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Abstract: In this article, a mathematical model of HIV infection is developed using fractional-order differential
equation consisting uninfected CD4+T cells, infected CD4+T cells and CTL effectors (i.e. immune response
cells). The fractional order model possesses non-negative solutions. The system has three equilibria: infection-
free equilibrium, infected equilibrium and CTL equilibrium. Stability conditions of the model system around the
equilibria are derived. Numerically it is observed that the system is Global MittagLeffler stabile. Moreover, the
necessary conditions for the optimality of the system are derived whose fractional derivative is described in the
Riemann and Caputo sense. Using an objective functional, the fractional optimal control problem is solved with
minimal dosage of anti-HIV drugs with an aim to minimize the infectious viral load and count of infected CD4+T
cells. Efficient numerical technique is provided for solving the FOCP. Numerical simulation has been done to
elucidate the analytical results.

Key–Words:HIV, CD4+T cell, Immune system, Fractional-Order Differential Equations (FODEs), Memory, Op-
timal Drug therapy, Fractional Optimal Control Problem (FOCP).

1 Introduction

HIV is an infection that is accompanied by a reflective
depletion in the number of CD4+T lymphocytes.
They spread in human body through human by sexual
contact, through blood (through transfusion, blood
products or contaminated needs) or from mother to
child and appear to cause AIDS This serious disease
destroys the immune system of human being which
produce life-threatening opportunistic infections in
the body [1]. In human immune system HIV infects
primary cell such as helper T-cell, dendritic cells and
macrophages. When CD4+T - cell numbers decline
below a threshold level, cell-mediated immunity is
lost and the body becomes increasingly susceptible to
infections [2].

Large amount of work on modeling the HIV
infection has been done restricting to integer-order
ordinary (or delay) differential equations [3, 4]. On
the other hand, different control problems have been
addressed in the literature and various existing control
theories have been applied to HIV-immune systems
[5, 6, 7]. Many control problems are addressed in the
literature to HIV-immune systems, such as feedback
control, optimal control using mathematical models
which are restricted to integer order ordinary [8]

or delay differential equations [9]. Recently, the
problem of modeling real processes using fractional
differential equations (FDEs) has started to draw
attention leading to inspiring results [10]. Ding and
Ye introduced the fractional order into a model of
HIV infection of T-cells and carried out a detailed
analysis on the stability of equilibrium [11, 12].
However, epidemiology optimal control problems
with fractional derivative in both state and control
variables are very rare.

Fractional calculus is a classical mathematical
notion and a generalization of the integer-order
differentiation and integration to arbitrary non-integer
order. The conception of fractional calculus is firstly
projected by Leibniz in 1695 [13]. Fractional-order
differential equation is considered as an alternative
model to especially non-linear ordinary differential
equations [14]. Due to its complexity and lack of ap-
plication background, it did not attract much attention
for a long time. In recent decades, fractional-order
differential equations have been proved to be valuable
tools in the modeling of many phenomena in various
elds of science and engineering Fractional order
differentiations have gained a lot of attention due to
its ability to provide an exact description of different
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nonlinear phenomena [15, 16, 17].

In recent years, the application of fractional
differential equations has been found in different
fields of sciences as well as in many scientific and
practical models [18, 19, 20]. Fractional differential
equations are applied in many natural phenomena in
which case these equations have more validity and
adaptation to the natural phenomena. The advantage
of fractional-order system is that it allows greater
degrees of freedom in the system. More and more
researcher begin to study the qualitative properties
and numerical solutions of fractional-order virus
infection models [21, 22, 23].
. Furthermore it also provides a commanding imple-
mentation of memory, which is one of the hereditary
characteristic in most of the main features of immune
response. The major concepts in cell-biological
structures like fractals is usually related with the
fractional-order differential equations [24, 12]. Re-
cently, fractional calculus (FC) has been extensively
applied in many fields [25, 26]. Many mathemati-
cians and applied researchers have tried to model real
processes using the fractional calculus [10, 20]. A
fractional-order example of two immune effectors
attacking an antigen was proposed by Hashish and
Ahmed [27]. Fractional derivatives embody essential
features of cell rheological behavior and have enjoyed
greatest success in the field of rheology [28].

