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1 Introduction

The integral inequalities occupy privileged position in
the theory of differential and integral equations. In
the recent years nonlinear integral inequalities have
received considerable attention because of their im-
portant applications to a variety of problems in diverse
fields of nonlinear differential and integral equations.

In 1919, Gronwall [4] introduced the famous
Gronwall inequality in the study of the solutions
of differential equations. There exist many lemmas
which carry the name of Gronwall’s lemma. A main
class may be identified is the integral inequality. The
original lemma proved by Gronwall in 1919 [4], was
the following

Lemma 1 (Gronwall) Ler 2 : [a,a + h] — R be a
continuous function that satisfies the inequality

T

0<z(z) < / (A+ M=z(s))ds,

a

foralla < x < a+h, where A, M > 0 are constants.
Then

0 < z(z) < AheMM,

foralla <z <a+ h.

The above Lemma can be formulated by the fol-
lowing famous inequality, which is called the Gron-
wall inequality:

Let u(.) be a continuous function defined on the
interval [to,t1] and

t

u(t) <a+b | u(s)ds,
to
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where a and b are nonnegative constants. Then, for
all t € [to,t1], we have

u(t) < ae?t=to),

After more than 20 years, Bellman [2] extended
the last inequality, which reads in the following:

Let a be a positive constant, u(.) and b(.), t
[to, t1] be real-valued continuous functions, b(t) >
satisfying

€
0

il

u(t) <a+ tb(s)u(s)ds, t € [to, t1].

to

Then, for all t € [to,t1], we have

u(t) < aefto beyds

The somewhat more general extensions of the
original Gronwall inequality can be found in [1],
[3], [7]. Since that, a lot of contributions have
been achieved by many researchers and is extensively
applied in diverse areas including global existence,
uniqueness and stability.

In this paper we are basically interested in re-
tarded Gronwall like inequalities, we will give gen-
eralizations of those done in [6]. Some applications
are also given to convey the importance of our results.

2 Retarded Integral Inequalities of
Gronwall Type

Throughout this paper, we denote Rf = [0, oo and
R™ = (0, 00). We first recall some basic results.

Volume 16, 2017



WSEAS TRANSACTIONS on MATHEMATICS

Proposition 2 ([6]) Let a € C(R{,R") and a €
CY(R{, R) be nondecreasing with a(t) < t on R{,
f. 9 h€ C(R{,RY). Ifu € C(RY, RY) satisfies

u(t) < aflt -l—/h s)ds +

/0 f<s>/0 g(r)u(r)drds,t € Ry,

then we have:

w(t) < alt)expl /0 "h(s)ds +

a(t) s
/ f(s)/ g(r)drds),t € Ry
0 0

Proposition 3 ([6]) Let f(t,s), g(t,s), h(t,s) be
continuous on (R§ x R{, R{) and nondecreasing in
t for every s fixed. Moreover, let a € C(R§, R") and
a € CY(R§, R}) be nondecreasing with o(t) < t. If
u € O(R§, RY) satisfies
a(t)
ds +/

4 / "Bt $)us)
[ +/gST dr]dsteR+,

then we have:

u(t)

u(t) < aft)exp( /0 "hit, )ds + /0 O s
[1 + /OSQ(S,T)CZT:| ds),t € RY.

Proposition 4 ([6]) Let a € C(R{,R") and o; €
CY(R{, RY) be nondecreasing with o;(t) < t on R§,
fi 9, h € C(RS, RY). Ifu € C(Ry, RY) satisfies

u(t) < alt +/h

/Ogl( Fyu(r)drds, t € R,

then we have:
t n ai(t)
ut) < aexp([ h(s)ds+ 3 [ ils)
0 = Jo
/ gi(r)drds),t € RY.
0

Proposition 5 ([6]) Let fz(t s), gi(t,s), h(t,s) be
continuous on (R§ x R§, Ry) and nondecreasmg in
t for every s fixed. Moreover, let a € C(Rg, Rt) and
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a; € C! (R;i, Ri) be nondecreasing with o;(t) < t.
Ifu € C(Ry, Ry ) satisfies

t o (t)
u(t) < aft)+ / (e, s)u(s)ds + /0 Filt, s)

e e

then we have:

u(t) < (t)exp(/ tsds—i—Z/

{1 —1—/ gi(S,T)dT] ds),t € R§.
0

dT} ds,t € R,

3 Main Results

In this section, we present some generalizations of the
previous results proved in ([6]).

