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1 Introduction

Many problems in computational sciences and related
areas can be formulated as equations defined on some
spaces using Mathematical modeling [2,4,5,7,12,22].
The closed form solution of such equations is desir-
able but rarely attainable. That is why, in practice we
utilize iterative methods. There is a plethora of lo-
cal as well as semi-local convergence results for New-
ton’s method under generalized Lipschitz-type con-
ditions [1-49]. Newton’s method defined for each
n=20,1,2,... by

Znt1 = N(zn), (1.1)

is undoubtedly the most popular method for construct-
ing a sequence {z,} approximating a solution p of
nonlinear equation

F(z) = 0. (1.2)

Here xg is an initial point, ' : D C By — B, D
is a convex subset of 1; By, By are Banach spaces, I
is a Fréchet-differentiable operator and N (z) = = —
F'(z)"1F(x).

Proinov in [31] presented a generalization for the
famous Banach contraction mapping principle with
arbitrary order of convergence of Picard’s iteration.
Then, later in [33] some general local convergence
results were reported for Picard’s iteration with ar-
bitrary order of convergence using an iteration func-
tion in a metric space. More recently, the semi-local
convergence was given in [32] with order of conver-
gence v > 1 for Picard’s iteration defined for each
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n=20,1,2,...by
Tni1 = P(zy), (13)

where P : D C By — B is an iteration function in
B satisfying the condition

H(P(x)) < g(H(z)) foreach z € D (1.4)

with P(x) e Dand H(z) € I, H: D — Ry, I C
R, containing 0 and g is a gauge function of I (to
be precised in Section 2). H : D — R, satisfy-
ing (1.4) is called a function of initial approximation
of P. Using g, H and P the local convergence of Pi-
card’s method was given in [31]. These results were
then specialized using w—versions of the Newton-
Kantorovich theorem [22]. These results extended
and unified earlier ones.

In the present study, we are motivated by work
in [33] and optimization considerations. Using our
new idea of restricted convergence regions we find a
more precise location, where the Newton iterates lie
than before. This way the resulting w— functions are
smaller than before leading to the following advan-
tages (A):

(A1) Extended region of convergence leading to a
wider choice of initial guesses.

(A2) At least as precise error bounds on the distances
||z, — p|| leading to fewer iterates to obtain a de-
sired error tolerance.

(A3) An at least as precise information on the location
of the solution p.
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Advantages (.A) are obtained under the same compu-
tational effort, since in practice the computation of the
w—function in [33] requires the computation of our
new w—functions as special cases.

The rest of the study is structured as follows:
Some Mathematical background on gauge functions
and related materials is presented in Section 2. The lo-
cal convergence of Newton’s method is given in Sec-
tion 3.

2 Gauge functions and initial condi-
tions

In order to make the study as self contained as pos-
sible, we reproduce some gauge function related con-
cepts. More details can be found in [32,33].

Definition 2.1 A function g : I — Ry is called
quasi-homogeneous of degree § > 0 on I if it satis-
fies the condition

g(At) < Xog(t) foreach A € (0,1) and t € I.
@2.1)

Definition 2.2 A function g : I — Ry is called
gauge function of order 6 > 1 on I if it is quasi-
homogeneous of order § on I and

g(t) <t foreacht e I. (2.2)

Definition 2.3 Let P : D C By — Bs. A function
H : D — Ry is called function of initial conditions
of P with a gauge function g on I if there exists a
function g : I — I such that

H(P(z)) < g(H(x))foreachz € D with

P(z)C DandH(z) €I (2.3)

Definition 2.4 Let P : D C By — By and let H :
D — R be a function of initial conditions of P
with a gauge function on I. Then a point x € D is
called initial point of P if H(x) € I and iterates P™x
are well-defined and remain in D.

We shall need the following auxiliary result (see
corollary 3.7 in [33]).

