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Abstract: Let P ,X and Y be Banach spaces. Suppose that f : P ×X → Y is continuously Fréchet differentiable function
depend on the point (p, x) and F : X ⇒ 2Y is a set-valued mapping with closed graph. Consider the following parametric
generalized equation of the form:

0 ∈ f(p, x) + F (x). (1)

In the present paper, we study an extended Newton-type method for solving parametric generalized equation (1). Indeed,
we will analyze semi-local and local convergence of the sequence generated by extended Newton-type method under the
assumptions that f(p, x), the Fréchet derivative Dxf(p, x) in x of f(p, x) are continuously depend on (p, x) and (f(p, ·) +
F )−1 is Lipschitz-like at (p̄, x̄).
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1 Introduction
In this study we are concerned with the problem of ap-
proximating a solution of a parametric generalized equa-
tion. Let P , X and Y are Banach spaces. Suppose that
f : P × X → Y is continuously Fréchet differentiable
function and F : X ⇒ 2Y is a set-valued mapping with
closed graph. We consider here a parametric generalized
equation of the following form to find a point x̄ ∈ Ω ⊂ X
for p̄ ∈ P satisfying

0 ∈ f(p̄, x̄) + F (x̄). (2)

The model of generalized equation (2) covers a huge terri-
tory. The classical case of an equation corresponds to hav-
ing F (x) ≡ 0, whereas by taking F (x) ≡ −K for a fixed
set K ⊂ Y one gets various constraint systems. When Y is
the dual space X∗ of X and F is the normal cone mapping
NC associated with a closed, convex set C ⊂ X , one has a
variational inequality.

Let us fixing p ∈ P and x ∈ X , and let Dxf(p, x) be
the Fréchet derivative of f at x. By Dp(x) we denote the
subset of X defined by

Dp(x) = {d ∈ X : 0 ∈ f(p, x) +Dxf(p, x)d

+F (x+ d)}.

According to the construction of Dp(x), Dontchev and

Rockafellar [3] associated the following Algorithm for
solving the generalized equations (2):

Algorithm 1 (Newton-type method)
Step 1. Select x0 ∈ X and put k := 0.
Step 2. If 0 ∈ Dp(xk), then stop; otherwise, go to Step
3.
Step 3. If 0 /∈ Dp(xk), choose dk such that dk ∈
Dp(xk).
Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

Generally, for a starting point near to a solution, the se-
quences generated by Algorithm 1 are not uniquely defined
and not every generated sequence is convergent. The result,
established in [5, Theorem 2.1.], guarantees the existence
of one sequence, which is convergent. Therefore, from the
viewpoint of practical computations, this kind of methods
would not be convenient in practical application. In accor-
dance with the developments in computation, theoretical
studies on numerical schemes are now fruitful and highly
needed. That is why inspired by the works of Dontchev and
Rockafellar [5] we propose ” so called” extended Newton-
type method as follows:
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Algorithm 2 (Extended Newton-type method)
Step 1. Select η ∈ [1,∞), x0 ∈ X and put k := 0.
Step 2. If 0 ∈ Dp(xk), then stop; otherwise, go to Step
3.
Step 3. If 0 /∈ Dp(xk), choose dk such that dk ∈ Dp(xk)
and

∥dk∥ ≤ η dist
(
0,Dp(xk)

)
.

Step 4. Set xk+1 := xk + dk.
Step 5. Replace k by k + 1 and go to Step 2.

We observe, from the Algorithm 2, that if f is explicit
function, this algorithm reduces to the Algorithm intro-
duced by [15]. A large number of fruitful works on semilo-
cal convergence analysis have been presented for solving
generalized equations in the case when f is explicit func-
tion and F = 0 (cf. [13, 14, 19]) or when F = C (cf. [9]).
In the case when f is explicit function, Rashid et al. [15]
introduced Gauss-Newton method for solving the gener-
alized equation (2) and studied its semilocal convergence
analysis. However, in our best knowledge, there is no other
study on semilocal convergence analysis discovered for the
case (2), even for the Algorithm 1.

In this paper, our efforts will be concentrated on the
role of the parameter p in generating sequences by Algo-
rithm 2 that approach a solution of (2). Indeed, we ana-
lyze the semilocal and local convergence of the extended
Newton-type method defined by Algorithm 2. The main
tool is the Lipschitz-like property of set- valued mappings,
which was introduced in [11] by Aubin in the context
of nonsmooth analysis and studied by many mathemati-
cians; see for example [2,7,8,10,15–18] and the references
therein. Our main results are the convergence analysis, es-
tablished in Section 3, which based on the attraction re-
gion around the initial point, provides some sufficient con-
ditions ensuring the convergence to a solution of any se-
quence generated by Algorithm 2. As a consequence, local
convergence results for the extended Newton-type method
are obtained.

This paper is organized as follows: In section 2, we
recall some necessary notations, notions, some preliminary
results. We evoke also a fixed-point theorem which has
been proved in [6] and this fixed-point theorem is the main
tool to prove the existence of the sequence generated by Al-
gorithm 2. In section 3, we consider the extended Newton-
type method which has been introduced in section1. Then
using the concept of Lipschitz-like property, we will show
the existence and convergence of the sequence generated by
Algorithm 2. In the last section, we will give a summary of
the major results obtained in this paper.

2 Notations and Preliminary results
In this section we give some notations and collect some
results that will be helpful to prove our main results.

Throughout this paper, we suppose that P , X and Y are
real or complex Banach spaces. Let x ∈ X and r > 0. The
closed ball centered at x with radius r is denoted by Br(x)
and closed unit ball denoted by B. Let F : X ⇒ 2Y be a
set-valued mapping with domF ̸= ∅. The domain domF ,
the inverse F−1 and the graph gphF of F are respectively
defined by

domF := {x ∈ X : F (x) ̸= ∅},

F−1(y) := {x ∈ X : y ∈ F (x)} for each y ∈ Y

and
gphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

Let A ⊆ X . The distance function of A is defined by

dist(x,A) := inf{∥x− a∥ : a ∈ A} for each x ∈ X,

while the excess from the setA to the set C ⊆ X is defined
by

e(C,A) := sup{dist(x,A) : x ∈ C}.

