F. Suppose that (3.1) and (4.3) hold and R satisfies
(4.9). Then starting from every x0 ∈ U(p, ρ) Newton
iteration (1.1) is well defined, remains inU(p, ρ), con-
verges with Q−quadratically to p with the estimates
(4.1) and

‖xn − p‖ ≤ λ2n−1‖x0 − p‖ for all n ≥ 0. (4.11)

The following theorem is another natural generaliza-
tion of Traub and Woźniakowski’s result [39] men-
tioned in the beginning of the section.

THEOREM 4.6 Let F : D ⊂ B1 −→ B2 be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, ρ) ⊂ D, where p is a simple zero of F. Sup-
pose that (3.1) and

‖F ′(p)−1(F ′(x)− F ′(y))‖ ≤ w2(‖x− y‖) (4.12)

for all x, y ∈ U(p, ρ) where w2 is a real function de-
fined on [0, ρ] with w2(0) = 0. Assume that

ϕ(t) =

∫ t
0 w2(u)du

1− w0(t)
(4.13)

is a strict gauge function of order ξ + 1 for some
0 ≤ ξ ≤ 1 on [0, ρ). Then starting from every
x0 ∈ U(p, ρ) Newton iteration (1.1) is well defined,
remains in U(p, ρ), converges with Q−order ξ + 1 to
p and with the error estimates (4.1) and (4.5).

COROLLARY 4.7 Let F : D ⊂ B1 −→ B2 be a
continuously Fréchect differentiable operator on an
open ball U(p, ρ) ⊂ D, where p is a simple zero of
F. Suppose conditions (3.1) and (4.12) hold with

w0(t) = L0t
ξ, (4.14)

w2(t) = L2t
ξ, (0 ≤ ξ ≤ 1, L0, L2 > 0) and

0 < r ≤ R =

(
ξ + 1

ξL2 + (ξ + 1)L0

)1/ξ

.

In the case ξ = 0 we assume thatL0 <
1
2 andR =∞.

Define functions

ϕ(t) =
ξ

ξ + 1

L2t
ξ+1

1− L0tξ
and φ(t) =

ξ

ξ + 1

L2t
ξ

1− L0tξ
.

(4.15)
Then starting from every x0 ∈ U(p, ρ) Newton iter-
ation (1.1) is well defined, remains in U(p, ρ), con-
verges with Q−order ξ + 1 to ξ and satisfies the esti-
mates (4.1) and (4.4).

WSEAS TRANSACTIONS on MATHEMATICS Ioannis K. Argyros, Santhosh George

E-ISSN: 2224-2880 252 Volume 16, 2017



From Corollary 4.7 in the case ξ = 1 we again
get the classical results of Rheinboldt [35, 36], Traub
and Woźniakowski [39], Wang [42–45], Ypma [49].
In the case 0 ≤ ξ ≤ 1 Corollary 4.7 is obtained by
Ypma [49, Theorem 3.1], Huang [19, Theorem 1] and
in a slightly different form by Argyros [6, Theorem
4].

THEOREM 4.8 Let F : D ⊂ B1 −→ B2 be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, ρ) ⊂ D, where p is a simple zero of F. Sup-
pose that (3.1) and

‖F ′(p)−1(F ′(x)− F ′(y))‖ ≤ w3(‖x− y‖) (4.16)

for all x, y ∈ U(p, ρ), where w3 is a real function
defined on [0, ρ] with w3(0) = 0. Assume that

ϕ(t) =
tw3(t) +

∫ t
0 w3(u)du

1− w0(t)
(4.17)

is a strict gauge function of order ξ + 1 for some
0 ≤ ξ ≤ 1 on [0, ρ). Then starting from every
x0 ∈ U(p, ρ) Newton iteration (1.1) is well defined,
remains in U(p, ρ), converges with Q−order ξ + 1 to
p and with the error estimates (4.1) and (4.5).

REMARK 4.9 Let ϕ be defined by (4.15) or (4.18).
It follows from the Example 2.2 in [33] that if w3 is
nonnegative nondecreasing on [0, ρ) and w3(t)

tp is non-
decreasing on (0, ρ) for some ξ ≥ 0, then ϕ is a strict
guage function of order ξ + 1 on [0, ρ) provided that
ϕ(t) < t for all t ∈ (0, ρ).