COROLLARY 25 LetT : D C X — X be an
operator on a metric space (X,d) and let p € D.
Suppose that

d(T(z), p) < p(d(, u)) for each
x € D with d(z,pn) € 1,

where @ is a strict gauge function of order 6 > 1 on
1. Then, i is a unique fixed point of T' in the set U =
{r € D :d(x,u) € I}. Moreover, if T : U — U,
then for each xo € U the following items hold.
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(i) Picard iteration x,+1 = T(xy,) stays in U and
converges to |, with QQ—order 6.

(ii) d@a,p) < AOd(wg, ) for each n =
0,1,2,... where A = ¢(E(x¢)) and ¢ is a non-
decreasing nonnegative function on I satisfying
o(t) = to(t) foreacht € 1.

(iii) d(wni, ) <
0,1,2,....

(d(@n, 1) for each n =

3 Local convergence analysis

The local convergence analysis of Newton’s method is
based on generalized w— affine invariant conditions.
Let p be such that F((p) = 0 and F'(p) ! exists. Sup-
pose there exists function wy : [0, +00) — [0, +00)
continuous and increasing with wg(0) = 0 such that
foreachxz € D

1F" (p)~H (F ()

Moreover, suppose equation

= F'(p)ll < wolllz = pll). 3.1)

wo(t) =1 (3.2)
has positive solutions. Denote by p the smallest pos-
itive solution of equation (3.2). Set Dy = D N
U(xo, p). Furthermore, suppose there exists function
w : [0,2p) x [0, p] x [0, p) — [0, +0c0) continuous
and nondecreasing with w(0,0,0) = 0 such that for
eachz,y € Dy

1E" ()~ (F" ()= F' (y) | < wllz=yll, llz=pll, [y—pl)-
(3.3)

Notice that function wg depends on D, whereas w de-
pends on wg and Dgy. The construction of function w
was not possible before, since wg and Dy are needed
[3,9,10,13,22,33]:

1F ()" (F'(2) = F' ()]
< o(lz = yll, |z = pll, ly — pl)
,foreachz,y € D

34

where @ : [0, +00)? — [0, +00) is a continuous and
nondecreasing function with w(0,0,0) = 0. We have
that for s, s1, 52,83 > 0

wp(s) < w(s,s,s) (3.5)
and

w(s1, s2,s3) < w(s1, S2,53) (3.6)

since Dy € D and w% can be arbitrarily large [3,4].
Let us provide a motivational example to show that
(3.5) and (3.6) can hold as strict inequalities. Let B; =
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By = R3 D = U(0,1) and p = (0,0,0)7. Define
function F on D for v = (v, v9,v3)" by
F(o) = (" = 1,5 ~v3 +vpv))”. (37

The Fréchet derivative is given by

evt 0 0
Fllv)=| 0 (e=1)wve+1 0
0 0 1

Then, conditions (3.1), (3.3) and (3.4) are satis-
1

fied for wo(t) = Lot,w(t,t,t) = eFot,w(t,t,t) =
Lt,p= L%)’LO = e — 1l and L = e. Notice that
wo(t) < w(t,t,t) < w(t,t,t) (3.8)

holds for all ¢ € [0, p). The upper bound on the ex-
pression appearing in these studies using (3.4) is

HF(Y%HM—F@%JWM@—MW
< w/ (2) — F'(p + 0(z — p)))
~ p)db|

1
/O w([lz =pll, Ollx = pll, (1 = )l — pl|)do

IN

lz—pl|
- A a(lz - pll . o — pll — wdu (3.9)

However, using the more precise and actually needed
condition (3.3) instead of (3.4) we obtain instead of
(3.9) the more precise estimate (see also (3.6))

|wxr%n@—F@»4wmm—mw
< H/P () — F'(p+6(z - p)))
wm
l
< Aimm—prx—mxl—mm—pmw

llz—pl|
= [ wlle = pllwlle = pll — w)du 10
0

Replacing (3.4) and (3.9) by (3.3) and (3.10), re-
spectively in the proof of the local convergence analy-
sis of Newton’s method in [33] we obtain a finer con-
vergence analysis with advantages as already stated in
the introduction of this study. The advantages are ob-
tained under the same computational effort as in [33],
since in practice the computation of function w re-
quires the computation of function w as a special case.