The norms in P , X and Y all are denoted by ∥ · ∥.
The rest of this section, we recall a few definitions,

some results and then state the Banach contraction mapping
theorem.

We begin with the definition of Lipschitz continuity for
a function in a neighborhood.

Definition 1 A function f : X → Y is said to be Lipschitz
continuous relative to a set Brx̄(x̄) or on a set Brx̄(x̄) if
Brx̄(x̄) ⊂ domf and there exists a constant µ ≥ 0 (a
Lipschitz constant) such that, for all x, x′ ∈ Brx̄(x̄),

∥f(x)− f(x′)∥ ≤ µ∥x− x′∥. (3)

Moreover, the function f is said to be Lipschitz continuous
around x̄ when (3) holds for some neighborhood Brx̄(x̄)
of x̄. The infimum of the set of values of µ is called the
Lipschitz modulus of f at x̄, denoted by lip(f ; x̄), for which
there exists a neighborhood Brx̄(x̄) of x̄ such that (3) holds.
Equivalently,

lip(f ; x̄) := lim sup
x,x′→x̄
x̸=x′

∥f(x)− f(x′)∥
∥x− x′∥

.

Definition 2 A function f : P ×X → Y is said to be Lip-
schitz continuous with respect to x uniformly in p around
(p̄, x̄) ∈ int domf when there are neighborhoods Brp̄(p̄)
of p̄ and Brx̄(x̄) of x̄ along with a constant µ ≥ 0 and such
that, for all x, x′ ∈ Brx̄(x̄) and p ∈ Brp̄(p̄),

∥f(p, x)− f(p, x′)∥ ≤ µ∥x− x′∥. (4)

The infimum of the set of values of µ is called the par-
tial uniform Lipschitz modulus of f at (p̄, x̄), denoted by
l̂ipx(f ; (p̄, x̄)), for which there exist neighborhoods Brp̄(p̄)
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of p̄ and Brx̄(x̄) of x̄ such that (4) holds and it has the fol-
lowing form

l̂ipx(f ; (p̄, x̄)) := lim sup
x,x′→x̄,p→p̄

x̸=x̄

∥f(p, x)− f(p, x′)∥
∥x− x′∥

.

The following notions of pseudo-Lipschitz and
Lipchitz-like set-valued mappings are due to [15]. These
notions were introduced by Aubin, see for example [11,12]
and have been studied extensively.

Definition 3 Let Γ : Y ⇒ 2X be a set-valued mapping
and let (ȳ, x̄) ∈ gphΓ. Let rx̄ > 0, rȳ > 0 and M > 0.
Then Γ is said to be

(a) Lipchitz-like on Brȳ (ȳ) relative to Brx̄(x̄) with con-
stant M if the following inequality holds, for any
y1, y2 ∈ Brȳ (ȳ):

e(Γ(y1) ∩ Brx̄(x̄),Γ(y2)) ≤M∥y1 − y2∥.

(b) pseudo-Lipschitz around (ȳ, x̄) if there exist constants
r′ȳ > 0, r′x̄ > 0 and M ′ > 0 such that Γ is Lipchitz-
like on Br′ȳ

(ȳ) relative to Br′x̄
(x̄) with constant M ′.

Remark 4 Γ is Lipschitz-like on Brȳ (ȳ) relative to Brx̄(x̄)

with constant M is equivalent to the following statement:
if for every y1, y2 ∈ Brȳ (ȳ) and for every x1 ∈ Γ(y1) ∩
Brx̄(x̄), there exists x2 ∈ Γ(y2) such that

∥x1 − x2∥ ≤M∥y1 − y2∥.

The following lemma is useful and it has been taken from
[15, Lemma 2.1 ].

Lemma 5 Let Γ : Y ⇒ 2X be a set-valued mapping and
let (ȳ, x̄) ∈ gph Γ. Assume that Γ is Lipschitz-like on
Brȳ (ȳ) relative to Brx̄(x̄) with constant M . Then

dist (x,Γ(y)) ≤Mdist (y,Γ−1(x))

holds for every x ∈ Brx̄(x̄) and y ∈ B rȳ
3
(ȳ) satisfying

dist(y,Γ−1(x)) ≤ rȳ
3

.

The following definition is taken from [3].

Definition 6 Let F : X ⇒ 2Y be a set-valued mapping.
Let (x̄, ȳ) ∈ gphF, rx̄ > 0 and rȳ > 0. Then a graphi-
cal localization of F on Brx̄(x̄) relative to Brȳ (ȳ) is a set-
valued mapping F̃ such that

gphF̃ = (Brx̄(x̄)× Brȳ (ȳ)) ∩ gphF

and thus

F̃ (x) =

{
F (x) ∩ Brȳ (ȳ) when x ∈ Brx̄(x̄),
∅ otherwise.

The inverse of F̃ then has

F̃−1(y) =

{
F−1(y) ∩ Brx̄(x̄) when y ∈ Brȳ (ȳ),
∅ otherwise,

and is thus a graphical localization of the set-valued map-
ping F−1 on Brȳ (ȳ) relative to Brx̄(x̄).

Definition 7 Let F : X ⇒ 2Y be a set-valued mapping
and ȳ ∈ F (x̄). Let rx̄ > 0 and rȳ > 0 and suppose
that F−1 is Lipschitz-like on Brȳ (ȳ) relative to Brx̄(x̄) with
Lipschitz constant κ > 0. Let s be the graphical localiza-
tion of F−1 on Brȳ (ȳ) relative to Brx̄(x̄). Then s is said to
be Lipschitz-like localization on Brȳ (ȳ) relative to Brx̄(x̄)
with the same Lipschitz constant if s is Lipschitz-like and
single-valued mapping.

Definition 8 Let S : P ⇒ 2X be a set-valued mapping
with closed graph. Then S is called the solution mapping
associated with the generalized equation (2) if

S(p) := {x : 0 ∈ f(p, x) + F (x)} ∀ p ∈ P, x ∈ X.

The following lemma is a fixed point statement which has
been proved in [6] employing the standard iterative concept
for contracting mapping. This lemma is need to prove the
existence of the sequence generated by Algorithm 2.

