Abstract: A graph G is called H-equicoverable if every minimal H-covering of G is also a minimum H-covering of G. In this paper, we investigate the characterization of P_5-equicoverable graphs which contain cycles with length at least 5 and give some results of P_k-equicoverable graphs.

Key Words: P_5-equicoverable, P_k-equicoverable, cycle, covering

1 Introduction

A graph G has order $|V(G)|$ and size $|E(G)|$. If vertex v is an endpoint of an edge e, then v and e are incident. The degree of vertex v in a graph G, written $d_G(v)$ or $d(v)$, is the number of edges incident to v. The path and circuit on k vertices are denoted by P_k and C_k, respectively. A star is a tree consisting of one vertex adjacent to all the others. The $(n + 1)$-vertex star is the biclique $K_{1,n}$.

A graph H is a subgraph of G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$. Suppose that E' is a nonempty subset of E. The subgraph of G whose vertex set is the set of ends of edges in E' and whose edge set is E' is called the subgraph of G induced by E' and is denoted by $G[E']$; $G[E']$ is an edge-induced subgraph of G.

The problem that we study stems from the research of H-decomposable graphs, randomly decomposable graphs and equipackable graphs. In 2008, Zhang introduced equicoverable graph which is the dual concept of the equipackable graph and characterized all P_5-equicoverable graphs. In this paper, we investigate all P_5-equicoverable graphs which don't contain 3-cycle or 4-cycle and contain at least one cycle with length at least 5. For further definitions and results, we can refer to [1],[2],[3],[4],[5],[6].

Let H be a subgraph of a graph G. An H-covering of G is a set $L = H_1, H_2, \ldots, H_k$ of subgraphs of G, where each subgraph H_i isomorphic to H, and every edge of G appears in at least one member of L. A graph is called H-coverable if there exists an H-covering of G. An H-covering of G with k copies H_1, H_2, \ldots, H_k is called minimal if, for any H_j, $H_j \cup \bigcup_{i=1}^{k} H_i - H_j$ is not an H-covering of G. An H-covering of H_1, H_2, \ldots, H_k is called minimal if there exists no H-covering with less than k copies of H. A graph is called H-equicoverable if every minimal H-covering is also a minimum H-covering.

Let $C(G; H)$ denote the number of H in the minimal H-covering of G, or simply $C(G)$ for short and let $c(G; H)$ denote the number of H in the minimum H-covering of G, or simply $c(G)$ for short. For convenience, we denote by $C_n \cdot P_k$ a graph obtained from a cycle C_n and a path P_k by identifying one vertex of the cycle C_n and an endpoint of the path P_k. And we denote by $C_n \cdot K_{1,k}$ a graph obtained from a cycle C_n and a star $K_{1,k}$ by identifying one vertex of the cycle C_n and a leaf of the star $K_{1,k}$.

Then we introduce a definition and a useful proposition:

Definition 1 [6] For a star $K_{1,k}$, we call the vertex of degree k center, and other vertices leaves. A k-extendedstar that has one vertex of degree k which is also called center, k vertices of degree 2 and k leaves is a tree obtained by inserting a vertex of degree 2 into each edge of a star $K_{1,k}$. We denote it by S_k^*. A second order k-extendedstar is a tree obtained by inserting two vertices of degree 2 into each edge of a star $K_{1,k}$, we denote it by S_k^{*2}. Similarly, an n-th order k-extendedstar is a tree obtained by inserting n vertices of degree 2 into each edge of a star $K_{1,k}$, we denote it by S_k^{*n}.

In this paper, we denote by $C_n \cdot S_k^{*n}$ a graph obtained from a cycle C_n and an n-th order k-extendedstar by identifying one vertex of the cycle C_n.
and the center of the \(n \)-th order \(k \)-extendedstar. We denote by \(P_n \cdot K_{1,k} \) a graph obtained from a path \(P_n \) and a \(k \)-star by identifying one endpoint of the path \(P_n \) and one leaf of the \(k \)-star.

Proposition 2 A connected graph \(G \) is \(P_5 \)-equicoverable if and only if it has a subgraph \(P_5 \) except the kind of graphs in Figure 1.

