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Abstract: In this paper, we consider a certain class of discrete pseudo-differential operators in a sharp convex cone
and describe their invertibility conditions in L2-spaces. For this purpose we introduce a concept of periodic wave
factorization for elliptic symbol and show its applicability for the studying.
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1 Introduction
A classical pseudo-differential operator in Euclidean
space IRm is defined by the formula [1, 2, 3, 4]

(Au)(x) =

∫
IRm

∫
IRm

Ã(x, ξ)ei(ξ−y)ũ(ξ)dξdy,

where the sign ∼ over a function denotes its discrete
Fourier transform

ũ(ξ) =

∫
IRm

u(x)eix·ξdx.

1.1 Multidimensional Fourier series and
symbols

Given function ud of a discrete variable x̃ ∈ Zm we
define its discrete Fourier transform by the series

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈Zm

eix̃·ξu(x̃),

ξ ∈ Tm = [−π, π]m,

where partial sums are taken over cubes

QN = {x̃ ∈ Zm : x̃ = (x̃1, · · · , x̃m),

max
1≤k≤m

|x̃k| ≤ N}.

Let D ⊂ IRm be a sharp convex cone, Dd ≡
D ∩ Zm, and L2(Dd) be a space of functions of dis-
crete variable defined on Dd, and A(x̃) be a given
function of a discrete variable x̃ ∈ Zm. We consider
the following types of operators

(Adud)(x̃) =

∫
Tm

∑
ỹ∈Dd

ei(ỹ−x̃)·ξÃ(ξ)ũd(ξ)dξ, (1)

x̃ ∈ Dd,

and introduce the function

Ãd(ξ) =
∑

x̃∈Zm

eix̃·ξA(x̃), ξ ∈ Tm.

Definition 1 The function Ãd(ξ) is called a symbol of
the operator Ad, and this symbol is called an elliptic
symbol if Ãd(ξ) 6= 0,∀ξ ∈ Tm.

Our main goal is describing a periodic variant
of wave factorization for an elliptic symbol [9] and
showing its usability for studying invertibility for the
operator Ad.

1.2 Discrete projection operators
Let us denote PDd

projection operator on Dd, PDd
:

L2(Z
m) → L2(Dd) so that for arbitrary function

ud ∈ L2(Z
m)

(PDd
ud)(x̃) =

{
ud(x̃), x̃ ∈ Dd

0, x̃ /∈ Dd.

1.2.1 Periodic Cauchy kernel
If we consider a half-space case, then the Fourier im-
age of the operator PDd

is evaluated [10, 11, 12] and
we’ll demonstrate it in the following

Example 2 If D = IRm
+ then

(FdPDd
ud)(ξ

′, ξm) =

1

4πi
lim
τ→0+

π∫
−π

ud(ξ
′, ηm) cot

ξm − ηm + iτ

2
dηm.
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1.2.2 Periodic Bochner kernel
If D is a sharp convex cone Ca+ = {x̃ ∈ Zm : x̃ =
(x̃1, · · · , x̃m), x̃m > a|x̃′|, x̃′ = (x̃1, · · · , x̃m−1), a >
0} then we introduce the function

Bd(z) =
∑
x̃∈Dd

eix̃·z, z = ξ+iτ, ξ ∈ Tm, τ ∈ Ca+,

and define the operator

(Bdu)(ξ) = lim
τ→0

∫
Tm

Bd(z − η)ud(η)dη.

Lemma 3 For arbitrary ud ∈ L2(Z
m) the following

property
FdPDd

ud = BdFdud

holds.

Proof: Let χ+(x̃) be an indicator of the set Dd. Thus

(PDd
ud)(x̃) = χ+(x̃) · ud(x̃).

Further, since the function χ+(x̃) is not
summable, we can’t apply directly a convolution
property of the Fourier transform. We choose the
function eix̃·τ so the product χ+(x̃)eix̃·τ will be
summable for some admissible τ . Taking into account
a forthcoming passing to a limit under τ → 0+ we
have

Fd(χ+(x̃)eix̃·τ ) = Bd(z).

Thus we can use the Fourier transform obtaining
convolution of functions Bd(z) and ũd(ξ). It is left
passing to a limit. ut

2 Multidimensional periodic Rie-
mann boundary value problem

2.1 A half-space case and a periodic one-
dimensional Riemann boundary value
problem [10, 11, 12]

For D = IRm
+ we will remind some author’s construc-

tions for discrete equations in a half-space. We have

Bd(z) = cot
z

2
, z = (ξ′, ξm + iτ),

ξ′ = (ξ1, · · · , ξm−1), τ > 0.

Thus (see example 1) we use a periodic one-
dimensional Riemann problem with a parameter ξ′ ∈
Tm−1 which is the following. Finding a pair of
functions Φ±(ξ′, ξm) which are boundary values of
holomorphic in half-strips Π± = {z ∈ C : z =

ξm ± iτ, τ > 0} such that these are satisfied a linear
relation

Φ+(ξ)(ξ′, ξm) = G(ξ′, ξm)Φ−(ξ)(ξ′, ξm) + g(ξ),

ξ ∈ Tm,

for almost all ξ′ ∈ Tm−1, where G(ξ), g(ξ) are given
periodic functions.