Lemma 9 Let Φ : X ⇒ 2X be a set-valued mapping. Let
η0 ∈ X , r > 0 and 0 < λ < 1 be such that

dist(η0; Φ(η0)) < r(1− λ) (5)

and, for any x1, x2 ∈ Br(η0),

e(Φ(x1) ∩ Br(η0),Φ(x2)) ≤ λ∥x1 − x2∥. (6)

Then Φ has a fixed point in Br(η0), that is, there exists
x ∈ Br(η0) such that x ∈ Φ(x). If Φ is additionally single-
valued, then the fixed point of Φ in Br(η0) is unique.

The previous lemma is a generalization of a fixed point the-
orem in [1], where in assertion (b) the excess e is replaced
by Hausdorff distance.

Let rx̄ > 0, rȳ > 0 and rp̄ > 0. Further let κ > 0 and
µ > 0. Define

r̄ := min
{
rȳ − µrx̄,

rx̄(1− κµ)

κ

}
. (7)

Then
r̄ > 0 ⇔ µ < min

{rȳ
rx̄
,
1

κ

}
. (8)

Applying Lemma 9, we will prove the following lemma
which has been extracted from [5, Corollary 1.5].

Lemma 10 Let F : X ⇒ Y be a set-valued mapping and
let (x̄, ȳ) ∈ gphF . Suppose that F−1 is Lipschitz-like on
Brȳ (ȳ) relative to Brx̄(x̄) with Lipschitz constant κ > 0
and s is the Lipschitz-like localization of F−1 on Brȳ (ȳ)

relative to Brx̄(x̄). Let r̄ be defined in (7) such that (8) is
hold. Let f : P × X → Y be a function such that f(p, ·)
is Lipschitz continuous on Brx̄(x̄) uniformly in p ∈ Brp̄(p̄)

with a constant µ > 0. Then, for every p ∈ Brp̄(p̄), the

mapping
(
f(p, ·)+F

)−1
has Lipschitz-like localization on

f(p, x̄)+Br̄(ȳ) relative to Brx̄(x̄) with a Lipschitz constant
κ

1− κµ
.
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Proof: According to our assumption on s, we have that
s(y) = F−1(y) ∩ Brx̄(x̄) for every y ∈ Brȳ (ȳ). Also, we
have that

∥s(y)− s(y′)∥ ≤ κ∥y − y′∥ ∀ y, y′ ∈ Brȳ (ȳ). (9)

Moreover, for each p ∈ Brp̄(p̄), by the Lipschitz continuity
of f(p, ·) we have that

∥f(p, x)− f(p, x′)∥ ≤ µ∥x− x′∥ for all x, x′ ∈ Brx̄(x̄).
(10)

For any y ∈ Br̄

(
f(p, x̄)+ ȳ

)
and x ∈ Brx̄(x̄), we have that

∥ − f(p, x) + y − ȳ∥
≤ ∥y − f(p, x̄)− ȳ∥+ ∥f(p, x̄)− f(p, x)∥
≤ r̄ + µ∥x̄− x∥ ≤ r̄ + µrx̄. (11)

Then by relation r̄ ≤ rȳ − µrx̄ in (7), we have that

∥ − f(p, x) + y − ȳ∥ ≤ rȳ.

This shows that −f(p, x)+y ∈ Brȳ (ȳ) ⊆ dom s. Now let
y ∈ Br̄

(
f(p, x̄) + ȳ

)
and define a mapping Φy : X 7→ X

by
Φy(·) := s

(
− f(p, ·) + y

)
.

Now, we will apply Lemma 9 to the map Φy(·) with η0 :=

x̄, r := rx̄ and λ := κµ so that the assertions (5) and (6)
hold. Noting that x̄ ∈ s(ȳ) ∩ Brx̄(x̄). Then by the relation
κr̄ ≤ rx̄(1 − κµ) in (7) and the Lipschitz continuity of s,
we have that

dist
(
x̄,Φy(x̄)

)
≤ e

(
s(ȳ) ∩ Brx̄(x̄), s

(
− f(p, x̄) + y

))
≤ κ∥ȳ + f(p, x̄)− y∥ ≤ κ∥y − f(p, x̄)− ȳ∥
≤ κr̄ ≤ rx̄(1− κµ)

= r(1− λ).

Since κµ < 1 by (8), it shows that the assertion (5) of
Lemma 9 is satisfied. Next we will show that the assertion
(6) is also satisfied. To do this, let x, x′ ∈ Brx̄(x̄). Then by
the definition of excess e, the Lipschitz continuity of s and
f(p, ·), we have that

e
(
Φy(x) ∩ Brx̄(x̄),Φy(x

′)
)

≤ e
(
s(−f(p, x) + y) ∩ Brx̄(x̄), s(−f(p, x′) + y)

)
≤ κ∥f(p, x)− f(p, x′)∥ ≤ κµ∥x− x′∥
= λ∥x− x′∥.

This implies that the assertion (6) is satisfied. Since both
assertions (5) and (6) are satisfied, we can deduce the ex-
istence of a fixed point x ∈ Brx̄(x̄) such that x = Φy(x).
Now for every x ∈ Brx̄(x̄) and p ∈ Brp̄(p̄), define a map-
ping ψx : Y 7→ X by

ψx(y) =
(
f(p, x) + F

)−1
(y)∀ y ∈ Br̄

(
f(p, x̄) + ȳ

)
.

The fixed point Lemma implies that, for every y ∈
Br̄

(
f(p, x̄) + ȳ

)
, there exists a unique fixed point ψx(y)

of Φy in Brx̄(x̄) such that ψx(y) = Φy(x) and hence
ψx(y) = x. Consequently, we have that

ψx(y) =
(
f(p, x) + F

)−1
(y) ∩ Brx̄(x̄). (12)

Moreover, for every y ∈ Br̄

(
f(p, x̄) + ȳ

)
, we have that

∥ψx(y)− ψx(y
′)∥

= ∥Φy(x)− Φy′(x)∥
= ∥Φy(ψx(y))− Φy′(ψx(y))∥
= ∥s(y − f(p, ψx(y)))− s(y′ − f(p, ψx(y

′))∥
≤ κ∥y − y′∥+ κ∥f(p, ψx(y))− f(p, ψx(y

′))∥
≤ κ∥y − y′∥+ κµ∥ψx(y))− ψx(y

′))∥.

