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Abstract: In this paper, we consider the optimal investment problem for an insurer who has n dependent lines
of business. The surplus process of the insurer is described by a n-dimensional compound Poisson risk process.
Moreover, the insurer is allowed to invest in a risk-free asset and a risky asset whose price process follows the
constant elasticity of variance (CEV) model. The investment objective is maximizing the expected utility of the
insurer’s terminal wealth.Applying dynamic programming approach, we establish the corresponding Hamilton-
Jacobi-Bellman (HJB) equation. Optimal investment strategy is obtained explicitly for exponential utility. Finally,
we provide a numerical example to analyze the effects of parameters on the optimal strategy.
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1 Introduction
Recently, optimal investment problem for an in-

surer has been studied in many literatures. For dif-
fusion risk model, Browne [1] investigated the prob-
lem for maximizing the utility of terminal wealth and
minimizing the probability of ruin. Hipp and Plum
[2] assumed the insurer can invest in a risky asset and
obtained the explicit strategy for ruin probability min-
imization under compound Poisson risk model .Later
Liu and Yang [3] extended the research of Hipp and
Plum [2] by adding a risk-free asset into the model of
Hipp and Plum [2].Yang and Zhang [4] proposed the
jump-diffusion risk process and obtained the optimal
strategy for ruin probability minimization. Wang et al.
[5] applied the martingale approach to investigate the
optimal investment problem for an insurer. Bai and
Guo [6] supposed that the insurer can invest in mul-
tiple risky assets and obtained the optimal strategy to
maximize the utility of terminal wealth. Under the
objective of minimizing the ruin probability, Li et al.
[7] studied the optimal investment problem for both
the insurer and the reinsurer when the insurer can pur-
chase proportional reinsurance. Besides, some more
researches about the optimal investment problems in
different contexts have been extensively studied, see,
Chang and Lu [8],Chang et al. [9],Li and Liu [10],and
references therein.

∗corresponding author

In the above-mentioned literature, they generally
assume that the insurance company only has one busi-
ness line. But in practice, many insurance companies
have two or more different lines of business, for in-
stance, auto insurance, third party insurance, casualty
insurance, endowment insurance, and so on. What’s
more, the n lines of insurance business usually have
a relation of dependence. The classical example of
dependent risks is natural disasters, such as an earth-
quake, typhoon or tsunami, where usually cause at
least two kinds of claims such as death claims, medi-
cal claims, etc.

Currently, some researchers began to study op-
timal reinsurance problem with lines of business.In
the static setting, Centeno [11] studied the optimal
excess-of-loss reinsurance strategy for two depen-
dent classes of insurance risks. By using martin-
gale central limit theorem, Bai et al.[12] first de-
rived a two-dimensional diffusion approximation for
the two-dimensional compound Poisson reserve risk
process and studied an optimal excess-of-loss reinsur-
ance problem for the approximated diffusion model.
Liang and Yuen [13] considered the optimal propor-
tional reinsurance problem with two dependent risks
under the variance premium principle. Yuen et al.[14]
extended the research of Liang and Yuen [13] to the
case with the reinsurance premium calculated under
the expected value principle and the model with mul-
tiple dependent classes of insurance business, closed-
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form strategies are derived for both compound Pois-
son risk model and the diffusion approximation risk
model.