COROLLARY 4.10 Let F : D ⊂ B1 −→ B2 be
a continuously Fréchect differentiable operator on an
open ball U(p, ρ) ⊂ D, where p is a simple zero of F.
Suppose that (4.16) hold with

w0(t) = L0t
ξ, (4.18)

w3(t) = L3t
ξ, (ξ > 0.L0 > 0) and

0 < ρ ≤ R =

(
ξ + 1

ξL3 + (ξ + 1)L0

)1/ξ

In case ξ = 0 we assume That L0 <
1
3 and R = ∞.

Define the real functions

ϕ(t) =
(ξ + 2)L3t

ξ+1

(ξ + 1)(1− L0tξ)
and φ(t) =

(ξ + 2)L3t
ξ

(ξ + 1)(1− L0tξ)
.

(4.19)
Then starting from every x0 ∈ U(p, ρ) Newton iter-
ation (1.1) is well defined, remains in U(p, ρ), con-
verges with Q−quadratically to p with the estimates
(4.3)and (4.5).

From Corollary 4.10 in the case ξ = 1 we obtain
R = 2

5L which improves a recent result of Wang and
Li [45, Corollary 3.2]. For example they have proved
R ≤ 1

3L0
, since Proinov [33] Rξ = 2

5L < 2
5L0

, The
following corollary is an improvement of another re-
sult of Wang and Li [45, Corallary 3.3].

COROLLARY 4.11 Let F : D ⊂ B1 −→ B2 be
a continuously Fréchect differentiable operator on an
open ball U(p, ρ) ⊂ D, where p is a simple zero of F.
Suppose that (4.16) holds with w3 defined by (4.18)
and R satisfies (4.18). Then starting from every x0 ∈
U(p, ρ) Newton iteration (1.1) is well defined, remains
in U(p, ρ), converges with Q−quadratically to p with
the estimates (4.3)and (4.5).

In the convergence ball of Newton’s method, the
solution p of the equation F (x) = 0 is certainly
unique. But it is well known that the uniqueness ball
of this equation may be larger. Such results can be
found in [6, 33] using only (3.1).

EXAMPLE 4.12 Returning back at the motivational
example (3.7), we see by Lemma 3.1 and Theorem
3.2 that our new radius of convergence is ρ3 =

2

2(e−1)+e
1

e−1
= 0.3826919122323857 the radius in

[3, 4, 6] is ρ2 = 2
2(e−1)+e = 0.324947231372689

and the one in [19, 33, 39, 41] is ρ1 = 2
3e =

0.2452529607809, so ρ1 < ρ2 < ρ3 justifying ad-
vantages (A).

EXAMPLE 4.13 Let B1 = B2 = C[0, 1], the space
of continuous functions defined on [0, 1] equipped with
the max norm and D = Ū(0, 1). Define the operator
F on D by

F (x)(t) = x(t)− 5

∫ 1

0
tθx3(θ)dθ,

so

F ′(x)u(t) = u(t)−15

∫ 1

0
tθx2(θ)u(θ)dθ for each u ∈ D.

Then, we have for p(t) = 0 (t ∈ [0, 1])), ξ = 1,
that L0 = 7.5, L3 = L = 15, w0(t) = 7.5t, w3(t) =
w(t) = 15t.Using (4.18), the radius in [19,33,39,41]
is ρ1 = 2

3L3
= 0.0444 whereas the new radius is ρ3 =

2
2L0+L3 = 0.0667. Hence, our radius of convergence
is larger.

5 Conclusion

The aim of this paper is to provide a finer local con-
vergence analysis for Newton’s method than in earlier
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papers using the gauge theory, the w−conditions, the
center w0−conditions and our new idea of restricted
convergence regions. Using the center w0−condition
instead of the less precise w−condition used earlier,
we find tighter upper bounds on the ‖F (x)−1F (x0)‖.
Moreover, using restricted convergence regions, we
obtain a more precise location where the Newton it-
erates lie leading to tighter w−majorants. This way,
we obtain a larger radius of convergence resulting to
a wider choice of initial guesses and tighter error esti-
mates on the distances ‖xn − p‖ leading to the calcu-
lation of fewer iterates to obtain a desired error toler-
ance. Moreover, the information on the location of the
solution is also more accurate than in earlier studies.
These, improvements are made under the same com-
putational cost, since in practice the computation of
old w−functions requires the computation of the new
w0− and w1 functions as special cases.
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[25] A. A. Magreñán, Different anomalies in a Jarratt
family of iterative root finding methods, Appl.
Math. Comput. 233, (2014), 29-38.
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