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Abstract: Kalman filter is one of the most common ways to deal with dynamic data and has been widely used in
project fields. However, the accuracy of Kalman filter for discrete dynamic system is poor when the observation
matrix is ill-conditioned. Therefore, the method for overcoming the harmful effect caused by ill-conditioned
observation matrix in discrete dynamic system is studied in this paper. Firstly, Tikhonov regularized Kalman
filter (TRKF) and its algorithm are proposed by combining Tikhonov regularization method and Kalman filter.
Meanwhile, some excellent properties of TRKF are proved. Secondly, the methods of choosing regularization
parameter and regularization matrix in TRKF are given. Thirdly, simulated examples are designed to evaluate
the performance of TRKF and comparisons between TRKF and Ordinary Ridge-type Kalman Filter (ORKF) are
given. Finally, TRKF is applied in autonomous orbit determination of BeiDou Navigation Satellite System (BDS)
with cross-link ranging observations and ground tracking observations so as to prevent filter divergent which is
caused by ill-conditioned observation matrix. Simulations and applications illustrate that TRKF can overcome
the harmful effect caused by ill-conditioned observation matrix in discrete dynamic system and the accuracy is
improved effectively.

Key–Words: Discrete dynamic system, Kalman filter, Ill-conditioning, Tikhonov regularization, Regularization
parameter, Regularization matrix, Autonomous orbit determination

1 Introduction
In 1960, R. E. Kalman published his famous paper
describing a recursive solution to a dynamic system
that involves random perturbations. More precisely,
Kalman filter gives a linear, unbiased, and minimum
error variance recursive algorithm to optimally esti-
mate the unknown state of a dynamic system from
noisy data taken at discrete real-time [1]. Due in large
part to advances in digital computing, Kalman filter
has become the subject of extensive research and ap-
plication, particularly in the area of autonomous or as-
sisted navigation [2].

Numerical analysts have been keenly aware of
the phenomenon known as ill-conditioning in connec-
tion with matrix inversion for many years. In gen-
eral, least squares usually give rise to the problems

of ill-conditioned matrix inversion [3,4]. Consider-
ing that Kalman filter is simply a recursive solution
about a certain weighted least squares problem, it is
not surprising that Kalman filters tend to be instability
for the ill-conditioning [5,6]. The ill-conditioning in
discrete dynamic system does exist in actual matter-
s, such as single photon emission computed tomog-
raphy (SPECT), electrocardiography, satellite naviga-
tion and autonomous orbit determination and so on
[7,8]. For example, satellite navigation system can de-
ploy the ground observation stations, comprehensive
use of the cross-link ranging observations and ground
tracking observations to improve the accuracy of or-
bit determination in non-wartime. However, limita-
tions of the ground-based observations often lead to
poor observation geometry, and the observation ma-
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trix is ill-conditioned. There is few research on the
ill-conditioning of the observation equation of the dy-
namic system. Baroudi et al. replaced the original
observation equation of Kalman filter with a fictitious
augmented observation equation to overcome the ill-
conditioning. It is difficult to choose the augment-
ed observation equation in this method [8,9]. Qran-
fal and Tanoh formulated a new dynamic system and
incorporated a projection method to enforce a spatial
regularization using Tikhonov and median approach-
es [10]. This method is too simple when choosing
regularization parameters and there is no regulariza-
tion matrix in their algorithm. Schulze directly in-
corporated an inversion of the observation matrix us-
ing the Tikhonov regularization method. This method
can solve the ill-conditioned problem but there is too
much premises need to satisfied [11].

Tikhonov regularization method is one of the
most common ways to deal with ill-conditioned prob-
lems. It uses some prior information on specific issues
to restrict the parameters to be estimated and gives an
approximation of the original problem. Tikhonov reg-
ularization was widely used and developed for its sta-
bility and accuracy [12,13]. Tikhonov regularization
method is introduced to Kalman filter to overcome the
harmful effect caused by ill-conditioned observation
matrix in discrete dynamic system.