In this paper,we consider investment problem for
an insurer with dependent risks. The insurer is al-
lowed to invest in a risk-free asset and a risky asset.
Furthermore, the price process of the risky asset fol-
lows the constant elasticity of variance (CEV) mod-
el,which is a natural extension of geometric Browni-
an motion (GBM).The CEV model was proposed by
Cox and Ross [15]. At first, the CEV model was usu-
ally used in option pricing research,see e.g., Beckers
[16],Davydov and Linetsky [17],Jones [18]. Recent-
ly, the CEV model has been introduced to optimal in-
vestment research by Darius [19].For the portfolio s-
election problem, Li et al.[20] considered the optimal
investment problem with taxes, dividends and trans-
action costs under the constant elasticity of variance
(CEV) model and obtained the solutions for the log-
arithmic, exponential and quadratic utility functions.
For the optimal reinsurance and investment problem,
Gu et al.[21] investigated the optimal reinsurance-
investment problem with a Brownian motion risk pro-
cess under the CEV model, and optimal strategies are
derived for insurers with CRRA or CARA utility. For
jump-diffusion risk process, Liang et al.[22] adopted
the CEV model for studying proportional reinsurance
problem. Besides, there are some other literatures s-
tudied optimal reinsurance-investment problems un-
der the CEV model, see, Lin and Li [23],Li et al.[24]
among others. For the optimal investment problem
for the DC pension fund, Xiao et al.[25] began to ap-
ply the CEV model to investigate the pension fund
investment problem and derived the optimal strategy
for logarithm utility function using the technologies of
Legendre transform and dual theory. Gao [26], [27]
extended the work of Xiao et al.[25] by solving the
optimal solutions for CRRA and CARA utility func-
tions.

These papers motivate us to consider the optimal
investment problem for an insurer with n dependent
lines of business. The surplus process of the insur-
er is described by a n-dimensional compound Poisson
risk process, and the insurer is allowed to invest in
a risk-free asset and a risky asset whose price pro-
cess follows the CEV model. The objective of the
insurer is to maximize the expected utility of his/her
terminal wealth. By applying dynamic programming
approach, we establish the Hamilton-Jacobi-Bellman
(HJB) equation associated with the optimal problem
and transform it into a partial differential equation.
Under some given assumptions, explicit solutions to
the problem of expected CARA utility maximization
are derived. Furthermore, we present a numerical ex-
ample to analyze the effects of parameters on the op-

timal strategy.
This paper is organized as follows. In section 2,

we introduce the n-dimensional risk model. Section 3
derives the optimal strategies to maximize the utility
of terminal wealth. In section 4,numerical examples
are carried out to analyze the effects of parameters on
the optimal strategies. Finally, we give conclusions in
Section 5.

2 Problem formulation
In this paper, we consider an insurer who has

n dependent classes of insurance business,such as
health insurance/casualty insurance/third party in-
surance, and so on. The aggregated claims up
to time t in the ith line of business are denoted
by
∑Ni(t)+N(t)

j=1 Xij ,and ci stands for the premium rate
of the ith line. Then the surplus process of the insurer
follows:

R(t) = x+

n∑
i=1

cit−
n∑

i=1

Ni(t)+N(t)∑
j=1

Xij , (1)

where {Ni(t)} and {N(t)} are n + 1 independen-
t Poisson processes with intensities λi and λ for
i = 1, 2, · · · , n. The claim sizes {Xij , j =
1, 2, · · · } are i.i.d positive random variables with
common distribution function for i = 1, 2, · · · , n, and
{Xij , j = 1, 2, · · · } are independent of {Ni(t)} and
{N(t)}.Besides,{Xij , j = 1, 2, · · · } are independent
of {Xkj , j = 1, 2, · · · } for k ̸= i, i, k = 1, 2, · · · , n.
Denote E(Xi) = ai and V ar(Xi) = bi for i =
1, 2, · · · , n. Suppose the premium is calculated ac-
cording to the expected value principle, i.e.,

ci = (1 + ηi)(λi + λ)ai, (2)

where ηi is the positive safety loading in line i.
According to Bai et al.[12],the approximation risk

model of (1) is

dR∞(t) =
n∑

i=1

µidt+
n∑

i=1

γidW
(i)(t), (3)

where

µi = (λ+ λi)ηiai, γi = ((λ+ λi)E[X2
i ])

1
2 . (4)

W (i)(t) are standard Brownian motions. Furthermore,
the correlation coefficient of W (i)(t) and W (k)(t) are
denoted by ρik for i ≠ k, i, k = 1, 2, · · · , n, and