In this article, considering the mathematical
model presented in [8], the fractional order HIV-
immune system with memory is proposed. Here,
a fractional ordered optimal control problem for
HIV-model in both state and control variables is pro-
posed and solved, where the objective is to find the
optimal dosing for drug that maximizes the number
of infected CD4+T cells, as well as CTL immune
response cells. Detailed analysis of the stability of
equilibrium is carried out. Numerical simulations are
done using iterative schemes through Matlab.

2 The Fractional Derivatives

Here, the definitions of fractional-order differentia-
tion are provided for the concept of fractional deriva-
tive. Caputo and Riemann-Liouville definitions [29]
are used to developed the model.

Definition 1. Caputo fractional derivative can be de-
fined as:

C
a D

α
t g(t) =

1

Γ(n− α)

∫ t

a

g(n)(s)

(t− s)α−n+1
ds (1)

where α is the order of the derivative and
n − 1 < α < n, Γ is symbolized as the gamma
function andn is considered as an integer.

Definition 2. Riemann-Liouville fractional derivative
is defined as:

aD
α
t g(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

g(s)

(t− s)α−n+1
ds (2)

whereα is the order of the derivative andn − 1 <
α < n, Γ is symbolized as the gamma function and
n is considered as an integer anda > 0, b > 0 are
constants.

3 Mathematical model derivation

In this work, a fractional order mathematical model of
HIV infection is proposed in the context of antiviral
treatment technique. The base model was formulated
by Culshaw, Ruan and Spiteri [8]. The model consists
of three populations: uninfected CD4+ T cells, x(t);
infected CD4+ T cells, y(t) and CTL effectors (im-
mune response cells), z(t). Uninfected CD4+ T cells
produced at a ratea and die at a rateδ, and become
infected at a rateβ. The viral load is considered pro-
portional to the level of infected cells.b is the decay
rate of Infected cells andρ is killing rate by CTL ef-
fectors. Proliferation of the CTL population is given
by cxyz and is assumed to be proportional with both
virus load, y(t) and the number of uninfected CD4+ T
cells, x(t). CTL effectors have a death ratem. Based
on the above assumptions, the following integer order
mathematical model [8] is obtained:

dx

dt
= a− δx− βxy,

dy

dt
= βxy − by − ρyz,

dz

dt
= cxyz −mz, (3)

wherex(0) = x0, y(0) = y0, z(0) = z0 are initial
conditions.

Considering the above model, the following frac-
tional order model is proposed:

Dα
t x = a− δx− βxy,

Dα
t y = βxy − by − ρyz,

Dα
t z = cxyz −mz, (4)

wherex(0) = x0, y(0) = y0, z(0) = z0 are initial
conditions andDα

t is the Caputo derivative.
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4 Some basic properties

In this section, the existence and uniqueness of solu-
tion of the system (4) are analysed. The system (4)
can be written in the following form:

Dα
t v(t) = f(t, v(t)), 0 < α ≤ 1, (5)

where f(t, v) = (f1, f2, f3)
T and v(0) =

(x(0), y(0), z(0)) as initial conditions, where the
derivative is in Left-Caputo sense. Here,f1, f2, f3 are
right hand side of system (7), i.e.,f1 = a− δx− βxy
etc. The functionf(v, t) : R × R

d −→ R
d defines a

vector field with dimensiond ≥ 1.

4.1 Non-negative solutions

Initially, the non-negativity of the solutions is
shown. Next, it is shown that the solution x(t),
with x(0) > 0, is always positive whenever the
solution exists and the solutions will remain in
R
3
+, where R

3
+ = {x ∈ R

3 : x ≥ 0} and
x(t) = (x(t), y(t), z(t))T .

Theorem 3. There is a unique solution
u(t) = (x(t), y(t), z(t))T for the initial value
problem given by (12) and the solution remains in
R
3
+.

Proof. For the proof of the theorem about nonnega-
tive solutions, the following Lemma is needed:

Lemma 1 (Generalized Mean Value Theorem):
Let f(x) ∈ C[a, b] andDα

t ∈ C(a, b] for 0 < α ≤ 1,
then

f(x) = f(a) +
1

Γ(α)
Dα

t f(ξ)(x− a)α, (6)

with 0 ≤ ξ ≤ x, for all x ∈ (a, b].