The paper is organized as follows. The Kalman
filter of discrete dynamic system is introduced and
the impact of ill-conditioning of observation matrix
on the Kalman filter is analyzed by means of per-
turbation analysis theory in Section 2. In Section 3,
Tikhonov regularized Kalman filter (TRKF) and its
algorithm are proposed by combining Tikhonov reg-
ularization method and Kalman filter. Meanwhile,
some excellent properties of the new algorithm are
proved. The methods of choosing regularization pa-
rameter and regularization matrix are given in Section
4. In Section 5, simulated examples are designed to
evaluate the performance of TRKF and comparisons
between TRKF and ordinary ridge-type Kalman filter
(ORKF) are given. In Section 6, TRKF is applied in
autonomous orbit determination of BDS with cross-
link ranging observations and ground tracking obser-
vations to prevent filter divergence which is caused
by ill-conditioned observation matrix. Finally, some
brief conclusions are given in Section 7.

2 Kalman Filter of Discrete Dynam-
ic System and Analysis of Ill-
Conditioning

2.1 Discrete Dynamic System and Kalman
Filter

Consider a discrete dynamic system with state equa-
tion and observation equation as follows:

Xk = Φk,k−1Xk−1 + ωk−1, (1)

Lk = AkXk + νk, (2)

whereXk denotes a p×1 vector describing the state of
the system at time tk and Lk is the n× 1 observation
vector. Φk,k−1 is the p × p state transition matrix at
time at time tk. Ak is the n × p observation matrix.
The vectors ωk−1 and νk are the system noise vector
and the observation noise vector, respectively.

It is assumed that
E(ωk) = 0, Cov(ωk, ωj) = Qkδk,j
E(νk) = 0, Cov(νk, νj) = Rkδk,j (3)
Cov(ωk, νj) = 0

where the covariance matrix Qk of system noise vec-
tor is assumed to be non-negative definite and the co-
variance matrix Rk of observation noise vector is as-
sumed to be positive definite. δk,j is the function of
the Kronecher - δ.

The Kalman filter can be deduced by using a risk
function

φ(X̂k) = V T
x̂k
R−1

k Vx̂k
+ V T

xk
P−1
k/k−1Vxk

(4)

where
Vx̂k

= AkX̂k − Lk (5)

and
Vxk

= X̂k − X̂k/k−1 (6)

Letting∂φ(X̂k)

∂X̂k
= 0,we can get the solution

X̂k = (AT
kR

−1
k Ak + P−1

k/k−1)
−1(AT

kR
−1
k Lk

+P−1
k/k−1X̂k/k−1) (7)

Using the transformation matrix, we can get the
general form of Kalman filter

X̂k/k−1 = Φk,k−1X̂k−1 (8)

Pk/k−1 = Φk,k−1Pk−1Φ
T
k,k−1 +Qk−1 (9)

Kk = Pk/k−1A
T
k (AkPk/k−1A

T
k +Rk)

−1 (10)

X̂k = X̂k/k−1 +Kk(Lk −AkX̂k/k−1) (11)

Pk = (I −KkAk)Pk/k−1 (12)

where Pk/k−1 is the covariance matrix of X̂k/k−1. Pk

is the covariance matrix of X̂k andKk is the filter gain
matrix. The optimal estimator X̂k can be calculated
by (8)-(12) if the initial estimator X̂0 and P̂0 are given.
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2.2 Analysis of Ill-Conditioning in Discrete
Dynamic System

Obviously, X̂k is the solution of equation

NkXk = bk (13)

where Nk = AT
kR

−1
k Ak + P−1

k/k−1 and bk =

AT
kR

−1
k Lk+P

−1
k/k−1X̂k/k−1. (13) is called the normal

equation of Kalman filter and Nk is called the normal
matrix.

Unlike Gauss-Markov model, the discrete dy-
namic system not only includes observation equation,
but also includes the state equation. So, the harmful
effect caused by the ill-conditioned observation ma-
trix on Kalman filter must be subject to the state equa-
tion [6]. The Kalman filter cannot be decided by Ak

or AT
kR

−1
k Ak separately, and the influence of P−1

k/k−1

on Nk must be considered too. It is more reasonable
to take AT

kR
−1
k Ak and P−1

k/k−1 as a whole to carry out
the perturbation analysis in the discrete dynamic sys-
tem.

In equation (13), ∆Nk and ∆bk are disturbed
when there were disturbances in the matrix Nk and
bk, and satisfy the following equation.

(Nk +∆Nk)(Xk +∆Xk) = bk +∆bk

The simplification of the equation above is

∆Xk = N−1
k [−∆Nk(Xk +∆Xk) + ∆bk].