ρik =
λ

γiγk
E(Xi)E(Xk) =

λ

γiγk
aiak. (5)
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We assume that the insurer is allowed to invest in
a risk-free asset and a risky asset. The price of risk-
free asset is given by

dS0(t) = r0S0(t)dt, (6)

where r0 > 0 is the interest rate, and the price of risky
asset is described by the CEV model:

dS(t) = r1S(t)dt+ k(S(t))β+1dW (0)(t), (7)

where r1 > r0 is the appreciation rate of the risky as-
set, {W (0)(t)} is a standard Brownian motion defined
on a complete probability space (Ω,F , P ).β ≤ 0 rep-
resents the elasticity coefficient and k(S(t))β stands
for the instantaneous volatility of risky asset. The cor-
relation coefficient of W (0)(t) and W (i)(t) are denot-
ed by ρi0 for i = 1, 2, · · · , n.

Let π(t) be the money amount invested in the
risky asset at time t by the insurer, Then X(t)− π(t)
is the money amount invested in the risk-free asset,
where X(t) is the wealth of the insurer at time t. For
a trading strategy π(t),the wealth process X(t) is giv-
en by:

dX(t) = π(t)
dS(t)

S(t)
+ (X(t)− π(t))

dS0(t)

S0(t)
+dR∞(t)

= [(r1 − r0)π(t) + r0X(t) +
∑n

i=1 µi]dt

+π(t)k(S(t))βdW (0)(t) +
∑n

i=1 γidW
(i)(t),

X(0) = x.

(8)

If π(t) is Ft-progressively measurable and∫ T
0 (π(t))2dx < ∞,π(t) is called an admissible strat-

egy. Denote Π the set of all admissible strategies.
Suppose that the insurer has a utility function u(·)

which is strictly concave and continuously differen-
tiable on (−∞,+∞). The insurer aims to maximize
the expected utility of terminal wealth, i.e.,

max
π∈Π

E[u(X(T ))]. (9)

3 Solution to optimal investment
problem for an insurer with depen-
dent risk

In this section, we try to find the explicit solutions
for optimization problem (9) for exponential utility by
using dynamic programming approach.

3.1 General framework
The value function is defined as

H(t, s, x) = sup
π∈Π

Hπ(t, s, x), 0 < t < T, (10)

Hπ(t, s, x) = E[u(X(T ))|S(t) = s,X(t) = x].
(11)

According to Fleming and Soner [28], if H and
Ht, Hx,Hxx, Hs, Hss,Hsx is continuous, H satisfies
the following Hamilton-Jacobi-Bellman(HJB) equa-
tion:

Ht + r1sHs + (r0x+
n∑

i=1
µi)Hx +

1

2
(

n∑
i=1

γ2i

+2
n∑

i,j=1,i̸=j

ρijγiγj)Hxx +
1

2
k2s2β+2Hss

+ksβ+1(
n∑

i=1
γiρi0)Hsx + supπ{

1

2
π2k2s2βHxx

+[(r1 − r0)Hx + (
n∑

i=1
γiρi0)ks

βHxx

+k2s2β+1Hsx]π} = 0.

(12)

Let

A =
n∑

i=1

γiρi0, B =
n∑

i=1

γ2i + 2
n∑

i,j=1,i̸=j

ρijγiγj

=

n∑
i=1

γ2i + 2

n∑
i,j=1,i̸=j

λaiaj ,

and differentiating with respect to π in (12),we have

π∗ = −(r1 − r0)Hx +AksβHxx + k2s2β+1Hsx

k2s2βHxx
.

(13)
Substituting (13) into (12),we transform (12) into a
partial differential equation,

Ht + r1sHs + (r0x+
n∑

i=1
µi)Hx +

1

2
BHxx

+
1

2
k2s2β+2Hss + ksβ+1AHsx

− [(r1 − r0)Hx +AksβHxx + k2s2β+1Hsx]
2

2k2s2βHxx
= 0.