Proposition 6 Let u(t) be a positive function satisfy-
ing the inequality:

u(t) < K(t)exp /Ot h(s)u(s

where the functions K (t) and h(t) are nonnegative
continuous, then:

u(t) <

)dsat € IR+a (1)

K(t)
1— [{h(s)K(s)ds

Under the assumption, fort € R4,

1—/h
/h

¢ (t) = h(t)u(t ), using (3.1) it follows that
P () < h(t)K (£,

s)ds > 0.

Proof: Let (¢ s)ds, then it comes that

or
@ (H)e D < h(t)K(t).
By integration, we get
/ (s

o(t) < —In (1 _ /0 t h(s)K(s)ds) .

Finally, it follows that

u(t) <

1—e ¥

or

K(1)
1— [ h(s)K(s)ds

Next, we can prove the following result.
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Proposition7 Let a € C(R{,R") and a ¢
CY(R{, R) be nondecreasing with a(t) < t on R{,
f. 9 h€ C(R{,RY). Ifu € C(RY, RY) satisfies

u(t) < af -F”/ﬂ h(s

[ o

then we have:
W exp [ f(s) [ g

s)ds +

T)drds,t € Ry,

(T)drds

u(t) <
{1—f0t(n—1)h(s)a"*1(s) exp(n— 1)fa(s)
Under the assumption, fort € IR,

1-— /Ot(n — 1)h(s)a" (s) exp(n — 1)/0

/ g(T)drdrds > 0.
0

f(r) for g(T)derds}
o(s)
f(r)

Proof: The function u satisfies

u(t) < alt +/
/0 f(S)/Og()()destGROa

and using (2.1) we get

Ju(s)ds +

u(t) <

alt) expl [ by (s)ds +

/a(t) / g(7)drds)
< alex ( [ [ gmdrds)
exp /Ot h(s)u™1(s)ds

a(t)
f(s)

<
3
L
=
IA

a0 expln — 1)(

; g(T)drds) exp/0 (n— 1)h(s)u”*1(s)ds.z(t)

Using (3.1), it follows that
Un_l(t) <
a™ 1(t) exp(n—1) fa(t) f(s) fos g(m)drds
1ffg(n71)h(s) <aﬂ L(s) exp(n—1) foa(s) f(r) for g(‘r)der) ds
Finally
u(t) <

T)drds

(Wexp [ 1) [ o

T -

(s)an=1(s) exp(n—1) [

{1—fo‘(n—1)h

f(r) fOT g(T)de'rds} =t
U
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Proposition 8 Assume that a > 0, p > 1, then for
any k > 0 we have

1 1 1-»p —1 1
ar < -k a+P "k )
p

1 1-p
or equivalently a» < mya + mo where m; = }%k 2

1
and mo = p—plkp.

Proof: Using that the function : t — e is convex we
can write u®v® < au + Bv for a + B = 1. Taking
—1 5 _p1
o T p= P’
desired result.

1-p 1
u==k » aand v = kr we get the

O
Thus, we have the following proposition.

Proposition9 Let a« € C(RJ,R") and o €
CY(R{, R) be nondecreasing with a(t) < t on R&1
f 9 h € C(R6~_7RO) p > 1L Ifu S C(R07R )
satisfies

t
WP < alt)+ / h(s)uP (s)ds +

a(t)
f(s / g(r
0

then we have:

u(t) < (a(t)—i— / " af(s) / Sg(T)des>zl7
exp — (/h ds+/a(t)m1f /Og deS).

Proof: Let z(t)

£ < a(t)+ /0 " h(s)2(s)

Using (3.2), we get

T)drds,t € Ry,

= uP(t), then z satisfies

ast [ 1) [ ot

(1)drds.