Hence, it follows that

∥ψx(y)− ψx(y
′)∥ ≤ κ

1− κµ
∥y − y′∥. (13)

Note that

Br̄(ȳ) + f(p, x̄) = {y : y − f(p, x̄) ∈ Br̄(ȳ)}
= {y : ∥y − f(p, x̄)− ȳ∥ ≤ r̄}
= {y : y ∈ Br̄

(
f(p, x̄) + ȳ

)
}

= Br̄

(
f(p, x̄) + ȳ

)
.

Thus, combining (12) and (13) we conclude that ψx is the
Lipschitz-like localization of

(
f(p, ·) + F

)−1 with Lips-
chitz constant κ/(1−κµ) and hence, for every p ∈ Brp̄(p̄),
one says that

(
f(p, ·) + F

)−1 has Lipschitz-like localiza-
tion on f(p, x̄) +Br̄(ȳ) relative to Brx̄(x̄) with a Lipschitz
constant κ/(1− κµ). This completes the proof.

3 Convergence analysis of Extended
Newton-type method

Throughout this section, we assume that f : P ×X → Y is
continuously Fréchet differentiable in x with its derivative,
denoted by Dxf(p, x) and that both f(p, x) and Dxf(p, x)
depend continuously on (p, x). Let F : X ⇒ 2Y be set-
valued mapping with closed graph and S : P ⇒ X be a
solution mapping associated to the parametric generalized
equation (2) such that gphS :=

(
Brp̄(p̄)×Brx̄(x̄)

)
∩gphS,

where Brp̄(p̄) and Brx̄(x̄) are neighborhoods of p̄ and x̄ re-
spectively, that is, S is locally closed. Moreover, we sup-
pose that s is the Lipschitz-like localization of S on Brp̄(p̄)
for Brx̄(x̄) and that the point x̄ ∈ X satisfy the paramet-
ric generalized equation (2) corresponding to a choice of
p̄ of p ∈ P . We prove the existence and convergence of
sequences generated by the extended-Newton-type method
defined by Algorithm 2.

Let p ∈ P, z ∈ X and define the mapping Gp,z , for
each x ∈ X , by

Gp,z(·) := f(p, z) +Dxf(p, z)(· − z) + F (·). (14)
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Then

Dp(x) =
{
d ∈ X : 0 ∈ Gp,z(z + d)

}
. (15)

Moreover, the following equivalence is clear, for any z ∈
X and y ∈ Y :

x ∈ G−1
p,z(y) ⇔ y ∈ f(p, z) +Dxf(p, z)(x− z) + F (x).

(16)
In particular,

x̄ ∈ G−1
p̄,x̄(ȳ), ∀ (x̄, ȳ) ∈ gph

(
f(p̄, ·) + F

)
.

Let (x̄, ȳ) ∈ gph
(
f(p̄, ·) + F

)
and let rx̄ > 0, rȳ >

0 and rp̄ > 0. We assume throughout that Brx̄(x̄) ⊆
Ω ∩ domF

Lemma 11 Let P , X and Y be Banach spaces and let f :
P ×X → Y be a function such that Dxf(p, x) is Lipschitz
continuous on Brx̄(x̄) with respect to x uniformly in p for
Brp̄(p̄) and Dxf be continuous depend on (p, x). Then the
following statements are equivalent:

(i) The mapping
(
f(p̄, ·) + F

)−1
is Lipschitz-like on

Brȳ (ȳ) relative to Brx̄(x̄).

(ii) The mapping [f(p̄, x̄) +Dxf(p̄, x̄)(· − x̄) + F (·)]−1

is Lipschitz-like Brȳ (ȳ) relative to Brx̄(x̄).

Proof: Define a function g : X → Y by

g(x) = −f(p, x) + f(p̄, x̄) +Dxf(p̄, x̄)(x− x̄).

To complete the proof of this lemma, according to [6,
Corollary 2], we need to show that g is Lipschitz contin-
uous on Brx̄(x̄). Let κ > 0 and η > 0. Let us also suppose
that Dxf(p, x) is κ-Lipschitz continuous on Brx̄(x̄) with
respect to x uniformly in p for Brp̄(p̄) and Dxf is con-
tinuous depend on (p, x) with constant η. To finish this,
let λ > 0 be such that κrx̄ < λ − η. Then, for every
x1, x2 ∈ Brx̄(x̄), we have

∥g(x1)− g(x2)∥
= ∥f(p, x2)− f(p, x1)−Dxf(p̄, x̄)(x2 − x1)∥

≤
∫ 1

0

(
∥
(
Dxf(p, x1 + t(x2 − x1))−Dxf(p, x1)

)
(x2 − x1)∥+ ∥

(
Dxf(p, x1)−Dxf(p̄, x̄)

)
(x2 − x1)∥

)
dt

≤ κ

2
∥x2 − x1∥2 + η∥x2 − x1∥

≤
(
κrx̄ + η

)
∥x2 − x1∥

< λ∥x1 − x2∥.

This yields that g is Lipschitz continuous on Brx̄(x̄) with
Lipschitz constant λ and thus completes the proof of the
lemma.

The following theorem can be extracted from [3, 4].

Theorem 12 For a generalized equation (2) and its so-
lution mapping S, let p̄ and x̄ be such that x̄ ∈ S(p̄).
Assume that f is Lipschitz continuous with respect to p
uniformly in x at (p̄, x̄) with a Lipschitz constant λ > 0

and that the inverse G−1
p̄,x̄ of the mapping Gp̄,x̄ for which

Gp̄,x̄(x̄) ∋ ȳ has a Lipschitz-like localization σ on Brȳ (ȳ)
relative to Brx̄(x̄) with κ/(1 − κµ). Then the mapping
S has a Lipschitz-like localization s on Brp̄(p̄) relative to
Brx̄(x̄) with κλ/(1− κµ).

The following lemma plays a crucial role for conver-
gence analysis of the extended Newton-type method.