(14)

Next, we solve optimal problem (9) for common
constant absolute risk aversion (CARA) utility func-
tion, i.e.,

u(x) = −1

q
e−qx, q > 0. (15)

To solve (14),we try to conjecture a solution in the
following form

V (t, s, x) = −1

q
e[−q(d(t)x+g(t,s))], (16)
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with boundary condition given by

d(T ) = 1, g(T, s) = 0.

(16) gives

Vt = −q(dt(t)x+ gt)V , Vs = −qgsV,

Vss = (q2g2s − qgss)V, Vx = −qd(t)V,

Vxx = q2d(t)2V, Vxs = q2d(t)gsV.

Plugging Vt, Vs, Vss, Vx, Vxx, Vxs into (14),after
simplification,we have

(−qdt(t)− qr0d(t))x− qgt − qr0sgs

−qd(t)(
n∑

i=1
µi) +

1

2
q2d2(t)[B −A2]

−1

2
k2qs2β+2gss −

(r1 − r0)
2

2k2s2β

+
qd(t)(r1 − r0)A

ksβ
= 0.

(17)

(17) can be split into two equations

−qdt(t)− qr0d(t) = 0, (18)

and

−qgt − qr0sgs − qd(t)(
n∑

i=1
µi)

+
1

2
q2d(t)2[B −A2]− 1

2
k2qs2β+2gss

−(r1 − r0)
2

2k2s2β
+
qd(t)(r1 − r0)A

ksβ
= 0.

(19)

From (18) and d(T ) = 1, we derive

d(t) = er0(T−t). (20)

To solve (19),let

g(t, s) = m(t, y), y = s−2β, (21)

then

gt = mt, gs = −2βs−2β−1my,

gss = 2β(2β + 1)s−2β−2my + 4β2s−4β−2myy.

Introducing these derivatives into (19),we obtain

−q[mt + d(t)(
n∑

i=1
µi)− 2βr0ymy]

+
q2d2(t)

2
(B −A2)− k2q[β(2β + 1)my

+2β2ymyy]−
1

2k2
y(r1 − r0)

2

+k−1qd(t)(r1 − r0)Ay
1
2 = 0.

(22)

3.2 The case of ρi0 = 0

In this section, we suppose that the financial mar-
ket and risk model are independent, i.e., W (0)(t) is
independent with W (i)(t),i.e.,ρi0 = 0,which implies
that A = 0 .

Under the assumption that A = 0,(22) becomes:

−q[mt + d(t)(
n∑

i=1
µi)− 2βr0ymy]

+
q2d2(t)

2
B − k2q[β(2β + 1)my

+2β2ymyy]−
1

2k2
y(r1 − r0)

2 = 0.

(23)

We try to find a solution to (23) with the following
form:

m(t, y) = P (t) +Q(t)y, (24)

with the boundary condition Q(T ) = 0 and P (T ) =
0. Then

mt = Pt +Qty, my = Q(t),myy = 0.

Plugging mt,my,myy into (23),we obtain:

(−qQt + 2βqr0Q− (r1 − r0)
2

2k2
)y − qPt

−qd(t)(
∑n

i=1 µi) +
q2d2(t)

2
B

−k2qQβ(2β + 1) = 0.

(25)

Decomposing (25) into two equations, we have

−qQt + 2βqr0Q− (r1 − r0)
2

2k2
= 0, (26)

−qPt − qd(t)(
n∑

i=1
µi) +

q2d2(t)

2
B

−k2qQβ(2β + 1) = 0.

(27)

Taking the boundary condition Q(T ) = 0 and
P (T ) = 0 into account, we find the solution to (26)
and (27) are

Q(t) =
(r1 − r0)

2

2qk2
1− e2βr0(t−T )

2βr0
, (28)

P (t) =

n∑
i=1

µi

r0
[1− er0(T−t)] +

qB

2

e2r0(T−t) − 1

2r0

+
(2β + 1)(r1 − r0)

2

4qr0

e2βr0(t−T ) − 1

2βr0

−(2β + 1)(r1 − r0)
2

4qr0
(t− T ).