Remark 1: f(x) ∈ C[0, b] andDα
t ∈ C(a, b]

for 0 < α ≤ 1 then it is clear from Lemma 1 that if
Dα

t ≥ 0, for all x ∈ (0, b) then the function f is non
decreasing and ifDα

t ≤ 0 for all x ∈ (0, b) then the
functionf is non increasing for allx ∈ [0, b].

The existence and uniqueness of the solution of
(4) in (0,∞) can be established by Theorem 3.1 and
Remark 3.2 of [30]. The remaining tusk is to show
that the domain<3

+ is positively invariant.
Now, since

Dα
t x|x=0 = a > 0,

Dα
t y|y=0 = 0,

Dα
t z|z=0 = 0, (7)

by Remark 1 and Lemma 1 above, the solution of the
system will remain inR3

+. Thus it can be said that
on each hyperplane bounding the nonnegative orthant,
the vector field points intoR3

+ and thus the the domain
R
3
+ is a positively invariant region.

4.2 Equilibria and Stability

Stability analysis is one of the most important factors
to study the fractional-order differential systems,
which has been investigated by many researchers
[31, 32, 33] to obtain important results about stability
of the systems.

To evaluate the equilibrium points, we set

Dα
t x = 0,

Dα
t y = 0,

Dα
t z = 0.

Then the system posses three equilibria, viz

i. infection-free equilibrium:E0 = (a
δ
, 0, 0),

ii. infected equilibrium:E1 = ( b
β
, aβ
bβ

− δ
β
, 0) and

iii. CTL equilibrium: E∗ =

(ac−βm
cδ

, mδ
ac−βm

, β(ac−βm)
ρcδ

− a
ρ
).

It is cleared that infected equilibriumE1 exists if
aβ − bδ > 0 andE∗ is stable ifac− βm > 0.

4.3 Stability analysis

Now, the Jacobian matrix at the equilibrium point
E(x, y, z) is given by,

M = [mij]

=













−δ − βy −βx 0

βy βx− b− ρz −ρy

cyx cxz cxy −m













.

Then the characteristic equation of the system at
the equilibrium point(x, y, z) is given by,

λ3 + κ1λ
2 + κ2λ+ κ3 = 0, (8)

where

κ1 = −[m11x
2 +m22x

2 +m33],

κ2 = [m12m21 −m11m22 +m23m32

−m11m33 −m22m33],

κ3 = [m12m23m31 −m11m23m32

−m12m21m33 +m11m22m33].
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The eigenvalues of Jacobian matrix evaluated
at the uninfected steady stateE0 are given by:
−δ, βa

δ
− b,−m. ThusE0 is stable ifβa − δb < 0

and in that caseE1 will not exist.

The characteristic equation of the system at the
equilibrium pointE1 is given by:

M = [mij ] =














−d− (aβ
b
− δ) −βb

β
0

(aβ
b
− δ) bβ

β
− b −ρ(aβ

bβ
− δ

β
)

bc
β
(aβ
bβ

− δ
β
) 0 cb

β
(aβ
bβ

− δ
β
)−m















.

(λ−
βac− β2m− bcδ

β2
)(bλ2 + aβλ

+abβ − b2δ) = 0. (9)

Proposition 4. The steady stateE1 is asymptotically
stable if all of the eigenvaluesλi of J(E1) satisfy:
|arg(λi)| >

απ
2 , i = 1, 2, 3.

The characteristic equation of the system at the
equilibrium pointE∗ is given by:

λ3 + σ1λ
2 + σ2λ+ σ3 = 0, (10)

where

σ1 =
δac

ac− βm
,

σ2 =
(βac− bcδ + δβ2 − β2m)m

cδ
,

σ3 =
m(βac− β2m− acδ)

c
. (11)

Proposition 5. The CTL equilibrium stateE∗ is
asymptotically stable if all of the eigenvaluesλi of
J(E∗) satisfy: |arg(λi)| >

απ
2 , i = 1, 2, 3.

The discriminant of the polynomialg(λ) is
denoted byD(ε). Now, if

g(λ) = λ3 + σ1λ
2 + σ2λ+ σ3 = 0, then

D(ε) = −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 σ1 σ2 σ3 0

0 1 σ1 σ2 σ3

3 2σ1 σ2 0 0

0 3 σ1 σ2 0

0 0 3 2σ1 σ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 18σ1σ2σ3 + (σ1σ2)
2 − 4σ3

1σ3 − 4σ3
2 − 27σ2

3 .