< +/h s)ds + a(tf()/os (1)
[m12(7) + ma| drds
< / h(s ds+/a(t) f(s)

[ml/o g(7)2(7)dr + mo /Osg(T)dT] ds

a(t) s
a(t) —I—/O mgf(s)/o g(7)drds +

[ m@ztas + [ miss) [ oe)z(aras

IN
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Using (2.1), we get Using (2.1), we get

A() < <a<t> + [ " maf(s) / ngdfds) P a0 < (a)+ms [ th(s)ds) exp
(/Ut h(s)ds + /Oa(t) m1 f(s) /()89(7)de5> : (m1/ h(s)ds —|—/ f(s / )dTClS)

Finally, it comes that It follows that,

u(t) < (a(t)—i—/oa(t) maf(s) /Osg(T)des>;exp; ) < ( " +m2/ s d3>1exp1
</Oth(8)ds+/0a(t) my f(s) /Osg(T)des>. (ml/o h(s)ds + a(t) Ao / o deS)

O
Remark 10 Ifp = 1, then we obtain Proposition 2.1. H
Proposition 11 Let a € C( R(J)r ,RT) and o € Remark 12 Ifp = 1, then we obtain Proposition 2.1.
CY(R{, RY) be nondecreasing with a(t) < t on Rér,
frgheCRI,R), p>1 Ifue C(RY,Ry) Proposition 13 Let a« € C(R{,R") and o €
satisfies CYR§, RY) be nondecreasing with a(t) < t on R§
f. g,hEC(R(T,Ro) p>q>1IfueC(R§,Ry)
satisfies
uP(t) < alt)+ / h(s)u(s)ds +
o(t) t
/ f@/g” P(r)drds,t € RY, um)g1+/h@w@m+
0 0 0
. a(t) s
then we have: / f(s)/ g(T)ul(r)drds,t € RY,
0 0
1
P 1 .
ult) < ( (t) + ’mz/ h(s ds) exp L then we have:

( / 8)ds +/ / 9(r deS) u(t) < exp; [/Ot h(s)ds + /Oa(t) f(s) /08 g(r)dv‘ds] )

Proof: Let z(t) = uP(t), then z satisfies
Proof: Define a function z(¢) by

A(t) ga@+4%@ﬁ@w+
a(t) s

2P(t) = 1—|—/t h(s)up(s)ds+/a(t) f(s) /S g(T)ul(r)drds,
/ f(s)/ g(7)z(T)drds, 0 0 0 3)
0 0
using (3.2), we get then uP(t) < zP(t) and 2P(0) = 1. Differentiat-
’ ing (3.3) and using the fact that u(¢) < z(t)
{0 < o /t h(s)[maz(s) + malds + e Oﬁgiﬁ(t) is monotone nondecreasing for t € IR,
a(t) s
| 1) [ gtr)=(ridrds | |
pz (1)2P7H(t) = h(tuP(t) + o () f(alt)
< —l—mQ/h ds+m1/h s)ds + a(t)
/0 g(s)ul(s)ds
/ (5) [ g(r)=(r)drds < B +a () f(a(t)
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a(t)
/ g(s)z9(s)ds
0

IN

IN

Then,

pz () < =(t)

, a(t)
Mﬂ+a@ﬁ@@»£ g@m%.

By integration, we get

1 t a(t)
z(t) < exp-— /h( )ds + f(s /g Ydrds]| .
p|Jo

Finally it comes that,

t) <exp-— l/h ds+/at /s )deS‘|.

O
Remark 14 [f p = 1, then we obtain proposition 2.1.

Propos1t10n 15 Let a € C(R$,RT) and o €
CYHRJ,R7) be nondecreasmg with a(t) < ton RQ’
fr9.heC(R§,Ry),p>q>1 IfUGC(R+aR0)
satisfies

uP(t) <

t)+ /Ot h(s)uP(s)ds +
a(t) s

/ (s) / g(r)ul(r)drds,t € RY,
0 0

then we have:

1

1 1, t
aP(t)expp[/O h(s)ds +

/a(t)
0

u(t)
f(s) /Osg(T)des}.