![Figure 1: graphs which are not \(P_5 \)-equicoverable](image)

Lemma 3 If a connected graph \(G \) can be decomposed into several connected \(P_k \)-equicoverable graphs and at least one component is not \(P_k \)-equicoverable, \(G \) will not be \(P_k \)-equicoverable.

Theorem 4 [5] Path \(P_n \) is \(P_k \)-equicoverable if and only if \(k \leq n \leq 2k \) or \(n = 3k - 1 \).

Theorem 5 [5] Cycle \(C_n \) is \(P_k \)-equicoverable if and only if

\[
\begin{align*}
 &k \leq n \leq \frac{3k-1}{2} \text{ or } n = 2k - 1 \text{ if } k \text{ is odd}, \\
 &k \leq n \leq \frac{3k-2}{2} \text{ or } n = 2k - 1 \text{ if } k \text{ is even}.
\end{align*}
\]

Lemma 6 \(S_k^{n*} \) is \(P_{n+2} \)-equicoverable and \(c(S_k^{n*}; P_{n+2}) = C(S_k^{n*}; P_{n+2}) = k \).

Proof: \(S_k^{n*} \) can be obtained by identifying the endpoints of \(k \) copies of \(P_{n+2} \). The \(S_k^{n*} \) contains a path of length at most \(2n + 2 \), that is, \(P_{2n+3} \).

By Theorem 4, \(P_{2n+3} \) is \(P_{n+2} \)-equicoverable and \(c(P_{2n+3}; P_{n+2}) = C(P_{2n+3}; P_{n+2}) = 2 \). If \(k \) is even, \(c(S_k^{n*}; P_{n+2}) = C(S_k^{n*}; P_{n+2}) = \frac{k}{2} \times 2 = k \); If \(k \) is odd, \(c(S_k^{n*}; P_{n+2}) = C(S_k^{n*}; P_{n+2}) = \frac{k-1}{2} \times 2 + 1 = k \).

2 \(P_5 \)-equicoverable graphs

First, we introduce \(P_5 \)-equicoverable paths and cycles.

Lemma 7 [5] The path \(P_n \) is \(P_5 \)-equicoverable if and only if \(n = 5, 6, 7, 8, 9, 10, 14 \).

Proof: By Theorem 4, we give the results. \(\Box \)

Lemma 8 [5] The cycle \(C_n \) is \(P_5 \)-equicoverable if and only if \(n = 5, 6, 7, 9 \).

Proof: We can refer to Theorem 5. \(\Box \)

Lemma 9 \(G \) is a connected graph that is not a cycle. If \(G \) doesn’t contain any 3-cycles or 4-cycles and contains a 5-cycle, \(G \) will not be \(P_5 \)-equicoverable unless \(G \) is \(C_5 \cdot S_n^{3*} \) or \(G \) is obtained by adding \(n \) copies of \(P_3 \cdot K_{1,t} (t \geq 3) \) to only one vertex of \(C_5 \).

Proof: Case 1: \(G \) is obtained by adding copies of \(P_2 \) to the vertices of \(C_5 \).

1. If each vertex of \(C_5 \) can be added to at most one \(P_2 \), \(G \) can only be one of the seven graphs shown in Figure 2. No matter which graph is in Figure 2, a minimal \(P_5 \)-covering whose covering number \(c(G) \) is greater than the number of the minimum \(P_5 \)-covering \(c(G) \). So the graphs are not \(P_5 \)-equicoverable.

![Figure 2: graphs obtained by adding at most one \(P_2 \) to each vertex of \(C_5 \)](image)

(2) If each vertex of \(C_5 \) can be added to any copies of \(P_2 \), \(G \) is obtained by adding copies of \(P_2 \) to the vertices of the 5-cycle part of \(G_0 \), where \(G_0 \) is one of the graphs in Figure 2. If the number of the copies of \(P_2 \) added is \(n \), we can get a minimal \(P_5 \)-covering whose covering number is \(c(G_0) + n \) (using \(c(G_0) \) copies of \(P_5 \) to cover the \(G_0 \) part and \(n \) copies of \(P_5 \) to cover other parts), while the number of the minimum \(P_5 \)-covering is at most \(c(G_0) + n \). By (1), each of \(G_0 \) is not \(P_5 \)-equicoverable, then \(c(G_0) > c(G_0) \). So \(G \) is not \(P_5 \)-equicoverable.