Lemma 13 For a generalized equation (2) and its solution
mapping S, let p̄ and x̄ be such that x̄ ∈ S(p̄). Assume that
f is Lipschitz continuous with respect to p uniform in x
with Lipschitz constant λ > 0, G−1

p̄,x̄(·) has a Lipschitz-like
localization σ on Brȳ (ȳ) relative to Brx̄(x̄) with Lipschitz
constant κ/(1− κµ) and Dxf is continuous at (p̄, x̄) with
constant χ > 0. Let r̄ be defined in (7) such that (8) is hold.
Then G−1

p,u(·) has a Lipschitz-like localization Θp,u(·) on
Br̄(ȳ) relative to Brx̄(x̄) with κ/(1−κ(χ+µ)) and hence
the solution mapping S has a Lipschitz-like localization s
on Brp̄(p̄) relative to Brx̄(x̄) with λκ/(1− κ(χ+ µ)).

Proof: By the Lipschitz-like localization property of
G−1

p̄,x̄(·) imply that

σ(y) = G−1
p̄,x̄(y) ∩ Brx̄(x̄) for all y ∈ Brȳ (ȳ)

and

∥σ(y)− σ(y′)∥ ≤ κ

1− κµ
∥y − y′∥ ∀ y, y′ ∈ Brȳ (ȳ).

Furthermore, sinceDxf is continuous depend on (p, x), we
have for any χ > 0, p ∈ Brp̄(p̄) and x ∈ Brx̄(x̄) that

∥Dxf(p, x)−Dxf(p̄, x̄)∥ ≤ χ. (17)

Define a mapping Zp,u : X 7→ Y by

Zp,u(·) : = f(p, u) +Dxf(p, u)(· − u)− f(p̄, x̄)

−Dxf(p̄, x̄)(· − x̄). (18)

Now, for every p ∈ Brp̄(p̄) and u, x ∈ Brx̄(x̄) and using
(17) and (18) we have

∥Zp,u(x)− Zp,u(x̄)∥
= ∥(Dxf(p, u)−Dxf(p̄, x̄))(x− x̄)∥
≤ ∥Dxf(p, u)−Dxf(p̄, x̄)∥∥x− x̄∥
≤ χ∥x− x̄∥.

This yields that the functionZp,u(·) is Lipschitz continuous
on Brx̄(x̄) with Lipschitz constant χ.

Consider the parameterized mapping Gp,u(·) defined
in (14). Then by using (18), we have that

Gp,u(x) = Zp,u(x) +Gp̄,x̄(x). (19)
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Noting that Zp̄,x̄(x̄) = 0. Setting µ := χ and κ :=
κ

1− κµ
in Lipschitz constant for the mapping G−1

p,u(·) in

Lemma 10. Then we conclude that the mapping G−1
p,u(·)

has a Lipschitz-like localization Θp,u(·) on Br̄(ȳ) relative
to Brx̄(x̄) with a Lipschitz constant

κ

1− κ(χ+ µ)
such

that
Θp,u(y) = G−1

p,u(y) ∩ Brx̄(x̄), (20)

and for all y, y′ ∈ Br̄(ȳ),

∥Θp,u(y)−Θp,u(y
′)∥ ≤ κ

1− κ(χ+ µ)
∥y − y′∥. (21)

Moreover, by assumption, f(·, x) is Lipschitz continuous
with respect to p uniform in x with Lipschitz constant
λ > 0. Also, we have just established that G−1

p,u(·) has
a Lipschitz-like localization Θp,u(·) on Br̄(ȳ) relative to
Brx̄(x̄) with (χ + µ)κ < 1 and a Lipschitz constant

κ

1− κ(χ+ µ)
. This reflects the fact that all the assump-

tions in Theorem 12 are fulfilled and hence by Theorem 12
we conclude that the solution mapping S has a Lipschitz-
like localization s on Brp̄(p̄) relative to Brx̄(x̄) with lips-
chitz constant

λκ

1− κ(χ+ µ)
.

This completes the proof.
Before going to present our main result, we need to

evoke some relations and define some notations here.
By Lemma 13 we have the solution mapping S which

has a Lipschitz-like localization s on Brp̄(p̄) for Brx̄(x̄)

with Lipschitz constant
λκ

1− κ(χ+ µ)
. Then we have that,

for all p, p′ ∈ Brp̄(p̄),

∥s(p)− s(p′)∥ ≤ λκ

1− κ(χ+ µ)
∥p− p′∥. (22)

and for every p ∈ Brp̄(p̄),

s(p) = S(p) ∩ Brx̄(x̄). (23)

Because of (23), note by Lemma 13 that the mapping
G−1

p,s(p)(·) has a Lipschitz-like localization Θp,s(p)(·) on
Br̄(ȳ) relative to Brx̄(x̄) with κ(χ+µ) < 1 and a Lipschitz
constant

κ

1− κ(χ+ µ)
such that, for all y, y′ ∈ Br̄(ȳ)

Θp,s(p)(y) = G−1
p,s(p)(y) ∩ Brx̄(x̄), (24)

and

∥Θp,s(p)(y)−Θp,s(p)(y
′)∥ ≤ κ

1− κ(χ+ µ)
∥y − y′∥.

(25)
For our convenience, we define for each p ∈
Brp̄(p̄) and u ∈ Brx̄(x̄) the mapping gp,u : X → Y by

gp,u(·) : = f(p, s(p)) +Dxf(p, s(p))(· − s(p))

−f(p, u)−Dxf(p, u)(· − u). (26)

and the set-valued mapping Φx : X ⇒ 2X by

Φx(·) := G−1
p,s(p)[gp,x(·)]. (27)

Then, for each x′, x′′ ∈ X ,

∥gp,x(x′)− gp,x(x
′′)∥

= ∥Dxf(p, s(p))((x
′ − s(p))−Dxf(p, x)

(x′ − x)−Dxf(p, s(p))(x
′′ − s(p))

+Dxf(p, x)(x
′′ − x)∥

≤ ∥Dxf(p, s(p))−Dxf(p, x)∥∥x′ − x′′∥. (28)

The main result of this study is as follows, which provides
some sufficient conditions ensuring the convergence of the
extended Newton-type method with initial point x0.