Proof: We have
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Zp((;) = 1+/ s
/ " ) / Tg(r) Zq(f) ) drds
< 1+/ ds+
/Oa(t f(s) /Osg(T) zg(:) drds.

Or equivalently

() <1 fuo (32
ar (t) o \ar(s)

Using the last proposition, we get

a;(tz <exp— l/ h(s ds+/ / )des]
Finally
u(t) <a % t)exp — [/ h(s ds+/ / )des] :

O
Remark 16 Ifp = 1, then we obtain Proposition 2.1.

Proposition 17 Let a € C(R{,R") and a €
CY(R{, RY) be nondecreasing with a(t) < t on Rér,
fr9.heC(RJ,R}), p>q>1Ifuc C(Ry,Ry)

satisfies

o) < 1 [ heno(edst [ £Gs) [ gtruridrd

< | Ps)ut(s)dst | s) | 9(r)ulr)drds,
then we have:
u(t) < exp — l/ s)ds —|—/ f(s) /s g(T)des] .
0
Proof: Define a function z(¢) by
t a(t) s
P(t) = 14 /O h(s)ul (s)ds+ /0 5) /0 g(F)u(r)drds,
“)
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then uP(t) < zP(t) and 2P(0) = 1. Differentiat-
ing (3.4) and using the fact that u(t) < z(t)

and z(t) is monotone nondecreasing for ¢t € IR,
we obtain

’

pz (t)2P7H(t) =

IA
>
—~
=
N
[}
—~~
=
+
Q\
—~
o~
~—
~
—
e
=
=

IN
>
o
~~
S~—
I
S
—
~
S~—
+
Q\
—
o~
S~—
~
—~
Q
—
o~
S~—
SN—
N
S
—~
~
S~—

IA
N
S
—
o~
~—
>
=
~—
_|_
Q\
=
~
—~
Q
—~
=
S~—

then

/

pz (t) < z(t)

, a(t)
h(e)+ o' (0 (@(®) [ g(s)ds] .

By integration we get

| S

z(t) < exp; l/ot h(s)ds + /Oa(t) f(s) /0S g(T)drds| .

Finally, it follows that

u(t) < exp; l/ot h(s)ds + /Oa(t) f(s) /Os g(T)drds| .

_

O

Remark 18 [fp = 1, then we obtain Proposition 2.1.

Proposition 19 Let a € C(R{,R") and o €
CY(R{, RY) be nondecreasing with a(t) < t on Rér,
f.9.heC(R{,R}). p>q>1Ifuec C(R{,Ry)

satisfies

t a(t) s
u(t) < 1+ /0 h(s)uP(s)ds+ /O £(s) /O g(F)ut(r)drds,

then we have:

u(t) <
1

1

{10 [y merass [7 560 f7 omyaras) } 7
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under the assumption, fort € IR,

> 0.

1-(p—1) [/Ot h(s)ds + /Oa(t) f(s) /OS g(T)drds

Proof: Define a function z(¢) by

t a(t) s
At) =1+ [ hur(s)dst [ f(s) [ gmyu(ridrds,
0 0 0
)
then u(t) < z(¢) and z(0) = 1. Differentiating
(3.4) and using the fact that z(¢) is monotone

nondecreasing for ¢t € IR, we obtain

, a(t)

z () = h(t)up(t)JrOé(t)f(Oé(t))/O g(s)u’(s)ds
, a(t)

< i“L(lt)Z]"(f)Jra(t)f(a(t))/0 9(s)z%(s)ds

< ()

, a(t)
h(o)+ o' (0 (@(®) [ g(s)ds] .