Case 2: \(G \) is obtained by adding copies of \(P_3 \) to the vertices of \(C_5 \).
Note that we identify the endpoint of each copy of P_3 with the vertices of C_5, not the center vertex. Otherwise G is the same as one of the graph in Case 1.

(1) If each vertex of C_5 can be added to at most one P_3, G can only be one of the seven graphs shown in Figure 3. No matter which graph is in Figure 3, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable.

![Figure 3: graphs obtained by adding at most one P_3 to each vertex of C_5](image1)

(2) If each vertex of C_5 can be added to any copies of P_3, G is obtained by adding copies of P_3 to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs in Figure 3. If the number of the copies of P_3 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n$ (using $C(G_0)$ copies of P_3 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

Case 3: G is obtained by adding copies of $K_{1,t}$ ($t \geq 3$) to the vertices of C_5.

Note that we identify one of leaves of each copy of $K_{1,t}$ with the vertices of C_5, not the center vertex. Otherwise G is the same as one of the graph in Case 1.

(1) If each vertex of C_5 can be added to at most one $K_{1,t}$, G can only be one of the seven graphs shown in Figure 4. No matter which graph is in Figure 4, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable.

![Figure 4: graphs obtained by adding at most one $K_{1,t}$ to each vertex of C_5](image2)
(2) If each vertex of C_5 can be added to any copies of $K_{1,1,1}$. G is obtained by adding copies of $K_{1,1,1}$ to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs in Figure 4. If the number of the copies of $K_{1,1,1}$ added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n(t - 1)$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and $n(t - 1)$ copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $c(G_0) + n(t - 1)$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

Actually, this case is similar to Case 2.

Case 4: G is obtained by adding copies of P_2 and P_3 to the vertices of C_5.

If only copies of P_2 or only copies of P_3 are added, G has been discussed in Case 1 or Case 2. Otherwise, we have:

(1) If each vertex of C_5 can be added to only one P_2 or one P_3, G can only be one of the 24 graphs shown in Figure 5. No matter which graph is in Figure 5, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable.

Figure 5: graphs obtained by adding only one P_2 or one P_3 to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of P_2 or P_3, G is obtained by adding copies of P_2 and P_3 to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs in Figure 5. If the number of the copies of P_2 and P_3 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

(3) If each vertex of C_5 can be added to at most one $P_2 \cdot P_3$, G can only be one of the seven graphs shown in Figure 6. No matter which graph is in Figure 6, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable; If each vertex of C_5 can be added to
any copies of $P_2 \cdot P_3$, G can be decomposed several components which can be P_5-coverable. While there is at least one component which is similar to Case 1 or Case 4(2) not P_5-equicoverable. G is not P_5-equicoverable.

Figure 6: graphs obtained by adding at most one $P_2 \cdot P_3$ to each vertex of C_5

Case 5: G is obtained by adding copies of P_2 and $K_{1,t}(t \geq 3)$ to the vertices of C_5.

The case is similar to Case 4. G is not P_5-equicoverable.

Case 6: G is obtained by adding copies of P_3 and $K_{1,t}(t \geq 3)$ to the vertices of C_5.

The case is similar to Case 2. G is not P_5-equicoverable.

Case 7: G is obtained by adding copies of P_2 and P_3 and $K_{1,t}(t \geq 3)$ to the vertices of C_5.

The case is similar to Case 4. G is not P_5-equicoverable.

Case 8: G is obtained by adding copies of P_4 to the vertices of C_5.

(1) If each vertex of C_5 can be added to at most one P_4, G can only be one of the seven graphs shown in Figure 7. No matter which graph is in Figure 7, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable.

Figure 7: graphs obtained by adding at most one P_4 to each vertex of C_5

(2) If each vertex of C_5 can be added to any copies of P_4, G is obtained by adding copies of P_4 to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs in Figure 7. If the number of the copies of P_4 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

Case 9: G is obtained by adding copies of P_2 and P_4 to the vertices of C_5.