When the perturbation of matrix Nk is very small
and satisfies ||N−1

k || · ||∆Nk|| < 1, we have

||∆Xk||
||Xk||

≤ Cond(Nk)

1−Cond(Nk)
||∆Nk||
||Nk||

(
||∆Nk||
||Nk||

+
||∆bk||
||bk||

)

where Cond(Nk) = ||Nk|| · ||N−1
k || is the condition

number of the normal matrix Nk.
From the equation above, we can conclude that s-

mall perturbations in the normal matrix Nk or in the
observation vector Lk will be magnified by the con-
dition number Cond(Nk) when the condition num-
ber Cond(Nk) is large, which leads to tremendous
changes in estimator of Xk. This is the way how the
ill-conditioning of the observation matrix influences
the Kalman filter.

3 Tikhonov Regularized Kalman Fil-
ter and Its Properties

3.1 Tikhonov Regularized Kalman Filter
and Its Algorithm

The objective function of TRKF is designed as fol-
lows

Ψ(X̂TRKF
k ) = V T

x̂TRKF
k

R−1
k Vx̂TRKF

k
+

V T
xTRKF
k

P−1
k/k−1VxTRKF

k
+ αkZ

T
k HkZk (14)

where αk>0 is the regularization parameter, Hk>0

is the regularization matrix and Zk = X̂TRKF
k −

X̂k/k−1.
Using the weighted least square method, we can

get

KTRKF
k = (AT

kR
−1
k Ak+P

−1
k/k−1+αkHk)

−1AT
kR

−1
k

(15)

X̂TRKF
k = X̂k/k−1 +KTRKF

k (Lk −AkX̂k/k−1)
(16)

P TRKF
k = (I −KTRKF

k Ak)Pk/k−1 (17)

In summary, the complete algorithm of TRKF is
designed as follows:
Step 1: Initialization. Give the initial estimate X̂0 and
the covariance matrix P̂0.
Step 2: Time update process.

X̂k/k−1 = Φk,k−1X̂k−1

Pk/k−1 = Φk,k−1Pk−1Φ
T
k,k−1 +Qk−1

Step 3: Measurement update process.

Kk = Pk/k−1A
T
k (AkPk/k−1A

T
k +Rk)

−1

X̂k = X̂k/k−1 +Kk(Lk −AkX̂k/k−1)

Pk = (I −KkAk)Pk/k−1

Step 4: Compute the condition number Nk. If the
condition number Nk is bigger than 100, the step 5 is
implemented. Otherwise, the step 2 is carried on.
Step 5: Choosing the regularization parameter αk and
the regularization matrix Hk.
Step 6: Using TRKF to revise the optimal estimator
X̂k.

KTRKF
k = (AT

kR
−1
k Ak+P

−1
k/k−1+αkHk)

−1AT
kR

−1
k

X̂TRKF
k = X̂k/k−1 +KTRKF

k (Lk −AkX̂k/k−1)

P TRKF
k = (I −KTRKF

k Ak)Pk/k−1

Step 7: Command X̂k−1 = X̂TRKF
k , Pk−1 =

P TRKF
k and return step 2.
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3.2 Properties of Tikhonov Regularized
Kalman Filter

1◦ Supposing that the filter gain KTRKF
k+1 is obtained

when TRKF is used at epoch tk and Kalman filter is
used at epoch tk+1, the following equation is tenable.

KTRKF
k+1 <Kk+1

Proof: The covariance matrix P TRKF
k+1/k is smaller than

Pk+1/k, because the TRKF is more accurate than
Kalman filter. Since the filter gain is proportional to
the covariance matrix of predicted estimator, there-
fore, KTRKF

k+1 <Kk+1 is tenable.
This property indicates that the influence of ob-

servation equation on Kalman filter is reduced but
the influence of state equation on Kalman filter is in-
creased when TRKF is used at epoch tk+1.