By integration we get

2(t) <
1

—T.
{1—(p—1) [fot h(s)ds—&-foa(t) f(s) fos g(T)des:| }p_l
Finally

u(t) <
1

—
{1=0-0) |y nds+ [ 10) [ atrraras| } 7

O
Proposition 20 Let a € C(R{,R") and o €
CY(R{,Ry) be nondecreasing with a(t) < t on
Ry, f. 9. h € C(Ry,Ry). b € CY(Ry,Ry). If
u € C(RY, RY) satisfies

w(t) < a(t) +b(0) /Oth(s)u(s)ds+

a(t) s
/ f(s)/ g(T)u(r)drds,t € R(—)",
0 0

then we have:

t a(t) s
u(t) < a(t)exp lb(t)/ h(s)ds+/ f(s)/ g(7)drds| .
0 0 0
Proof: Since a(t) is positive and nondecreasing, from

(3.6) we have
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u(s)
a(t d

IN

1+0b(t /h s+
/ 16 [ amis ))drds
1+ b(t /h

/0 ()/ ()“( )des

a(r)

We define a function z(t) on Ry by

US

~—

IN

\_/

Q
/\

S

\]

z(t) =

t
1+ b(t) / hsu(gds+

/ f(s / T) ; drds,

then z(¢) is positive and nondecreasing. We have
z((t)) =1, % < z(t), t € R{, by differentiation we
ge

2(t) = b(t) /0 th(sifgds +
u , a(t) u(s
b(t)h(t)a(z; + fla(t))a (1) /0 9(s) aES)

IN

s)ds + b(t)h(t)z(t) +

(
/ h(s)=(

a(t)
Fla®a'®) [ gls)z(s)ds

/ h(s)ds + b(t

a(t)
Flata'() [ als)ds]

IN

by integration we get

z(t)

/a(t)

Since % < z(t), it follows that

N

w(t) < alt)explb(t) /Oth(s)ds—k

/Oa(t) f(s) /0S g(7)drds].
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Proposmon 21 Let a € C(R{,R") and a €
CY(R{, R) be nondecreasing with a(t) < t on R{,
f continuous on (R§ x R{, R{), g, h € C(Rg, Ry).
Ifu € (RS, RY) satisfies

u(t) < a(t)—l—/ot h(s)u d8+/

then we have:

u(t) < a(t) exp V ds+/

Proof: Since a(t) is positive and nondecreasing, from
(3.7) we have

(6)

u(t) t u(s)
a(t) s U(T)
[ ) [ otn) s s
< 1+ t h(s)@ds +
- 0 a(s)
a(t) s ’LL(T)
/0 f(t,s)/o g(T)a(T) drds

We define a function z(¢) on Ry by

A(t) = 1+/Oth(s)58

then z(t) is positive and nondecreasing. We have
z(0) =1, % < z(t),t e RS, by differentiation we
get

a(r)

_ u(s)
z(t) = 2(5)

a(t) s 'LL(T)
/0 0,/ (t, s) /0 o) s

u a(t)
h(t) S 4 f(t a(t)a (1) / g(s) 224

Yu(T)drds,

19 [ sty

d8+/0a(t) f(t,s) /Osg(T)u(T)des

s +

, a(t)
< B0 + £(a®)©) [ gls)2(s)ds+

a(t) s
/0 atf(t,s)/o g(1)z(T)drds
, a(t)
< z(Q)[h(t) + f(t at)a (t)/o g(s)ds +
a(t) s
/0 8tf(t,s)/0 g(7)drds].

By integration, we get
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t a(t) s
z(t) < z(0) exp [/0 h(s)ds+/0 f(t,s)/o g(T)des] 2 (0)

Since % < z(t), it follows that
t a(t)
£) < a(t) exp [/ h(s)ds +/
0 0
O

Propos1t10n 22 Let a € C(R{,R") and o €
CYHRJ,RY) be nondecreasmg with a(t) < t on Ry,
f, g9 h € C(RO ,RO ). Let w a nondecreasing con-
tinuous function such that w > 1, w(x) > x, suppose

that a(0) > 1. Ifu € C(R{, RY) satisfies

< a(t)+ ; h(s)w(u(s))ds +

a(t) s
/ f(s)/ g(T)u(r)drds,t € R(J{,
0 0

then we have:

Wu(t) < W(a(0))+a(t) — a(0) + /0 " h(s)ds +

a(t) s
|1 [ gtrydrds.t e Ry
0 0
where W is the function defined by W (t) =
to]
/ ds.
0 w(s)