If only copies of P_2 or only copies of P_4 are added, G has been discussed in Case 1 or Case 8. Otherwise, we have:

(1) If each vertex of C_5 can be added to only one P_2 or one P_4, G can only be one of 24 graphs similar
of the graphs above. If the number of the vertices of the 5-cycle part of G_0 is one of the graphs in (1). If the number of the copies of P_2 and P_4 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $c(G_0) + n$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

(3) If each vertex of C_5 can be added to at most one P_2, P_4, G can only be one of the seven graphs similar to Figure 6. No matter which graph is, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable.

(2) If each vertex of C_5 can be added to any copies of P_2 or P_4, G is obtained by adding copies of P_2 and P_4 to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs in (1). If the number of the copies of P_2 and P_4 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $C(G_0) + n$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

Case 10: G is obtained by adding copies of P_3 and P_4 to the vertices of C_5.

If only copies of P_3 or only copies of P_4 are added, G has been discussed in Case 2 or Case 8. Otherwise, we have:

(1) If each vertex of C_5 can be added to only one P_3 or one P_4, G can only be one of the 24 graphs similar to Figure 5. No matter which graph is, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable.

(2) If each vertex of C_5 can be added to any copies of P_3 or P_4, G is obtained by adding copies of P_3 and P_4 to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs above in (1). If the number of the copies of P_3 and P_4 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + n$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $C(G_0) + n$. By (1), each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

(3) If each vertex of C_5 can be added to at most one P_3, P_4, G can only be one of the seven graphs similar to Figure 6. No matter which graph is, a minimal P_5-covering whose covering number $C(G)$ is greater than the number of the minimum P_5-covering $c(G)$. So the graphs are not P_5-equicoverable. If each vertex of C_5 can be added to any copies of P_3, P_4, G can be obtained by adding copies of P_3 and P_4 to the vertices of the 5-cycle part of G_0, where G_0 is one of the graphs above. If the number of the copies of P_3 and P_4 added is n, we can get a minimal P_5-covering whose covering number is $C(G_0) + 2n$ (using $C(G_0)$ copies of P_5 to cover the G_0 part and $2n$ copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $C(G_0) + 2n$. Each of G_0 is not P_5-equicoverable, then $C(G_0) > c(G_0)$. So G is not P_5-equicoverable.

Case 11: G is obtained by adding copies of P_2, P_3 and P_4 to the vertices of C_5.

P_2, P_3 and P_4 are all added to the vertices of C_5, otherwise the cases has been discussed.

First, G can be obtained by adding copies of P_2 and P_3 to the vertices of C_5 and we denote it by G_{23}. Next we add P_4 to G_{23}. If the number of the copies of P_4 added is n, we can get a minimal P_5-covering whose covering number is $C(G_{23}) + n$ (using $C(G_{23})$ copies of P_5 to cover the G_{23} part and n copies of P_5 to cover other parts), while the number of the minimum P_5-covering is at most $C(G_{23}) + n$. Each of G_{23} is not P_5-equicoverable by Case 4, then $C(G_{23}) > c(G_{23})$. So G is not P_5-equicoverable.

Case 12: G is obtained by adding copies of P_4 and $K_{1,t}(t \geq 3)$ to the vertices of C_5.

The case is similar to Case 10. G is not P_5-equicoverable.

Case 13: G is obtained by adding copies of P_2, P_4 and $K_{1,t}(t \geq 3)$ to the vertices of C_5.

The case is similar to Case 11. G is not P_5-equicoverable.

Case 14: G is obtained by adding copies of P_3, P_4 and $K_{1,t}$ to the vertices of C_5.

The case is similar to Case 10. G is not P_5-equicoverable.

Case 15: G is obtained by adding copies of P_2, P_3, P_4 and $K_{1,t}(t \geq 3)$ to the vertices of C_5.

The case is similar to Case 11. G is not P_5-equicoverable.

Case 16: G is obtained by adding copies of P_5 to the vertices of C_5.