Proposition 6. If E∗ exists inR3
+, then:

i. If the discriminantD(ε) is positive and Routh-
Hurwitz criterion are satisfied, i.e.,D(ε) > 0,
σ1 > 0, σ3 > 0 andσ1σ2 > σ3, then the interior
equilibrium point E∗ is locally asymptotically
stable.

ii. If D(ε) < 0, σ1 > 0, σ2 > 0, σ1σ2 = σ3 andα ∈
[0.5, 1), then the interior equilibrium pointE∗ is
locally asymptotically stable.

iii. If D(ε) < 0, σ1 < 0, σ2 < 0 andα > 2/3, then
the interior equilibrium pointE∗is unstable.

5 The fractional optimal control
problem (FOCP)

Here, the aim is to maximise levels of healthy CD
4+ T cells, as well as levels of CTLs (immune re-
sponse cells) and to keep costJ(u) as measured in
terms of chemotherapy strength, a combination of du-
ration and intensity as low as possible. The control
function is denoted byu(t) with values normalised
between 0 and 1, where u(t) = 1 represents totally ef-
fective chemotherapy and u(t) = 0 represents no treat-
ment. Introducingu(t), the following state system is
obtained:

Dα
t x = a− δx− (1− u)βxy,

Dα
t y = (1− u)βxy − by − ρyz,

Dα
t z = cxyz −mz, (12)

wherex(0) = x0, y(0) = y0, z(0) = z0 are ini-
tial conditions andDα

t is indicated as the Caputo frac-
tional derivative. The above system can be written in
matrix form as below

Dα
t v = f(v(t), u(t)),
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where,v = [x, y, z]. Mathematically, the optimal con-
trol problem is formulated as:

Max J(u) =
∫ tf

0
(x+ z −

Pu2

2
)dt, (13)

subject to the system (12).

Here, the aim is to find the optimal control function
u∗(t) for the system (12) that minimizes the functional
J(u). Basicallyu(t) stands for the effect of drug and
it lies between0 and1 [35].

5.1 The Euler-Lagrange optimality condi-
tions for the FOCP

The general formulation and the derivation of the
Euler-Lagrange optimality conditions for a Fractional
Optimal Control Problem can be presented using the
following control induced system:

Dα
t v = f(v, u, t), x(0) = x0, (14)

where,x(t) is the state vector,u(t) stands for the con-
trol parameter andt is the time. The objective func-
tional can be taken as

J(u) =

∫ tf

0
g(v, u, t)dt,

Now, the control problem can be described as:

MaximizeJ(u) =
∫ tf

0
g(v, u, t)dt,

subject to the system (14).

The adjoint system withξ as the adjoint vector is given
by:

Dα
tf
ξ =

∂g

∂x
+ ξT

∂f

∂x
, ξ(tf ) = 0. (15)

The optimal controlu∗(t) satisfies the following equa-
tion:

∂g

∂u∗
+ ξT

∂f

∂u∗
= 0. (16)

The Euler-Lagrange optimality conditions for the
FOCP with Caputo fractional derivatives is given by
(14), (15), and (16). Note that when (α) becomes 1,
the above FOCP becomes a classical optimal control
problem.

Now, the optimal control problem given in (13)
can be solved using the above results. The Hamilto-
nian function for our control problem is formulated
as:

H = g + ξT f, (17)

with g = x+ z − Pu2

2 , ξ = (ξ1, ξ2, ξ3),
f = (f1, f2, f3)

T , fi, i = 1, 2, 3 are the right
sides of system (12). Using the optimality conditions
given by equations (14), (15) and (16), the Euler-
Lagrange optimality conditions that minimize the
objective functional (13) can be obtained.