Proof: Define a function z(¢) by

+/
A ﬂﬂéw>umwmmﬁ

then u(t) < z(¢) and z(0) = a(0). Differenti-
ating (3.8) and using the fact that z(¢) is monotone
nondecreasing for ¢ € IR, we obtain

2(t) = ))ds +

z(t) =

IN
IS
—~
~

IN
IS
—~
~
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Then

<a (t)+ht MNed (8 o(t) d
w(z(t))—a()+ () + f(af ))04()/0 g(s)ds,

by integration, we get

S)/o g(T)deS] W((t) < W(2(0))+a(t) — a(0) + /0 "h(s)ds +

a(t) s
/ f(s)/ g(T)drds,t € Ry.
0 0

Finally, it comes that

Wu(t) < W(a(0))+ a(t) — a(0 +/ s)ds +

a(t)
/ f(s)/ g(r)drds,t € R,
0 0

O

Proposition 23 Let f(t,s), g(t, s), h(t, s) be contin-
uous on (RG x R§, R§) and nondecreasing in t for
every s fixed. Moreover, let a € C(Rg,R") and
a € CHRY, RY) be nondecreasing with a(t) < t.
Ifu € C(Ry, Ry) satisfies

t a(t)
wlt) < alt)+ /0 h(t, $)u™(s)ds + /0 (L, s)(u(s) +
/OS g(s,T)u(r)dr)ds,t € R7,

then we have:
u(t) <
expf ()f(ts (1+f

{l—fot(n—l)h(t,s)a" 1(s )[exp(n 1) 0‘( )f(s r (1+f0 T dr)dr} ds}
Under the assumption, for t 6 Ry

(s,7 dT)dS

1— /Ot(n — Dt s)a" " (s)

[exp(n —1) /OQ(S) f(s,7) (1 + /OT g(r, T)dT) dr

Proof: The function u satisfies

ds > (

u(t) < +/hts s u(s)ds +

/0 <+/M

using (2.2) it follows that

) ds,
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u(t) <

t
exp / h(t, s)u™(s)ds,
0

then

a(t)

W (1) < a1 (t) exp(n — 1) /O £t 5)(1+

/s g(s,T)dr)dsexp(n — 1) /t h(t,s)u™(s)ds,
0 Jo

using (3.1), we get the desired estimation.
O

Proposition 24 Let a« € C(R{,R") and o; €

CYRF, R) be nondecreasing with az( ) <tonRg,
fir g h € C’(R+, RY). Ifu € C(RS, RY) satisfies

s)ds +

then we have:
u(t) <

@ exp 3 [ fi(s) [7 gi(r)drds

a(t) (exp /Oa(t) f(t,s) (1 + /Osg(s, T)dT) ds)

Taoufik Ghrissi, Mohamed Ali Hammami

u(t) = s)ds +

+/h
/ s /g

If a(t) is bounded and

/()Q(OO) f(s)ds, /OOO g(s)ds, /Ooo g(s)ds < oo,

then « is bounded.

T)drds,t € Ry

4.2 Example 2

We calculate the explicit bound on the solution of the
nonlinear integral equation of the form:

t)y=1+ /t u?(s)ds + /ts/s Tu(T)drds (7)
0 o Jo

and we assume that every solution of (4.1) exists
ont € IR . Then using Proposition 3.9 we get
1
<.

u(t) < —
(t) g

{l—fot(m—l)h(s)

Under the assumption, for t € IR 4

1—/()t(m—1)h(s)am

/ gi(T)drdrds > 0.
0

n

a;(s)
*1(3) exp(m—1) Z/o fi(r)

=1

Since the proof of proposition (3.4) follows by the
similar argument as in the proof of proposition (3.2)
and proposition (3.3), we omit the details.

4 Applications
4.1 Example1

Let functions f, g, h, a, o be as in proposition (3.2).
Suppose u € C(Rg, Ry is a solution to volterra in-
tegral equation

E-ISSN: 2224-2880 181

am—1(s)exp(m—1) Z:‘l:1 ani(S) fi(r) for gi(T)derds} "

1

1

5 Conclusion

In this article, some new retarded integral inequali-
ties of Gronwall type are obtained. Two examples are
given to show the applicability of the main results for
integral equations.
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