(29)
The following theorem summarizes the above deriva-
tion.
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Theorem 1. Suppose that the financial market and
risk model are independent, i.e.,ρi0 = 0,the optimal
strategy for problem (9) under the CARA utility func-
tion is given by

π∗1 =
er0(t−T )

2s2βk2q
[2(r1−r0)+

(r1 − r0)
2

r0
(1−e2βr0(t−T ))].

(30)
A solution to HJB equation (23) is given by

V (t, s, x) = −1

q
e[−q(d(t)x+g(t,s))], (31)

where

d(t) = er0(T−t), g(t, s) = P (t) +Q(t)s2β,

Q(t) =
(r1 − r0)

2

2qk2
1− e2βr0(t−T )

2βr0
, (32)

P (t) =

n∑
i=1

µi

r0
[1− er0(T−t)] +

qB

2

e2r0(T−t) − 1

2r0

+
(2β + 1)(r1 − r0)

2

4qr0

e2βr0(t−T ) − 1

2βr0

−(2β + 1)(r1 − r0)
2

4qr0
(t− T ).

(33)

Proof: From (13), (16), (21), (24) and (28), we have

π∗1 = −(r1 − r0)Vx + k2s2β+1Vsx
k2s2βVxx

= −(r1 − r0)(−qd(t)V ) + k2s2β+1q2d(t)gsV

k2s2βq2d2(t)V

= −−(r1 − r0) + k2s2β+1qgs
k2s2βqd(t)

=
er0(t−T )

2s2βk2q
[2(r1 − r0) +

(r1 − r0)
2

r0
·(1− e2βr0(t−T ))].

According to (16), (20), (21) and (24),we derive
V (t, s, x) as given in (31). ⊓⊔

Theorem 2. Let V (t, s, x) be a solution to (23),then
the value function is H(t, s, x) = V (t, s, x).For the
wealth process X(t) associated with an admissible s-
trategy π(t),we have

E[U(X(t))] ≤ V (0, s, x).

In particular, for π∗1(t) given by Theorem 1 and the
corresponding wealth process X∗

1 (t),

E[U(X∗
1 (t))] = V (0, s, x).

Theorem 2 verifies that the value function coin-
cides with the solution to HJB equation (23) given
in Theorem 1 and indicates that the strategy given in
Theorem 1 is optimal for problem (9).The prove of
Theorem 2 is similar as Zhao et al.[29].

Remark 3. From Theorem 1,we find that the claim
processes have no effect on the optimal strategy. Un-
der the assumption that W (0)(t) is independent with
W (i)(t),i.e.,ρi0 = 0,the financial market and risk
model are independent, then the claim process is in-
dependent with the financial market. In reality, the
impact of claim process of insurer on the volatility of
the financial market is very small.

3.3 The case of β = 0

Suppose that β = 0, then the CEV model reduces
to the GBM model, and HJB equation (12) reduces to

Ht + supπ{[(r1 − r0)π + r0x+
∑n

i=1 µi]Hx

+
1

2
[k2π2 +B + 2kAπ]Hxx} = 0.

(34)
Again,we can differentiate with respect to π in the fol-
lowing formula:

[r1−r0)π+r0x+
n∑

i=1

µi]Hx+
1

2
[k2π2+B+2kAπ]Hxx.

we have

π∗2 = −(r1 − r0)

k2
Hx

Hxx
− A

k
. (35)

Plugging (35) into (34)

Ht + (r0x+
∑n

i=1 µi −
A(r1 − r0)

k
)Hx

+
1

2
(B −A2)Hxx −

(r1 − r0)
2

2k2
H2

x

Hxx
= 0.