Theorem 14 Suppose that η > 1 and let S be the solu-
ton mapping associated with the generalized equation (2)
and let x̄ ∈ S(p̄). Let r̄ be defined in (7) such that (8) is
hold. Assume that f is Lipschitz continuous with respect
to p uniform in x with Lipschitz constant λ > 0, Dxf is
continuous at (p̄, x̄) with constant χ > 0, Dxf(p, x) is
Lipschitz continuous on Brx̄(x̄) with respect to x uniformly
in p ∈ Brp̄(p̄) with a constant γ > 0 and G−1

p̄,x̄(·) has a
Lipschitz-like localization σ on Brȳ (ȳ) relative to Brx̄(x̄)
with Lipschitz constant κ/(1−κµ). Let δ > 0 be such that

(a) δ ≤ min
{rx̄

2
,

4rȳ
9(µ+ 3γ)

, 1, 2κr̄
}

,

(b) 3ηκ(19µ+ 3γ)δ ≤ 2(1− κ(χ+ µ),

(c) ∥ȳ∥ < (µ+ 3γ)δ2

4
.

Suppose that

lim
x→x̄
p→p̄

dist(ȳ, f(p, x) + F (x)) = 0. (29)

Then there exists some δ̂ > 0 such that any sequence {xn}
generated by Algorithm 2 for p ∈ Brp̄(p̄) with initial point
in Bδ̂(s(p)) converges quadratically to the value s(p) of the
Lipschitz-like localization s of the solution mapping S on
Brp̄(p̄) relative to Brx̄(x̄) for the generalized equation (2).

Proof: Let S be the solution mapping associated with the
generalized equation (2) and s be the Lipschitz-like local-
ization of S on Brp̄(p̄) relative to Brx̄(x̄). This implies that

s(p) = S(p) ∩ Brx̄(x̄) for all p ∈ Brp̄(p̄). (30)

Take 0 < δ̂ ≤ δ such that, for each x0 ∈ Bδ̂(s(p)) ⊆
Bδ(x̄),

dist(0, f(p, x0) + F (x0)) ≤
(µ+ 3γ)δ2

4
. (31)
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Noting that such δ̂ exists by (29) and assumption (c) and let
x0 ∈ Bδ̂(s(p)). By assumption (b), we can write

ηκ(µ+ 3γ)δ < 3ηκ(19µ+ 3γ)δ

≤ 2(1− κ(χ+ µ). (32)

Put

t :=
ηκ(µ+ 3γ)δ

2(1− κ(χ+ γ))
. (33)

The above two inequalities jointly yield that

t ≤ 1. (34)

Because of assumption (b), we also can write

3κ(µ+ 3γ)δ < 3ηκ(19µ+ 3γ)δ

≤ 2(1− κ(χ+ µ) < 2. (35)

Thus, we have from (35) that

(µ+ 3γ)δ <
2

3κ
. (36)

We will proceed by mathematical induction to show that
Algorithm 2 generates at least one sequence and any se-
quence {xn} generated by Algorithm 2 satisfies the fol-
lowing assertions:

∥xn − s(p)∥ ≤ 2δ (37)

and

∥xn+1 − xn∥ ≤ t

(
1

2

)2n

δ. (38)

hold for each n = 0, 1, 2, .... For this purpose, we define,
for each x ∈ X ,

rx :=
9κ

10(1− κ(χ+ µ))

(
µ∥x− s(p)∥2 + 2∥ȳ∥

)
. (39)

Then, thanks to the fact that 3κ(19µ+3γ)δ ≤ 2(1−κ(χ+

µ)) by assumption (a) and ∥ȳ∥ < (µ+ 3γ)δ2

4
by assump-

tion (c). Then for each x ∈ B2δ(x̄), (39) yields that

rx ≤ 9κ

10(1− κ(χ+ µ))

(
µ(∥x− x̄∥

+∥x̄− s(p)∥)2 + 2∥ȳ∥
)

≤ 9κ

10(1− κ(χ+ µ))

(
9µδ2 +

(µ+ 3γ)δ2

2

)
=

9κ(19µ+ 3γ)δ2

20(1− κ(χ+ µ))
≤ δ. (40)

Note that (37) is trivial for n = 0. To show (38) holds
for n = 0, firstly we need to show that the point x1 ex-
ists from x0 for p. To complete this, we have to prove
that Dp(x0) ̸= ∅ by applying Lemma 9 to the map Φx0

with η0 = s(p). Let us check that both assertions (5)

and (6) of Lemma 9 hold with r := rx0 and λ :=
4

9
.

The assumed assumption of G−1
p̄,x̄(·) together with Lemma

13 implies that G−1
p,s(p)(·) has a Lipschitz-like localization

Θp,s(p)(·) on Br̄(ȳ) relative to Brx̄(x̄) with Lipschitz con-

stant
κ

1− κ(χ+ µ)
so that the solution mapping S has a

Lipschitz-like localization s on Brp̄(p̄) relative to Brx̄(x̄)

with lipschitz constant
λκ

1− κ(χ+ µ)
which satisfies (30)

and (31). Noting that s(p) ∈ G−1
p,s(p)(ȳ) ∩ Brx0

(s(p)) by
(17) and (30). Now, we apply the contraction mapping
principle to the mapping Φx0 which is defined in (27) on
Brx0

(s(p)) . According to the definition of the excess e,
we obtain

dist(s(p),Φx0(s(p)))

≤ e(G−1
p,s(p)(ȳ) ∩ Brx0

(s(p)),Φx0(s(p)))

≤ e(G−1
p,s(p)(ȳ) ∩ B2δ(x̄),Φx0(s(p)))

≤ e(G−1
p,s(p)(ȳ) ∩ Brx̄(x̄), G

−1
p,s(p)[gp,x0(s(p))])

(41)

(noting that Brx0
(s(p)) ⊆ Bδ(x̄) ⊆ B2δ(x̄) ⊆ Brx̄(x̄)).