The state system has already been given by (12).
Using relations above, the adjoint system is derived
as:

Dα
tf
ξ1 = 1− δξ1y(1− u)(βξ1 − βξ2) + cyzξ3,

Dα
tf
ξ2 = −x(1− u)(βξ − βξ2)− bξ2 + ρzξ2

+cxzξ3,

Dα
tf
ξ3 = 1− ρyξ2 + cxyξ3 −mξ3, (18)

with the boundary conditions:ξi(tf ) = 0, wherei =
1,2,3.
From equation (16) and equation (17), the expression
for optimal control function is obtained as:

u∗(t) =
xy(βξ1 − βξ2)

P
. (19)

For the boundedness of the optimal control,u∗(t)
takes the form

u∗(t) = max

{

min

{

xy(βξ1 − βξ2)

P
, 1

}

, 0

}

. (20)

replacingu(t) by u∗(t) in system (12) and (18) the
desired FOCP can be obtained.

6 Numerical Results and Discussion

In this section, numerical simulations of the frac-
tional model system and FOCP are presented. Itera-
tive scheme are developed to solve the fractional order
systems through Matlab using these schemes.

6.1 Numerical solution of system (4)

The following numerical scheme is developed for
solving the fractional model system (equation (4)):
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Figure 1: Solution of the system without control for different value ofα.

x(i) = [a− δx(i − 1)− βx(i− 1)y(i− 1)]hα

−
i

∑

j=1

c(j)x(i − j),

y(i) = [βx(i)y(i − 1)− by(i− 1)− ρy(i− 1)z(i

−1)]hα −
i

∑

j=1

c(j)x(i − j),

z(i) = [cx(i)y(i)z(i − 1)−mz(i− 1)]hα

−
i

∑

j=1

c(j)z(i − j),

The last term of the above equations stands for
memory i.e. history function. The parameterc(j) is
defined asc(0) = 1 andc(j) = (1− 1+α

j
)cj−1, j ≥ 1

and L(0) = L0, M(0) = M0, C(0) = C0,
K(0) = K0 are the initial conditions.

Some numerical simulations are done through
Matlab using the above iterative scheme for phase-
plane analysis of systems of fractional differential
equations. The Matlab code is developed from the
code given in [20, 36]. In Figure 1, the behaviour
of the system (4) is shown for different values ofα.
A phase portrait of the system is shown in (x- y- z)
plane (Figure 2). It can be concluded from these fig-
ures that fractional ordered system attains steady-state

more quickly than integer order system. Some nu-
merical simulations are done through Matlab using
the above iterative scheme for phase-plane analysis of
systems of fractional differential equations. In Fig-
ure 1, the behaviour of the system (4) is shown for
different values ofα. A phase portrait of the sys-
tem is shown in (x- y- z) plane (Figure 2). It can be
concluded from these figures that fractional ordered
system attains steady-state more quickly than integer
order system. In Figure 3, solution trajectories are
drawn for different initial conditions. The system con-
verges to the same solution. According to [34], the
system is Globally MittagLeffler stabile (see Figure
3).

6.2 Numerical solution of the FOCP

The optimality system constitute a two-point bound-
ary value problem including a set of fractional-order
differential equations. The state system (13) is an
initial value and adjoint system (19) is a boundary
value problem. The state system is solved by for-
ward iteration method and the costate system is by
backward integration method by the following code
through Matlab.

i. The state system is solved using the iterative
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Figure 3: Global MittagLeffler stability: Phase portrait of the system without control for different initial conditions.

scheme below:

x(i) = [a− δx(i − 1)− (1− u)βx(i − 1)y(i

−1)]hα −
i

∑

j=1

c(j)x(i − j),

y(i) = [(1− u)βx(i)y(i − 1)− by(i− 1)−

ρy(i− 1)z(i − 1)]hα −
i

∑

j=1

c(j)y(i − j),

z(i) = [cx(i)y(i)z(i − 1)−mz(i− 1)]hα

−
i

∑

j=1

c(j)z(i − j).

Here, s(i) is the value ofs(t) at ith itera-
tion. The last term of the above equations
stands for memory. Here,s(0) = s0, e(0)

= e0, c1(0) = 0, c2(0) = 0 and p(0) = 0 are
the initial conditions andh is the time step
length. Also, the parameterm(j) is defined as
m(0) = 1 andm(j) = (1− 1+α

j
)m(j−1), j ≥ 1.

ii. The optimal control is updated by the scheme be-
low:

u∗(i) = max {min {u, 1} , 0} , (21)

where,u = x(i)y(i)(βξ1(i−1)−βξ2(i−1))
P

.

iii. The adjoint system (19) is solved backward-in-
time with terminal conditionsξi(tf ) = 0 using
the following iterative scheme:
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Table 1: List of parameters used for numerical simulations [8, 9].