(36)

In order to solve (34),we try to find the solution
to (36) in the following structure:

Ṽ (t, x) = −1

q
exp{−qxer0(T−t) − 1

2
(
r1 − r0
k

)2

·(T − t) + h(T − t)},
(37)

and the boundary condition

h(T ) = 0.

Then we have

Ṽx = −Ṽ qer0(T−t), Ṽxx = q2Ṽ e2r0(T−t),

Ṽt = Ṽ [xr0qe
r0(T−t) +

1

2
(
r1 − r0
k

)2 − h,(T − t)].
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Introducing Ṽx, Ṽxx into π∗2 ,we get

π∗2 =
r1 − r0
qk2

e−r0(T−t) − A

k
.

putting Ṽx, Ṽxx, Ṽt into (36),we can get

h′(T − t) = −qer0(T−t)(
∑n

i=1 µi −
A(r1 − r0)

k
)

+
1

2
q2(B −A2)e2r0(T−t),

with the boundary condition h(T ) = 0 and after inte-
grating, we derive

h(T − t) =
1

2
q2(B −A2) e

2r0(T−t)−1
2r0

−q e
r0(T−t) − 1

r0
(
∑n

i=1 µi −
A(r1 − r0)

k
).

(38)

According to the above derivation, we have the
following theorem.

Theorem 4. In the case that the risky asset’s price
follows the GBM model, the optimal strategy and the
corresponding value function are as follows:

π∗2 =
r1 − r0
qk2

e−r0(T−t) − A

k
, (39)

Ṽ (t, x) = −1

q
exp{−qxer0(T−t) − 1

2
(
r1 − r0
k

)2

+h(T − t)},
(40)

where

h(T − t) =
1

2
q2(B −A2) e

2r0(T−t)−1
2r0

−q e
r0(T−t) − 1

r0
(
∑n

i=1 µi −
A(r1 − r0)

k
),

A =

n∑
i=1

γiρi0, B =

n∑
i=1

γ2i + 2

n∑
i,j=1,i̸=j

ρijγiγj

=
n∑

i=1

γ2i + 2
n∑

i,j=1,i̸=j

λaiaj ,

γi = ((λ+ λi)E[X2
i ])

1
2 .

Proof: (35) and (37) implies that

π∗2 = −(r1 − r0)

k2
Ṽx

Ṽxx
− A

k

= −(r1 − r0)

k2
−Ṽ qer0(T−t)

Ṽ q2e2r0(T−t)
− A

k
.

=
r1 − r0
qk2

e−r0(T−t) − A

k
.

From (37) and (38), we derive Ṽ (t, x) as given in (40).
⊓⊔

The following theorem verifies that the value
function coincides with the solution to HJB equation
(34) given in Theorem 4 and indicates that the strategy
given in Theorem 4 is optimal for problem (9).

Theorem 5. Ṽ (t, x) is the solution of (34), then the
value function is H(t, x) = Ṽ (t, x). For the wealth
process X(t) associated with an admissible strategy
π(t),we have

E[U(X(t))] ≤ Ṽ (0, x).

In particular, for π∗2(t) given by Theorem 4 and the
corresponding wealth process X∗

2 (t),

E[U(X∗
2 (t))] = Ṽ (0, x).

Remark 6. If there is only one business line in the risk
model, i.e., i = 1,(39) reduces to the optimal strategy
derived by Yang and Zhang [4].

From (39), we find that the optimal investment s-
trategy under the GBM model depends not only on
the time, interest rate, risk aversion coefficient, appre-
ciation rate and volatility of the risky asset, but also
on counting processes and the correlation coefficients
between risky asset and claim processes. We can also
find this property in Section 4 numerical examples.

Remark 7. Suppose there are two dependent lines of
business, the impact of the claim processes on the op-
timal investment strategy is given as follows.