2.2 Essential multidimensional case
Let

∗
D be a conjugate cone for D i.e.

∗
D= {x ∈ IRm : x · y > 0, y ∈ D},

and T (
∗
D) ⊂ Cm be a set of the type Tm + i

∗
D.

For Tm ≡ IRm such a domain of multidimensional
complex space is called a radial tube domain over the

cone
∗
D [7, 8, 9].

Let us define the subspace A(Tm) ⊂ L2(T
m)

consisting of functions which admit a holomorphic

continuation into T (
∗
D) and satisfy the following con-

dition

sup

τ∈
∗
D

∫
Tm

|ũd(ξ + iτ)|2dξ < +∞. (2)

In other words, the space A(Tm) ⊂ L2(T
m)

consists of boundary values of holomorphic in T (
∗
D)

functions.
Let us denote

B(Tm) = L2(T
m)	A(Tm),

so that B(Tm) is a direct complement of A(Tm) in
L2(T

m).

2.2.1 A jump problem
We formulate the problem by the following way: find-
ing a pair of functions Φ±,Φ+ ∈ A(Tm),Φ− ∈
B(Tm), such that

Φ+(ξ)− Φ−(ξ) = g(ξ), ξ ∈ Tm, (3)

where g(ξ) ∈ L2(T
m) is given.

Lemma 4 The operator Bd : L2(T
m) → A(Tm) is

a bounded projector. A function ud ∈ L2(Dd) iff its
Fourier transform ũd ∈ A(Tm).

Proof: According to standard properties of the
discrete Fourier transform Fd, we have

Fd(χ+(x̃)ud(x̃)) = lim
τ→0

∫
Tm

Bd(z − η)ũd(η)dη,
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where χ+(x̃) is an indicator of the set Dd. It im-
plies a boundedness of the operator Bd. The second
assertion follows from holomorphic properties of the
kernel Bd(z). In other words for arbitrary function
v ∈ A(Tm) we have

v(z) =

∫
Tm

Bd(z − η)v(η)dη, z ∈ T (
∗
D).

It is an analogue of the Cauchy integral formula.
ut

Theorem 5 The jump problem has unique solution
for arbitrary right-hand side from L2(T

m).

Proof: Indeed it is equivalent to one-to-one rep-
resentation of the space L2(Dd) as a direct sum of
two subspaces. If we’ll denote χ+(x), χ−(x) indica-
tors of discrete setsDd,Z

m\Dd respectively then the
following representation

ud(x̃) = χ+(x̃)ud(x̃) + χ−(x̃)ud(x̃)

is unique and holds for arbitrary function ud ∈
L2(Z

m). After applying the discrete Fourier trans-
form we have

Fdud = Fd(χ+ud) + Fd(χ−ud),

where Fd(χ+ud) ∈ A(Tm) according to lemma 2,
and thus Fd(χ−ud) = Fdud − Fd(χ+ud) ∈ B(Tm)
because Fdud ∈ L2(T

m). ut

Example 6 If m = 2 and C2
+ is the first quadrant in

a plane then a solution of the jump problem is given
by formulas

Φ+(ξ) =
1

(4πi)2
lim
τ→0

π∫
−π

π∫
−π

cot
ξ1 + iτ1 − t1

2
×

cot
ξ2 + iτ2 − t2

2
g(t1, t2)dt1dt2

Φ−(ξ) = Φ+(ξ)− g(ξ), τ = (τ1, τ2) ∈ C2
+.

2.2.2 A general statement
It looks as follows. Finding a pair of functions
Φ±,Φ+ ∈ A(Tm),Φ− ∈ B(Tm), such that

Φ+(ξ) = G(ξ)Φ−(ξ) + g(ξ), ξ ∈ Tm, (4)

where G(ξ), g(ξ) are given periodic functions. If
G(ξ) ≡ 1 we have the jump problem 3).

Like classical studies [5, 6] we want to use a spe-
cial representation for an elliptic symbol to solve the
problem (4).

2.2.3 Associated singular integral equation
We can easily obtain so-called characteristic singu-
lar integral equation associated with multidimensional
periodic Riemann boundary value problem (4).

Let us denote QDd
= I − PDd

and consider
so-called paired operator composed by two operators
A

(1)
d , A

(2)
d of the following type

A
(1)
d PDd

+A
(2)
d QDd

: L2(Z
m)→ L2(Z

m) (5)

One can easily obtain the following

Property 7 The invertibility of the operator (1) in the
spaceL2(Dd) is equivalent to invertibility of the oper-
ator (5) in the space L2(Z

m) withA(1)
d = Ad, A

(2)
d =

I .