Parameter Definition Value (unit)

a source rate of CD4+T cells 8 cells/day
δ decay rate of CD4+T cells 0.1 cells/day
β rate CD4+T cells become infected 0.0025
ρ rate at which infected cells are killed by CTLs1/day
c immune response activation rate 0.1/day
b death rate infected CD4+T cells, not by 0.2 cells/day

CTL killing

ξ1(i) = 1− δξ1(i− 1)y(i)(1 − u)[βξ1(i−

1)− βξ2(i− 1)] + cy(i)z(i)ξ3(i−

1)−

i
∑

j=1

c(j)x(i − j),

ξ2(i) = −x(i)(1 − u)[βξ1(i) − βξ2(i− 1)]

−bξ2(i− 1) + ρz(i)ξ2(i− 1)

+cx(i)z(i)ξ3(i− 1)

−

i
∑

j=1

c(j)y(i − j),

ξ3(i) = 1− ρy(i)ξ2(i) + cx(i)y(i)ξ3(i− 1)−

mξ3(i− 1)−

i
∑

j=1

c(j)z(i − j). (22)

The Matlab code for solving the FOCP is derived
using the code as given in [20, 36].

Numerical simulation results have been exploited
graphically to illustrate the main results. In Figure 3,
solution of the optimality system and optimal profile
of drug (i.e. u∗(t)) is displayed. It is seen that the
dosing starts from its boundary value ofu = 1 that
corresponding to treatment at full strength and drops
sharply to zero before 4 days. It is also seen from
Figure 3 that the optimal drug dosing has a significant
effect on healthy CD4+T cells as well as immune re-
sponse cells (CTL). Infection level is decreased but
never eradicated. Here, it is observed from Figure 4
that forα = 0.95, comparatively high drug is required
rather thanα = 0.98 andα = 1. That means, if FOCP
is used rather than OCP, high drug should be required
to control the system. Our results demonstrate that
once the virus is controlled to very low levels the drug
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dosage can be reduced. Under such circumstances
side effects of the therapy can also be reduced.

It is observed that immune response (i.e. z(t))
is always maintained at a positive level. It is never
eradicated. When the infection is low, the immune
response is not needed at such high levels and this is
why it very low. The initial decrease in the control
occurs at roughly the same time as the immune
response is high. This indicates that during periods
of effective immune responsiveness, less medication
is needed to control infection. Also strategy that
enhance a patient’s natural immune response may be
beneficial as an alternative to quite high levels of drug
therapy.

Comparing our results with the results as estab-
lished in [8], we find that our control profile for op-
timal drug is different from drugs used to control
systems. However, we observe that our control ac-
tually decreases after initiation of treatment and re-
main close to nil after four days. This initial drop
is directly dependent upon the action of the immune
response, which occurs shortly after treatment initi-
ation in response to the high infection level. This
indicates that enhancement of the immune response
by means other than continual administration of anti-
HIV drugs should be considered seriously in a clini-
cal setting. Treatment strategies such as interruption
of drug therapy to allow the immune response to re-
build should also be considered. This can be tested
clinically through drug trials.

7 Conclusion

Biological systems have fractal structures and they
have very close ties with fractional differential equa-
tions. Thus using fractional differential equations
for these systems can produce more natural results.
A mathematical model determines the transmission
dynamics of HIV disease and helps to find a suitable
control technic to defend this disease. The fractional
derivative can be used to fit the real data according
to the progression of different HIV patients. A more
reliable model can be obtained by choosing the
relevant fractional index according to available real
data.

In this research article, the integer order model
as proposed by Culshaw and Ruan [8] is modified
to a system of fractional differential equations. It
is seen that the fractional order model possesses
non-negative solutions which are needed in any
population dynamics. Using stability analysis on a
fractional-order system, a sufficient condition on the

parameters for the stability of the steady states is
derived. It is also seen numerically that the system is
Globally Mittag-Leffler stabile. Moreover, necessary
conditions for the optimality of a fractional optimal
control problem are derived. It is established that
if the infection is controlled to very low levels the
drug dosage can be reduced and the side effects due
to the therapy can also be reduced. In this way,
the fractional-order optimal control approach can
improve the quality of the treatment.
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