(1)If ρ10 > −(a22 + b2)
√

(λ+ λ1)(a21 + b1)

(a21 + b1)
√

(λ+ λ2)(a22 + b2)
ρ20,the

optimal investment strategy decreases as λ increases.

(2)If ρ10 < −(a22 + b2)
√

(λ+ λ1)(a21 + b1)

(a21 + b1)
√

(λ+ λ2)(a22 + b2)
ρ20,the

optimal investment strategy increases as λ increases.

Proof:For i = 2,the optimal investment strategy is

π∗2 =
r1 − r0
qk2

e−r0(T−t) −
√

(λ+ λ1)(a21 + b1)ρ10
k

−
√

(λ+ λ2)(a22 + b2)ρ20
k

.

Differentiating π∗2 with λ,

∂π∗2
∂λ

= − ρ10(a
2
1 + b1)

2k
√

(λ+ λ1)(a21 + b1)

− ρ20(a
2
2 + b2)

2k
√

(λ+ λ2)(a22 + b2)
.
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when ρ10 > −(a22 + b2)
√

(λ+ λ1)(a21 + b1)

(a21 + b1)
√

(λ+ λ2)(a22 + b2)
ρ20,

∂π∗2
∂λ

> 0,

while ρ10 < −(a22 + b2)
√

(λ+ λ1)(a21 + b1)

(a21 + b1)
√

(λ+ λ2)(a22 + b2)
ρ20,

∂π∗2
∂λ

< 0. ⊓⊔
Remark 7 shows the impact of the counting pro-

cesses and the correlation coefficients between risky
asset and the claim processes on the optimal invest-
ment strategy for i = 2.The idea and technique shown
here are still useful for i > 2.

4 Numerical analysis
In this section, we provide some numerical simu-

lations to illustrate our results. Throughout the numer-
ical analysis, according to Li et al. [20],the basic pa-
rameters are given by: r0 = 0.03, r1=0.12, k=16.16,
T=10, β=-0.12, s=67, q=0.05, α1 = 2, α2 = 2,
λ = 3, λ1 = 1, λ2 = 5, ρ10 = −0.5, ρ20 = −0.1.

4.1 Numerical analysis for the case of ρi0 = 0
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Figure 1: Sensitivity of the optimal strategy w.r.t r1

Figure 1 shows that the amount invested in risky
asset increases with the appreciation rate of risky asset
r1.It is because that as r1 increases, the insurer will get
more profits from risky asset. Therefore, the insurer
would like to put more money in the risky asset to
gain more profits.

In Figure 2, we plot the impact of interest rate r0
on the optimal strategy. The optimal strategy decreas-
es with r0.As r0 increases, the risk-free asset is more
attractive, the insurer will invest more money in the
risk-free asset. Thus, the money invested in the risky
asset becomes less.
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Figure 2: Sensitivity of the optimal strategy w.r.t r0
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Figure 3: Sensitivity of the optimal strategy w.r.t q

From Figure 3, we find that the risk aversion co-
efficient q exerts a negative effect on the optimal strat-
egy. The insurer is risk averse and they will invest less
in risky asset as the risk aversion coefficient becomes
higher.
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Figure 4: Sensitivity of the optimal strategy w.r.t
ks(0)β
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In Figure.4, the optimal investment strategy is
a decreasing function of the instantaneous volatility
rate.As ks(0)β increases, the volatility of risky asset
becomes bigger. Thus, it is not appropriate to carry
out large-scale investment on risky asset. In order to
reduce the impact of the volatility, the insurer will re-
duce investment in the risky asset investment.

4.2 Numerical analysis for the case of β = 0

According to Liang and Yuen [13], we assume
that there are two business lines and the claim sizes
X1j and X2j are exponentially distributed with pa-
rameters α1 and α2,respectively.Then a1 = 1

α1
, a2 =

1
α2

, γ1 =
√

2(λ+λ1)

α1
, γ2 =

√
2(λ+λ2)

α2
.