The results in this Section, in particular reduce
to the corresponding ones in Section 7 of [33], if
wg = w = w. Otherwise, the new results constitute
an improvement (see also advantages (A) ).
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LEMMA31 Let FF : D C By — By be a con-
tinuously Fréchect differentiable operator on an open
convex set D. Let p € D be a simple zero of F' and
the condition (3.1) and (3.3) are satisfied. Assume that
the real function

fol w(t,u,t —u)du
t) = 3.11
o(t) = wo(d) (3.11)
is well-defined on the interval (0, p). Then
ING) —pll < llz—pl) foreach  (3.12)

x € D with ||z — p| < p.

Proof. Let x € D be such that ||z — p|| < p. Notice
that since function ¢ is well-defined on [0, p), then
wp(t) < 1 foreacht € [0, p). Using this and (3.1),
we get in turn that

1F" (p) = (F"(x) = F' ()| < wo(llz —p]) <1,

since 0 < ||z — p|| < p. It then follows from the pre-
ceding inequality and the Banach Lemma on invert-
ible operators [5,22] that F”(x)~! exists and

LF(p) !

|F"(z)~ =1z wo(||x —pl|)’

Moreover, we have that

1T () — pll
1F" ()~ F' (p)]

xn/zﬂ (2)

p)do||
HF’( )L (o)

1
« /O w(llz — pll, 10z — p)ll,

[z = (p+ 0(z —p))l))do
1F" ()= F" ()

lz—pl|
XA w(llz — pll,u, [l — p|| — w)db.

IN

F'(p+6(z - p)))

IN

IN

The proof is completed if we combine the last two
inequalities.
O

THEOREM 3.2 Let F : D C By — Bs be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, p) C D, where p is a simple zero of F'. Sup-
pose F' satisfies conditions (3.1) and (3.3) and the
real function o defined by (3.11) is strict gauge func-
tion of order £ + 1 for some £ > 0 on the interval
[0, p). Then for each xo € U (p, p) the following items
hold true:

Volume 16, 2017



WSEAS TRANSACTIONS on MATHEMATICS
(i) Newton iteration (1.1) is well-defined, remains in
U(p, p) and converges to p with Q—order £ + 1.
(ii) For all n > 0 we have the following estimate

[2nt1 = pll < @(llzn = pl)- (3.13)

(iii) For all n > O we have the following estimate

|zg — pll < AED|zg —pll,  (3.14)

where A = ¢(||zo—p||) and ¢ is a nondecreasing
Sfunction on I satisfying p(t) = to(t).

(iv) If p is a fixed point of p, then p is the optimal ra-
dius of the convergence ball of Newton’s method
under the condition (3.1) and (3.3) for some w
and wy.

Proof. Items (i)-(iii) follow from Corollary 2.5 and
Lemma 3.1. Item (iv) is shown in Theorem 4.1.

([
4 Special cases
We assume from now on that
wo(t) < wi(t) for t € [0,p). 4.1)
If
wi(t) <wp(t) for te|0,p), 4.2)

where w; is a nonnegative nondecreasing function of
[0, p). Then, the results that follow hold with wq re-
placing w; . In the following theorems and corollaries
in this section we consider some interesting special
cases of Theorem 3.2.

THEOREM 4.1 Let F : D C By — By be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, p) C D, where p is a simple zero of F. Sup-
pose

1F ()~ (F" ()= F' ()| < wi(lle—pl)—wi(lly—pl)

4.3)
for all x,y € U(p,p), where w is a real function
defined on [0, p] with w1(0) = 0. Moreover, suppose
that (3.1) holds. Furthermore, suppose that

_twn(t) — fol w1 (u)du

olt) = = (4.4)

is a strict gauge function of order €41 for some p > 0
on [0, r). Then starting from every xo € U(p, p) New-
ton iteration (1.1) is well defined, remains in U (p, p),
converges with (Q—order 41 to p and satisfies the es-
timates (4.1) and (4.4). Moreover, if p is a fixed point
of p and wq, w1 are continuous, then p is the optimal
radius of the convergence ball of Newton’s method.
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Proof.The first part of the Theorem follows immedi-
ately from Theorem 3.2. Let p be a fixed point of ¢.
We shall show the exactness of p even if 5] = Bs =
R. Let p € R4 be a arbitrary. Define function F' on