The Fourier image for the operator (5) is the fol-
lowing operator

ũd(ξ) 7−→ ((A
(1)
d (ξ)Bd+A

(2)
d (ξ)(I−Bd)ũd)(ξ) (6)

If D = IRm
+ then the operator (6) is a one-

dimensional singular integral operator with periodic
Cauchy kernel and a parameter ξ′ [10, 11, 12].

3 Periodic wave factorization
Definition 8 Periodic wave factorization for elliptic
symbol Ã(ξ) is called its representation in the form

Ãd(ξ) = Ã 6=(ξ)Ã=(ξ)

where the factors A±16= (ξ), A±1= (ξ) admit bounded

holomorphic continuation into domains T (±
∗
D).

3.1 Sufficient conditions
We’ll give here certain sufficient conditions for an ex-
istence of the periodic wave factorization for an ellip-
tic symbol.

Theorem 9 Let an elliptic symbol Ãd(ξ) ∈ C(Tm)
be a such that

supp F−1d (ln Ãd(ξ)) ⊂ Dd ∪ (−Dd), (7)

π∫
−π

d arg Ãd(· · · , ξk, · · ·) = 0, k = 1, · · · ,m. (8)

Then the symbol Ãd(ξ) admits the wave factor-
ization.
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Proof: If we start from equality

Ãd(ξ) = Ã 6=(ξ)Ã=(ξ)

then by logarithm we obtain

ln Ãd(ξ) = ln Ã 6=(ξ) + ln Ã=(ξ)

and we have a special kind of a jump problem.
Namely if we will denote by A1(T

m) a subspace
of the space L2(T

m) consisting of functions which

admit a holomorphic continuation into T (−
∗
D) and

satisfy the condition (2) for τ ∈ −
∗
D. So evidently we

speak on a possibility of decomposition of the func-
tion ln Ãd(ξ) into two summands one of which be-
longs to the spaceA(Tm) and the second one belongs
to the space A1(T

m). Let us denote

F−1(ln Ãd(ξ)) ≡ v(x).

If supp v ⊂ Dd∪(−Dd) then we have the unique
representation

v = χ+v + χ−v

where χ± is an indicator of the discrete set ±Dd.
Further passing to the Fourier transform and po-

tentiating we obtain the required factorization. ut

Remark 10 The condition (7) is not necessary but we
have no an algorithm for constructing a periodic wave
factorization. For D = IRm

+ a such algorithm exists
always (see [12]).

3.2 Factorization and index
There is one point in previous considerations from
proof of the Theorem 2 for which one needs an ex-
planation. Indeed the function ln Ã(ξ) is defined cor-
rectly because the condition (8) provides an absence
of bifurcation points. That’s why one can call this fac-
torization with vanishing index.

4 Invertibility of discrete operators
Lemma 11 If f ∈ B(Tm), g ∈ A1(T

m) then f · g ∈
B(Tm).

Proof: According to properties of discrete
Fourier transform Fd we have

(F−1d (f · g))(x̃)− ((F−1d f) ∗ (F−1d g))(x̃) ≡∑
ỹ∈Zm

f1(x̃− ỹ)g1(ỹ) =
∑

ỹ∈−Dd

f1(x̃− ỹ)g1(ỹ),

where f1 = F−1d f, g1 = F−1d g and according to
lemma 2 supp g1 ⊂ −Dd.

Further since we have supp f1 ⊂ Zm \ (−Dd)
then for x̃ ∈ Dd, ỹ ∈ −Dd we have x̃ − ỹ ∈ Dd so
that f1(x̃− ỹ) = 0 for such x̃, ỹ. Thus supp f1 ∗ g1 ⊂
Zm \Dd. ut

Theorem 12 If the elliptic symbol Ãd(ξ) ∈ C(Tm)
admits periodic wave factorization then the operator
Ad is invertible in the space L2(Dd).

Proof: We will remind that according to the
property 1 an invertibility of the operator Ad in the
space L2(Dd) is equivalent to an invertibility of the
operator AdPDd

+ IQDd
in the space L2(Z

m). It is
easily concluding the last invertibility is equivalent to
solving the Riemann problem (4) for arbitrary right-
hand side g(ξ) ∈ L2(Z

m) with G(ξ) ≡ Ã−1d (ξ). If
we have the periodic wave factorization for the sym-
bol Ãd(ξ) then

Ã 6=(ξ)Φ+(ξ) = Ã−1= (ξ)Φ−(ξ) + Ã 6=(ξ)g(ξ), (9)

ξ ∈ Tm,

and we have a jump problem.
The first summand Ã 6=(ξ)Φ+(ξ) ∈ A(Tm) ac-

cording to a holomorphic property, and the second one
Ã−1= (ξ)Φ−(ξ) ∈ B(Tm) according to the lemma 3.
Taking into account the theorem 2 we conclude that
the Riemann problem (9) has a unique solution for ar-
bitrary g(ξ) ∈ L2(T

m). ut

Conclusion
These ”discrete” considerations can be transferred on
more general situations and operators. It will be a sub-
ject of forthcoming papers of the author.
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