According to (4) and (5), the correlation coeffi-
cient of the two lines of business satisfies

ρ12 =
λ√

2(λ+ λ1)
√

2(λ+ λ2)
.
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Figure 5: Sensitivity of the correlation coefficient cor-
responding to the two business lines w.r.t λ

Figure 5 shows the effect of common shock inten-
sity λ on the correlation coefficient corresponding to
the two dependent business lines. The correlation co-
efficient ρ12 is an increasing function of the common
shock intensity λ. The correlation between line 1 and
line 2 increases as λ increases.

Figure 6 shows the effect of common shock in-
tensity λ on the optimal investment strategy π∗2 . From
Figure 6, we can see that when ρ10 = 1, ρ20 = 1, the
optimal investment strategy decreases with λ. Under
the assumption that ρ10 = 1,ρ20 = 1, the correlation
between the underwriting risk of line i for i = 1, 2
and investment risk is perfect positive correlated. As
λ increases, the underwriting risk becomes larger. In
order to reduce overall risk, the insurer will put less
money in the risky asset. On the contrary, in the case
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Figure 6: Sensitivity of the optimal strategy w.r.t λ

that ρ10 = −1,ρ20 = −1,the underwriting risk of
line i and investment risk has negative correlation. In
fact,π∗2 decreases with λ when ρi0 > 0 for i = 1, 2
and increases with λ when ρi0 < 0. From Figure 6,
we find that in the case ρ10 = −0.1,ρ20 = 0.9,the
positive correlation ρ20 = 0.9 plays a significant roles
on π∗2 ,then π∗2 decreases with λ while when ρ10 =
0.1,ρ20 = −0.9,the negative correlation ρ20 = −0.9
plays a significant roles on π∗2 ,thus,π∗2 is an increasing
function of λ.
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Figure 7: Sensitivity of the optimal strategy w.r.t r1

Figures 7-10 show the effects of the appreciation
rate of risky asset r1,the interest rate r0,the volatility
of the risky asset k and the risk aversion coefficien-
t q on the optimal strategy respectively for the case
that the risky asset’s price follows the GBM model.
As shown in these figures, we find that the effects are
similar to those under the ρi0 = 0 cases.
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Figure 8: Sensitivity of the optimal strategy w.r.t r0
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Figure 9: Sensitivity of the optimal strategy w.r.t k
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Figure 10: Sensitivity of the optimal strategy w.r.t q

5 Conclusion
Optimal investment problem for an insurer has

been around in many literatures. In this paper,we s-
tudy a more general optimal investment problem for
an insurer. We consider an insurer who has n depen-
dent classes of insurance business, and adopt the con-

stant elasticity of variance (CEV) model to describe
the dynamic of the risky asset’s price process. By ap-
plying dynamic programming approach, we establish
the corresponding Hamilton-Jacobi-Bellman (HJB) e-
quation. For the objective of maximizing the expected
utility of terminal wealth, we obtain explicit solutions
for the exponential utility functions under some given
assumptions. Finally, a numerical simulation is pre-
sented to analyze the properties of the optimal invest-
ment strategy. Some interesting results are found: (1)
Under the case of ρi0 = 0,the financial market and
risk model are independent, we find that the claim
processes have no effect on the optimal strategy. In
practice, the impact of claim process of insurer on the
volatility of the financial market is very small. (2) In
the case of β = 0,the CEV model reduces to the GB-
M model, if ρi0 ̸= 0,the optimal investment strategy
depends on counting processes and the correlation co-
efficients between risky asset and claim processes. (3)
From the numerical simulation, we find that for both
the case of ρi0 = 0 and the case of β = 0,the ap-
preciation rate of risky asset has a positive effect on
the optimal strategies, while interest rate, volatility of
the risky asset and risk aversion coefficient exert nega-
tive effects on the optimal strategies. Under the GBM
model, the correlation corresponding to two lines of
business increases as the common shock intensity λ
increases.
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