D =U(p,p) by

llz—pl|
F(z) =z —p— sign(z — p) /0 wy (t)dt,

where w; is continuous on [0, p) with wy(0) =
0. Clearly, F' is continuously differentiable with
F'(z) =1 — w;(|Jz — p|). Then, for all z € U(p, p)
and y € [p, x], we get

|F' ()~ (F (@)= F'(y)) || = wi(Ja—pl) ~wi(ly—p])

which shows that (4.3) holds. Then, T'(p + p) = p —
o(p) =p—pand T(p — p) = p+ p(p) = p + p,
for T(z) =  — F'(x) "' F(z). Hence, if 29 = p + p,
then z,, = p + (—)"p. Therefore, Newton’s method
starting at xp = p + p fails to converge.

(|

REMARK 4.2 Let us give a sufficient condition for ©
defined by (4.4) to be a gauge function of order £ + 1.
It follows from the Example in section 3 that if w; is
a nonnegative nondecreasing function on [0, p) such
that for all A € (0,1) and all t,u € [0, p) witht > u
it satisfies wi(At) — wy (M) < As[w1(t) —wi(u)] for
some & > 0, then the function o defined by (4.4) is a
strict gauge function of order £ + 1 on I provided that
o(t) < tforallt e (0,p).

Note that in the case w(t0 = w;(t) = Lt con-
dition (4.3) coincides with (4.2) and we obtain Traub
and Wozniakowski’s result [39]. By putting w1 ()
fot L(u)du, where L is nondecreasing on [0, p), we
immediately get some results of Wang [43, Theorem
3.1 and 5.1]. Theorem 4.1 is also an improvement
of a result by Wang and Li [45, Theorem 1.1] and
Proinov [33].

COROLLARY 43 Let F : D C By — By be a
continuously Fréchect differentiable operator on an
open ball U(p, p) C D, where p is a simple zero of
F. Suppose (4.3) holds with

wo(t) = Lot, (4.5)
wi(t) = Lit* (€ >0.Lo, L1 > 0) and
0<r < R= .
B <§L1 +(E+1)Lo
Define the real functions
& Lytstt £ Lqitt
)= ——" _ and ¢(t) = —— ——.
P = e T Lo M0 = e T Lo
(4.6)
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Then starting from every xo € U(p, p) Newton iter-
ation (1.1) is well defined, remains in U (p, p), con-
verges with Q—order & + 1 to p and satisfies the es-
timates (4.1) and (4.4). Moreover, if p = R is the
optimal radius of the convergence ball of Newton’s
method under the condition (4.3) with w defined by
(4.5).

In the case when £ = 1 and Ly = L, we
again get the above mentioned result of Traub and
Wozniakowski [39] as well as the result of Rhein-
boldt [35], Wang [42] and Ypma [49]. If 0 < £ < 1,
then Corollary 4.3 leads to the results of Wang and
Li [45, Corollary 3.1], Huang [19, Theorem 2] and
Proinov [33]. If Ly < L; the mentioned results are
improved.

COROLLARY 4.4 Let F : D C By — By bea
continuously Fréchect differentiable operator on an
open ball U(p, p) C D, where p is a simple zero of
F'. Suppose that (3.1) and (4.3) hold with

co
wolt) = g “.7)
c .
wi(t) = T (v >0,Lo, L1 > 0) with
cg < candyy <7

Define the real function

O(t) = ‘Pit) 4.8)
and
0<r<R, 4.9

where R is the smallest positive solution of o(t) = t.
Then starting from every xo € U(p, p) Newton iter-
ation (1.1) is well defined, remains in U(p, p), con-
verges with Q—quadratically to p with the estimates
(4.1) and

|2 — pll < A2" 7Yz — p|| forall n >0, (4.10)

where A\ = ®(||zg — p||). Moreover, if p = R is the
optimal radius of the convergence ball of Newton’s
method under the conditions (3.1) and (4.3).