2◦ Supposing that Kalman filter is used before e-
poch tk and TRKF is used ant epoch tk, we can get
MSEM(δX̂TRKF

k )<MSEM(δX̂k) if and only if

(Xk − X̂k/k−1)
TMk(Xk − X̂k/k−1)<1

where Mk = (KTRKF
k − I)T [KkRkK

T
k −

KTRKF
k Rk(K

TRKF
k )T ](KTRKF

k − I) and
δX̂TRKF

k = KTRKF
k (Lk − AkX̂k/k−1). MSEM

denotes Mean Square Error Matrix.
Proof: The predicted estimator X̂k/k−1 can be regard-
ed as a known value because the estimator X̂k−1 has
been obtained at time tk. It is obvious E(δX̂k) =

Xk − X̂k/k−1. Therefore, the MSEM of δX̂k is

MSEM(δX̂k) = Cov(δX̂k) + E[(δX̂k)− (Xk

− X̂k/k−1)][E(δX̂k)− (Xk − X̂k/k−1)]
T

= KkRkK
T
k

We can get

MSEM(δX̂TRKF
k )=Cov(δX̂TRKF

k )+[E(δX̂TRKF
k )

−(Xk − X̂k/k−1)][E(δX̂TRKF
k )− (Xk − X̂k/k−1)]

T

= KTRKF
k Rk(K

TRKF
k )T + (KTRKF

k Ak − I)(Xk

−X̂k/k−1)(Xk − X̂k/k−1)
T (KTRKF

k Ak − I)T

for E(δX̂TRKF
k ) = KTRKF

k Ak(Xk − X̂k/k−1).
It can be concluded that

MSEM(δX̂k)−MSEM(δX̂TRKF
k ) =

KkRkK
T
k−KTRKF

k Rk(K
TRKF
k )T+(KTRKF

k Ak−I)
(Xk − X̂k/k−1)(Xk − X̂k/k−1)

T (KTRKF
k Ak − I)T

It has been proved that KTRKF
k <Kk in property

1◦. Therefore, KkRkK
T
k − KTRKF

k Rk(K
TRKF
k )T

is a positive definite matrix. It can be obtained
MSEM(δX̂k) −MSEM(δX̂TRKF

k )>0 if and on-
ly if (Xk − X̂k/k−1)

TMk(Xk − X̂k/k−1)<1 by the
theorem in [14].

The property indicates that TRKF is better than
Kalman filter in the sense of reduced MSE.

3◦ The last two terms of the objective function
(14) are equal if Hk is equal to Pk/k−1 and αk

equals 1. However, their meanings are differen-
t, because V T

X
TRKF
k

P−1
k/k−1VXTRKF

k
includes the in-

formation of state equation and historical informa-
tion which are must be used in the Kalman filter
to obtain the optimal estimator and αkZ

T
k HkZk is

the constraint condition in order to make the opti-
mal estimator stability. From further analysis, we
can know that V T

X
TRKF
k

P−1
k/k−1VXTRKF

k
also can be

regarded as the constraint condition of observation
equation when taking no account of the state equa-
tion. However, the estimator is calculated by the s-
tate equation and the observation equation. Therefore,
V T

X
TRKF
k

P−1
k/k−1VXTRKF

k
cannot overcome or weak-

en the ill-conditioning of the observation matrix but
αkZ

T
k HkZk can do it.

4 Choosing Regularization Parame-
ter and Regularization Matrix

4.1 Choosing Regularization Parameter
A lot of theoretical researches and practical works
show that the L-curve method to choosing the regular-
ization parameter is not only simpler, but also easier
to implement [15-18].

However, the L-curve method is given based on
Gauss-Markov model, and it is not suitable for dis-
crete dynamic system. To this end, a method for
choosing regularization parameter in TRKF is pro-
posed as follows, which is suitable for discrete dy-
namic systems in this paper.

Because R−1
k and P−1

k/k−1 are positive definite
matrices, equation (6) is equivalent to

φ(X̂k)= ||(R−1
k )1/2V

X̂k
||2 + ||(P−1

k/k−1)
1/2VXk

||2

= ||FkX̂k − bk||2
(18)

where Fk = [(R−1
k )1/2Ak, (P−1

k/k−1)
1/2]T and bk =

[(R−1
k )1/2Lk, (P−1

k/k−1)
1/2X̂k/k−1]

T .
The corresponding objective function is equiva-

lent to equation (14) after adding constraints,

Ψ(X̂TRKF
k ) = ||FkX̂

TRKF
k − bk||2 + αk||Zk||2Hk

(19)
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Choosing different values of , we can get many
points (||FkX̂

TRKF
k − bk||2, ||Zk||2Hk

). A curve in
the plane is obtained after curve fitting and the point
of maximum curvature can be determined. The corre-
sponding value of αk is determined as the regulariza-
tion parameter.