By the choice of µ, we have
∥gp,x0(x)− ȳ∥

= ∥f(p, s(p)) +Dxf(p, s(p))(x− s(p))

−f(p, x0)−Dxf(p, x0)(x− x0)− ȳ∥
≤ ∥f(p, s(p))− f(p, x0)−Dxf(p, x0)

(s(p)− x0) + (Dxf(p, x0)−Dxf(p, s(p)))

(x− s(p))∥+ ∥ȳ∥
≤ ∥f(p, s(p))− f(p, x0)−Dxf(p, x0)

(s(p)− x0)∥+ ∥Dxf(p, x0)−Dxf(p, s(p))∥
∥x− s(p)∥+ ∥ȳ∥

≤ 1

2
µ∥s(p)− x0∥2 + γ∥x0 − s(p)∥∥x− s(p)∥

+∥ȳ∥. (42)
Note that ∥x0 − s(p)∥ ≤ δ̂ ≤ δ, 9(µ + 3γ)δ ≤ 4rȳ by

assumption (a) and ∥ȳ∥ < (µ+ 3γ)δ2

4
by assumption (c),

it follows from (42) that, for each x ∈ B2δ(x̄),

∥gp,x0(x)− ȳ∥ ≤ µδ2

2
+ 3γδ2 +

(µ+ 3γ)δ2

4

=
(3µ+ 15γ)δ2

4
≤ (3µ+ 15γ)δ

4
≤ rȳ. (43)

In particular, letting x = s(p) in (42). Then we have that

∥gp,x0(s(p))− ȳ∥ ≤ 1

2
µ∥s(p)− x0∥2

+∥ȳ∥ (44)

≤ 1

2
µδ2 +

(µ+ 3γ)δ2

4

<
(3µ+ 3γ)δ

4
≤ rȳ;

and hence gp,x0(s(p)) ∈ Brȳ (ȳ).
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Hence, by (39), (41), (44) and Lipschitz-like localiza-
tion of G−1

p,s(p)(·), we have
dist(s(p),Φx0(s(p)))

≤ κ

1− κ(χ+ µ)
∥ȳ − gp,x0(s(p))∥

= (1− 4

9
)rx0 = (1− λ)r; (45)

that is, the assertion (5) of Lemma 9 is satisfied.

Now, we show that the assertion (6) of Lemma 9 holds.
To end this, let x′, x′′ ∈ Brx0

(s(p)). Then we have
that x′, x′′ ∈ Brx0

(s(p)) ⊆ B2δ(x̄) ⊆ Brx̄(x̄) by (40)
and assumption (a), and gp,x0(x

′), gp,x0(x
′′) ∈ Brȳ (ȳ) by

(43). This, together with (28) and Lipschitz-like localiza-
tion Θp,s(p)(·) of G−1

p,s(p)(·), implies that
e(Φx0(x

′) ∩ Brx0
(s(p)),Φx0(x

′′))

≤ e(Φx0(x
′) ∩ Brx̄(x̄),Φx0(x

′′))

= e(G−1
p,s(p)[gp,x0(x

′)] ∩ Brx̄(x̄), G
−1
p,s(p)[gp,x0(x

′′)])

≤ ∥Θp,s(p)(gp,x0(x
′))−Θp,s(p)(gp,x0(x

′′))∥

≤ κ

1− κ(χ+ µ)
∥gp,x0(x

′)− gp,x0(x
′′)∥

≤ κ

1− κ(χ+ µ)
∥Dxf(p, s(p))−

Dxf(p, x0)∥∥x′ − x′∥

≤ γκ

1− κ(χ+ µ)
∥s(p)− x0∥∥x′ − x′∥. (46)

Using (46) and the choice of x0, we have
e(Φx0(x

′) ∩ Brx0
(s(p)),Φx0(x

′′))

≤ γκδ

1− κ(χ+ µ)
∥x′ − x′∥. (47)

It follows from 9γκδ < 3κ(19µ+3γ)δ ≤ 2(1−κ(χ+µ))
as in assumption (a) together with (47) that

e(Φx0
(x′) ∩ Brx0

(x̄),Φx0
(x′′)) ≤ 2

9
∥x′ − x′′∥

<
4

9
∥x′ − x′′∥ = λ∥x′ − x′′∥. (48)

This yields that the assertion (6) of Lemma 9 is sat-
isfied. Since both assertions of Lemma 9 are fulfilled,
we can deduce the existence of a fixed point x̂1 ∈
Brx0

(s(p)) satisfying x̂1 ∈ Φx0(x̂1), which translates to
gp,x0(x̂1) ∈ Gp,s(p)(x̂1). This means that 0 ∈ f(p, x0) +
Dxf(p, x0)(x̂1−x0)+F (x̂1). This implies that x̂1−x0 ∈
Dp(x0) and thus Dp(x0) ̸= ∅. Since η > 1, we can choose
d0 ∈ Dp(x0) such that

∥d0∥ ≤ η dist(0,Dp(x0)).
By Algorithm 2, x1 := x0 + d0 is defined. Thus, the point
x1 is generated by Algorithm 2.

Now, we show that (38) holds also for n = 0. By the
assumed assumption of G−1

p̄,x̄(·), it follows from Lemma
13 that for each u ∈ Brx̄(x̄), the mapping G−1

p,u(·) has a
Lipschitz localization Θp,u(·) on Br̄(ȳ) relative to Brx̄(x̄)
with κ/(1− κ(χ+ µ)). In particular, G−1

p,x0
(·) has a Lips-

chitz localization Θp,x0(·) on Br̄(ȳ) relative to Brx̄(x̄) with
κ/(1 − κ(χ + µ)) as x0 ∈ Bδ̂(s(p)) ⊆ B2δ(x̄) ⊆ Brx̄(x̄)

by assumption (a) and by the choice of δ̂.

Furthermore, using (36) and the fact δ ≤ 2κr̄ by as-
sumption (a) together with assumption (c) imply that

∥ȳ∥ < (µ+ 3γ)δ2

4
<

(µ+ 3γ)δ

4
· δ ≤ r̄

3
, (49)

and hence (31) implies that
dist(0, Gp,x0(x0)) = dist(0, f(p, x0) + F (x0))

≤ (µ+ 3γ)δ2

4
≤ r̄

3
.

It is noted earlier that x0 ∈ Bδ(x̄) ⊆ Brx̄(x̄) and 0 ∈ Br̄(ȳ)
by (49). Thus, by utilizing Lemma 5 we get
dist(x0, G

−1
p,x0

(0)) ≤ κ

1− κ(χ+ µ)
dist(0, Gp,x0(x0)).

(50)
This together with (15) gives that
dist(0,Dp(x0)) = dist(x0, G−1

p,x0
(0))

≤ κ

1− κ(χ+ µ)
dist(0, Gp,x0(x0)).