Corollary 4.4 without the estimate (4.1) and for
Ly = L,y = ~ is due to Wang and Han [44]
(L = 1)and Wang [43, Example 1](L > 0). Note
that the function ® defined in 4.8) is strictly increasing
and continuous on the interval I = [0, R] and satisfies
®(I) = [0, 1]. Therefore, if we ignore the estimate
(4.1), then Corollary 4.4 is equivalent to the following
result of Wang [43, p.132]. However, if Ly < L and
Yo < -y the mentioned results are improved.
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COROLLARY 45 Let F' : D C By — By bea
continuously Fréchect differentiable operator on an
open ball U(p, p) C D, where p is a simple zero of
F. Suppose that (3.1) and (4.3) hold and R satisfies
(4.9). Then starting from every xo € U(p, p) Newton
iteration (1.1) is well defined, remains in U (p, p), con-
verges with (Q—quadratically to p with the estimates
(4.1) and

|zn — pl| < X" 7Y|zo — p|| forall n >0. (4.11)

The following theorem is another natural generaliza-
tion of Traub and Wozniakowski’s result [39] men-
tioned in the beginning of the section.

THEOREM 4.6 Let F : D C By — Bs be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, p) C D, where p is a simple zero of F. Sup-
pose that (3.1) and

1F" (p) ™' (F" () = F ()l < wa(llz = yll) (4.12)

forall x,y € U(p, p) where ws is a real function de-
fined on [0, p] with wa(0) = 0. Assume that

- f(f wa(u)du

ot) = D (4.13)

is a strict gauge function of order £ + 1 for some
0 < & < 1 on|0,p). Then starting from every
xo € U(p,p) Newton iteration (1.1) is well defined,
remains in U(p, p), converges with Q—order £ + 1 to
p and with the error estimates (4.1) and (4.5).

COROLLARY 4.7 Let F : D C By — By be a
continuously Fréchect differentiable operator on an
open ball U(p,p) C D, where p is a simple zero of
F. Suppose conditions (3.1) and (4.12) hold with

wo(t) = Lot*, (4.14)
wy(t) = Lot®, (0<€<1,Lg,Ly > 0) and
§+1 >1/5
O0<r < R= .
= (ng +(E+1)Lg

In the case £ = 0 we assume that Lo < % and R = oo.
Define functions

& Lyttt & Ltt
o) = 7T Lo ™00 = T e
(4.15)

Then starting from every xo € U(p, p) Newton iter-
ation (1.1) is well defined, remains in U(p, p), con-
verges with Q—order £ + 1 to € and satisfies the esti-
mates (4.1) and (4.4).
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From Corollary 4.7 in the case £ = 1 we again
get the classical results of Rheinboldt [35,36], Traub
and WozZniakowski [39], Wang [42-45], Ypma [49].
In the case 0 < ¢ < 1 Corollary 4.7 is obtained by
Ypma [49, Theorem 3.1], Huang [19, Theorem 1] and
in a slightly different form by Argyros [6, Theorem
4].

THEOREMA4.8 Let F' : D C By — Bs be a con-
tinuously Fréchect differentiable operator on an open
ball U(p, p) C D, where p is a simple zero of F. Sup-
pose that (3.1) and

|F' (p) ™ (F'(z) = F'(y))|| < ws([l —yl) (4.16)
for all x,y € U(p,p), where ws is a real function

defined on |0, p] with w3(0) = 0. Assume that

o(t) = twg(t)l—t{gozzfg(u)du

(4.17)

is a strict gauge function of order £ + 1 for some
0 < & < 1 on|0,p). Then starting from every
xo € U(p,p) Newton iteration (1.1) is well defined,
remains in U(p, p), converges with Q—order £ + 1 to
p and with the error estimates (4.1) and (4.5).

REMARK 4.9 Let ¢ be defined by (4.15) or (4.18).