4.2 Choosing Regularization Matrix
The method for choosing regularization matrix must
make full use of the priori information of state param-
eter [19,20]. The matrix Pk/k−1 in the constraints Zk

is known and it is reasonable to choosing Pk/k−1 as
the regularization matrix by the second term in objec-
tive function (14). Therefore, this paper determines
Hk = P−1

k/k−1 as the regularization matrix.

5 Simulations and Analysis
Simulations are implemented to illustrate the TRK-
F described above. A discrete linear system is de-
scribed by state equation (1) and observation equation
(2), where state parameter Xk ∈ R4×1 is estimated.
The state transition matrix Φk,k−1, observation matrix
Ak, the covariance matrix of system noise Qk−1 and
the covariance matrix of observation noise Rk are set
as follows:

Φk,k−1 = I4 ,

Ak =


1 −1 1 0
−2 4.2 0 1
3 −2 4 8
−1 2 0 0
0 1 1 2

 ,

Qk−1 = 0.12 × I4 ,

Rk = 0.52 × I5 ,

The initial value is X̂0 = X0+0.001×[1 1 1 1]T

where X0 = [2 4 6 8]T and the initial error covari-
ance matrix is P0 = I4.

Comparisons among Kalman filter, ORKF and
TRKF are implemented in this paper. The criteria to
evaluate the accuracy of the algorithms are precision
(the European norm between the true-value and esti-
mator of state parameter) and MSE of estimator. The
calculation results are shown as Fig.1-3.
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From Fig.1-3, conclusions can be obtained as fol-
lows.

1) The Kalman filter is seriously influenced by
the ill-conditioning of observation matrix in discrete
dynamic system.

2) TRKF can reduce the condition number of nor-
mal matrix greatly when the observation matrix is ill-
conditioned.

3) Because the predicted estimator is used to
restrict the optimal estimator, the regularization pa-
rameter and the regularization matrix are used to bal-
ance data fitting part and constraint conditions in
TRKF. Therefore, the harmful effect caused by ill-
conditioned observation matrix on Kalman filter is
weakened and TRKF is more accurate and more sta-
bility than Kalman filter.

4) The filtering convergence speed of TRKF is
faster and the precision is higher than that of ordinary
ridge-type Kalman filter.

6 Applications of Tikhonov Kalman
Filter in Autonomous Orbit Deter-
mination of BDS

Kalman filter is one of the most common ways
for autonomous orbit determination. China has not
built ground stations on global scale, and the satel-
lite orbit determination which depends on global
ground stations is not suitable for the BDS of Chi-
na. Meanwhile, the autonomous orbit determination
using inter-satellite measurements has been well re-
searched and a conclusion has been obtained that the
Earth Orientation Parameters (EOP) as one of the er-
ror sources cannot be determined. That is to say, the
essence of autonomous orbit determination is rank d-
eficient. The distributed autonomous orbit determina-
tion mode based on inter-satellite measurements com-
bined with several ground stations is a feasible scheme
for the actual situation of China. However, the accu-
racy of orbit products could be much poor if only re-
gional ground monitoring stations are available, as the
satellites are tracked only when they fly over the re-
gional network, which consequently leads to a rather
weak observing geometry. This makes the observa-
tion matrix ill-conditioned [21,22].

To be simple, only the J2 perturbation of the
earth central body is taken into account. The fixed
positions of ground stations are used, and the tro-
pospheric delays and earth rotation parameters are
not considered. J2000 is used as the spatial refer-
ence system. A mixed navigation constellation of
5GEO+3IGSO+24MEO is simulated by STK (Satel-
lite Tool Kit). The five GEO satellites are positioned

at longitude 59◦, 87.5◦, 110.5◦, 142◦ and 163◦ respec-
tively. The intersection of the three IGSO satellites is
positioned at longitude 118◦, and the orbital inclina-
tion is 55◦. The 24 MEO satellites compose a Walk-
er24/3/1 sub-constellation, and the GPS SPS (2001)
standards are used to determine the parameters of al-
titude and orbital inclination of MEO satellites and
they are respectively 26559.8km and 55◦. The wide-
beam inter-satellite link is used, and the beam an-
gle of transmitting antenna ranges from 20◦ to 60◦.
The noise factor of dynamical model is 10−9, the
mean square deviation of observation noise of inter-
satellite measurement is 0.15m, and the sampling pe-
riod of filter is 15min. All data are processed on
satellites for distributed autonomous orbit determina-
tion, and thus two-way measurements between satel-
lites and one-way measurements between ground s-
tations and satellites are used. The altitude angle of
ground station ranges from 5◦ to 90◦. The prior mean
square deviations of each satellite are: δa = 100m,
δe = 1.0×10−5, δθ = 1.0×10−5, δΩ = 1.0×10−10,
δω = 1.0 × 10−10 and δM = 1.0 × 10−5, where a,
e, θ,Ω, ω and M are the semi-major axis, eccentricity,
orbit inclination, longitude ascending node, argument
of perigee, and mean anomaly respectively. The initial
location errors of each satellite are 20m.