(51)
According to Algorithm 2 and using (50) and (51), we have

∥d0∥ ≤ η dist(0,Dp(x0))

≤ ηκ

1− κ(χ+ µ)
dist(0, Gp,x0(x0))

≤ ηκδ

1− κ(χ+ µ)
·
(µ+ 3γ

4

)
δ. (52)

It follows from (33), that

∥x1 − x0∥ = ∥d0∥ ≤ t
(1
2

)
δ.

and therefore, (38) is hold for n = 0.

We assume that x1, x2, . . . , xk are constructed so that
(37) and (38) are hold for n = 0, 1, 2, . . . , k − 1. We will
show that there exists xk+1 such that (37) and (38) are also
hold for n = k. Since (37) and (38) are true for each n ≤
k − 1, we have the following inequality

∥xk − s(p)∥ ≤
k−1∑
i=0

∥di∥+ ∥x0 − s(p)∥

≤ tδ
k−1∑
i=0

(
1

2

)2i

+ δ

≤ 2δ. (53)
This shows that (37) holds for n = k. Finally, we will
show that the assertion (38) holds for n = k. For doing
this, we will apply again the contraction mapping principle
to Φxk

as same as in (45) and (48) on the ball Brxk
(s(p)).

Then we can deduce the existence of a fixed point x̂k+1 ∈
Brxk

(s(p)) satisfying x̂k+1 ∈ Φxk
(x̂k+1), which trans-

lates to gp,xk
(x̂k+1) ∈ Gp,s(p)(x̂k+1). This means that

0 ∈ f(p, xk) + Dxf(p, xk)(x̂k+1 − xk) + F (x̂k+1), that
is, Dp(x) ̸= ∅. Choose dk ∈ Dp(xk) such that

∥dk∥ ≤ η dist(0,Dp(xk)).

Then by Algorithm 2, set xk+1 := xk + dk. Moreover,
applying Lemma 13 we infer that G−1

p,xk
(·) has a Lips-

chitz localization Θp,xk
(·) on Br̄(ȳ) relative to Brx̄(x̄) with

WSEAS TRANSACTIONS on MATHEMATICS Mohammed Harunor Rashid

E-ISSN: 2224-2880 140 Volume 16, 2017



κ/(1− κ(χ+ µ)) . Therefore, we have that
∥xk+1 − xk∥

= ∥dk∥ ≤ η dist(0,Dp(xk))

≤ ηκ

1− κ(χ+ µ)
dist(0, Gp,xk

(xk))

=
ηκ

1− κ(χ+ µ)
dist(0, f(p, xk) + F (xk))

≤ ηκ

1− κ(χ+ µ)
∥f(p, xk)− f(p, xk−1)−

Dxf(p, xk−1)(xk − xk−1)∥

≤ ηµκ

2(1− κ(χ+ µ))
∥xk − xk−1∥2

≤ ηµκ

2(1− κ(χ+ µ))

(
t

(
1

2

)2k−1

δ

)2

≤ t

(
1

2

)2k

δ.

This implies that (38) holds for n = k and therefore the
proof is completed.

In particular, in the case when x̄ is a solution of (2) for
p̄, that is, ȳ = 0Theorem 14 is reduced to the following
corollary, which gives the local convergent result for the
Extended Newton-type method.

Corollary 15 Suppose that η > 1 and x̄ satisfies (2) for
p̄. Let S be the solution mapping associated with the gen-
eralized equation (2) such that x̄ ∈ S(p̄). Assume that f
is Lipschitz continuous with respect to p uniform in x with
Lipschitz constant λ > 0, Dxf is continuous at (p̄, x̄) with
constant χ > 0, Dxf(p, x) is Lipschitz continuous with re-
spect to x uniformly in p with a constant γ > 0 andG−1

p̄,x̄(·)
has a pseudo-Lipschitz localization σ around (0, x̄) for p̄.
Suppose that

lim
x→x̄
p→p̄

dist(0, f(p, x) + F (x)) = 0. (54)

Then there exists some δ̂ > 0 such that any sequence
{xn} generated by Algorithm 2 for p with initial point in
Bδ̂(s(p)) converges quadratically to the value s(p) of the
pseudo-Lipschitz localization s of the solution mapping S
for the generalized equation (2).

Proof: Let G−1
p̄,x̄(·) has a pseudo-Lipschitz localization σ

around (0, x̄) for p̄. Then there exist positive constants
r0, r̂x̄, r̂p̄, µ and κ satisfy the following condition:

σ(y) = G−1
p̄,x̄(y) ∩ Br̂x̄(x̄) for every y ∈ Br0(0).

and ∥σ(y)− σ(y′)∥ ≤ κ

1− κµ
∥y − y′∥∀ y, y′ ∈ Br0(0).

Let γ > 0 and χ > 0. Choose 0 < δ ≤ 1. Since (54) is
true and η > 1, one can choose ȳ near 0 such that ∥ȳ∥ <
(µ+ 3γ)δ2

4
and 3ηκ(19µ+3γ)δ ≤ 2(1−κ(χ+µ). Then

for, 0 < rȳ ≤ r0, 0 < rx̄ ≤ r̂x̄, 0 < rp̄ ≤ r̂p̄, one says
that G−1

p̄,x̄(·) has a Lipschitz-like localization σ on Brȳ (ȳ)
relative to Brx̄(x̄) for p̄ with constant κ/(1 − κµ). Let

µ ∈ (0, 1) be such κµ < 1, and rȳ − µrx̄ > 0. Then

r̄ = min
{
rȳ − µrx̄,

rx̄(1− κµ)

κ

}
> 0,

and
min

{rx̄
2
,

4rȳ
9(µ+ 3γ)

, 1, 2κr̄
}
> 0. (55)

Then we can assume that δ ≤
min

{rx̄
2
,

4rȳ
9(µ+ 3γ)

, 1, 2κr̄
}
. Thus it is routine to

check that inequalities (a)-(c) of Theorem 14 are satisfied.
Therefore, Theorem 14 is applicable to complete the proof
of the corollary.

4 Concluding Remarks
We have established semilocal and local convergence result
for the extended Newton-type method with η > 1 under the
assumptions that G−1

p̄,x̄(·) has a Lipschitz-like localization
σ. Indeed, under some sufficient conditions, we have pre-
sented the existence of a sequence generated by extended
Newton-type method and proved this sequence converges
to the value s(p) of the Lipschitz-like localization s of the
solution mapping S for the generalized equation (2).
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