It follows from the Example 2.2 in [33] that if w3 is

. . t) .
nonnegative nondecreasing on [0, p) and “’;E ) is non-

decreasing on (0, p) for some & > 0, then ¢ is a strict
guage function of order £ + 1 on [0, p) provided that
o(t) < tforallt e (0,p).

COROLLARY 4.10 Let FF : D C By — By be
a continuously Fréchect differentiable operator on an
open ball U(p, p) C D, where p is a simple zero of F.
Suppose that (4.16) hold with

wo(t) = Lot (4.18)
ws(t) Lst®, (€ > 0.Ly > 0) and
B £+1 e
Vo< pgR(ﬂe+@+Dm>

In case ¢ = 0 we assume That Ly < % and R = oc.
Define the real functions

(€ +2)Latt™!

(f + 2)L3t§

o(t) = and (t) =

(€+1)(1 = Lot?)

4.19)
Then starting from every xo € U(p, p) Newton iter-
ation (1.1) is well defined, remains in U (p, p), con-
verges with QQ—quadratically to p with the estimates
(4.3)and (4.5).
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From Corollary 4.10 in the case £ = 1 we obtain
R = 5% which improves a recent result of Wang and
Li [45, Corollary 3.2]. For example they have proved
R < 5, since Proinov [33] R = & < 57—, The
following corollary is an improvement of another re-
sult of Wang and Li [45, Corallary 3.3].

COROLLARY 4.11 Let F : D C By — Bs be
a continuously Fréchect differentiable operator on an
open ball U(p, p) C D, where p is a simple zero of F.
Suppose that (4.16) holds with ws defined by (4.18)
and R satisfies (4.18). Then starting from every xy €
U(p, p) Newton iteration (1.1) is well defined, remains
in U(p, p), converges with QQ—quadratically to p with
the estimates (4.3)and (4.5).

In the convergence ball of Newton’s method, the
solution p of the equation F'(z) = 0 is certainly
unique. But it is well known that the uniqueness ball
of this equation may be larger. Such results can be
found in [6,33] using only (3.1).

EXAMPLE 4.12 Returning back at the motivational
example (3.7), we see by Lemma 3.1 and Theorem
3.2 that our new radius of convergence is ps =

—=—1— = 0.3826919122323857 the radius in
2(e—1)+ee-T1

[3.4,6] is p2 = 5y, = 0.324947231372689
and the one in [19, 33,39, 41] is p1 = £ =

0.2452529607809, so p1 < pa < p3 justifying ad-
vantages (A).

EXAMPLE 4.13 Let By = By = C|0, 1], the space
of continuous functions defined on |0, 1] equipped with
the max norm and D = U (0, 1). Define the operator
FonD by

F@x@:uw—5ﬁnw%mw,

1
F'(z)u(t) = u(t)—15/ t0z%(9)u(6)dh for each u € D.
0
Then, we have for p(t) = 0 (t € [0,1])), & = 1,
that Lo = 7.5,Ls = L = 15, w()(t) = 7.5t,w3( ) =
w(t) = 15t. Using (4.18), the radius in [19,33,39,41]
ispp = % = 0.0444 whereas the new radius is ps =
ﬁ = 0.0667. Hence, our radius of convergence
is larger.

5 Conclusion

The aim of this paper is to provide a finer local con-
vergence analysis for Newton’s method than in earlier
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papers using the gauge theory, the w—conditions, the
center wy—conditions and our new idea of restricted
convergence regions. Using the center wy—condition
instead of the less precise w—condition used earlier,
we find tighter upper bounds on the || F'(z) ™1 F(x)||.
Moreover, using restricted convergence regions, we
obtain a more precise location where the Newton it-
erates lie leading to tighter w—majorants. This way,
we obtain a larger radius of convergence resulting to
a wider choice of initial guesses and tighter error esti-
mates on the distances ||z, — p|| leading to the calcu-
lation of fewer iterates to obtain a desired error toler-
ance. Moreover, the information on the location of the
solution is also more accurate than in earlier studies.
These, improvements are made under the same com-
putational cost, since in practice the computation of
old w—functions requires the computation of the new
wp— and w; functions as special cases.
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