The inter-satellite observations are combined
with ground station observations from Xian, Shang-
hai, Kunming, Guangzhou Hainan, and Kashgar.

The User Range Error (URE) [23] and the Root
Mean Square (RMS) of a constellation are used as the
indexes to evaluate the accuracy of orbit determina-
tion.

The calculation formula of URE is

URE =

√√√√ 1

Nsat

Nsat∑
i=1

S(i)

where

S(i)=
√
R2

ERR(i)+0.0192× [T 2
ERR(i)+N

2
ERR(i)]

(20)
The symbol Nsat denotes the total number of

satellites in constellation, S(i) is the URE of i-th
satellite, RERR(i), TERR(i) and NERR(i) are the ra-
dial error, along track error and normal error of i-th
satellite, respectively. Equation (20) employs a factor
0.0192 for weighting the contribution of cross-track
and along-track errors in the URE, and a common fac-
tor is used for all simulated satellites in this paper. All
the satellites of MEO, GEO and IGSO are used to cal-
culate the URE of this constellation.

Respectively, the calculation methods of RMS of
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radial error, along track error and normal error are

RMSR =

√√√√ 1

Nsat

Nsat∑
i=1

R2
ERR(i)

RMST =

√√√√ 1

Nsat

Nsat∑
i=1

T 2
ERR(i)

and

RMSN =

√√√√ 1

Nsat

Nsat∑
i=1

N2
ERR(i)

Comparisons between Kalman filter and TRKF
are given. The results of the condition number, the
UER and the RMS are shown as Fig.4-6 and Fig.10-
12. The radial error, along track error and normal error
of MEO A1, GEO1 and IGSO1 are given in Fig.7-9
and Fig.13-15.
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Fig. 4: Condition Number of KF
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Fig. 5: URE of KF
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Fig. 6: RMS of KF
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Fig. 7: RTN of MEO A1 when the KF is used
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Fig. 8: RTN of GEO1 when the KF is used
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Fig. 9: RTN of IGSO1 when the KF is used
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Fig. 10: Condition Number of TRKF
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Fig. 11: URE of TRKF
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Fig. 12: RMS of TRKF
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Fig. 13: RTN of MEO A1 when the TRKF is used
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Fig. 14: RTN of GEO1 when the TRKF is used
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Fig. 15: RTN of IGSO1 when the TRKF is used

It can be concluded from Fig.4-15.
1) The observation matrix is seriously ill-

conditioned for the observing geometry is rather weak
in the autonomous orbit determination of BDS. There-
fore, accuracy of the Kalman filter is poor.

2) By using the prior information about the state
parameters to restrict the optimal estimator, TRKF can
overcome the harmful effect of the ill-conditioned ob-
servation matrix on Kalman filter. Therefore, TRKF
can prevent divergence character of traditional filter
and can also improve the accuracy of it effectively.

7 Conclusion
1) The Kalman filter was seriously influenced by the
ill-conditioning of observation matrix in discrete dy-
namic systems. Meanwhile, although the state equa-
tion and historical information can control the ill-
conditioning to some extent, but the effect is not ideal.

2) Because the predicted estimator is used to restric-
t the optimal estimator, regularization parameter and
regularization matrix are used to balance data filting
part and constraint conditions in TRKF. Therefore,
the harmful effect caused by ill-conditioned observa-
tion matrix on Kalman filter is weakened and TRKF is
more accurate and more stability than Kalman filter.

3) The convergence speed of filter is faster and the
precision is higher within TRKF than that of ordinary
ridge-type Kalman filter.

4) The observation matrix is seriously ill-conditioned
for the observing geometry is rather weak in the au-
tonomous orbit determination of BDS. Therefore, ac-
curacy of the Kalman filter is poor. However, TRKF
can overcome the adverse effects of ill-conditioning
effectively and improve the accuracy of autonomous
orbit determination of BDS.
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