(1) If we add n copies of P_5 to only one vertex of C_5, both the minimal P_5-covering number and the minimum P_5-covering number are $n + 2$. So it is P_5-equicoverable. We denote the graph by $C_5 \cdot S^3_n$.

(2) If we add n copies of P_5 to at least two vertices of C_5, there exists a minimal P_5-covering number is
119

Lemma 10 \(C_n \cdot P_2(n \geq 6) \) is \(P_5 \)-equicoverable if and only if \(n = 8 \).

Proof: (1) If \(C_n \) is \(P_5 \)-equicoverable, we have \(n = 6, 7, 9 \). Because \(C(C_n \cdot P_2; P_5) > c(C_n \cdot P_2; P_3)(n = 6, 7, 9) \), \(C_n \cdot P_2 \) and \(C_7 \cdot P_2 \) and \(C_9 \cdot P_2 \) are not \(P_5 \)-equicoverable.

(2) If \(C_n \) is not \(P_5 \)-equicoverable, we have \(n \neq 6, 7, 9 \). It is easy to find that \(C(C_8 \cdot P_2; P_5) = c(C_8 \cdot P_2; P_5) = 3 \). \(C_8 \cdot P_2 \) is \(P_5 \)-equicoverable. For \(n \geq 10 \), \(C_n \) is not \(P_5 \)-equicoverable. We can use \(C(C_n) \) copies of \(P_5 \) to cover the \(C_n \) part and one copy of \(P_5 \) to cover the else. Also, we can use \(c(C_n) \) copies of \(P_5 \) to cover the \(C_n \) part and one copy of \(P_5 \) to cover the else. While \(c(C_n \cdot P_3) \leq c(C_n) + 1 < C(C_n) + 1 \), \(G \) is not \(P_5 \)-equicoverable.

\(\square \)

Lemma 11 \(C_n \cdot P_3(n \geq 6) \) is \(P_5 \)-equicoverable if and only if \(n = 7 \).

Proof: (1) If \(C_n \) is \(P_5 \)-equicoverable, we have \(n = 6, 7, 9 \). Because \(C(C_n \cdot P_3; P_5) > c(C_n \cdot P_3; P_3)(n = 6, 9) \), \(C_6 \cdot P_3 \) and \(C_9 \cdot P_3 \) are not \(P_5 \)-equicoverable. While \(C(C_7 \cdot P_3; P_5) = c(C_7 \cdot P_3; P_5) = 3 \). \(C_7 \cdot P_3 \) is \(P_5 \)-equicoverable.

(2) If \(C_n \) is not \(P_5 \)-equicoverable, we have \(n \neq 6, 7, 9 \). It is easy to find that \(C(C_8 \cdot P_3; P_5) > c(C_8 \cdot P_3; P_3) \). \(C_8 \cdot P_3 \) is \(P_5 \)-equicoverable. For \(n \geq 10 \), \(C_n \) is not \(P_5 \)-equicoverable. We can use \(C(C_n) \) copies of \(P_5 \) to cover the \(C_n \) part and one copy of \(P_5 \) to cover the else. Also, we can use \(c(C_n) \) copies of \(P_5 \) to cover the \(C_n \) part and one copy of \(P_5 \) to cover the else. While \(c(C_n \cdot P_3) \leq c(C_n) + 1 < C(C_n) + 1 \), \(G \) is not \(P_5 \)-equicoverable.

\(\square \)

Lemma 12 \(C_n \cdot P_4(n \geq 6) \) is \(P_5 \)-equicoverable if and only if \(n = 6 \).

Proof: (1) If \(C_n \) is \(P_5 \)-equicoverable, we have \(n = 6, 7, 9 \). Because \(C(C_n \cdot P_4; P_5) > c(C_n \cdot P_4; P_3)(n = 7, 9) \), \(C_7 \cdot P_4 \) and \(C_9 \cdot P_4 \) are not \(P_5 \)-equicoverable. While \(C(C_6 \cdot P_4; P_3) = c(C_6 \cdot P_4; P_3) = 3 \). \(C_6 \cdot P_4 \) is \(P_5 \)-equicoverable.

(2) If \(C_n \) is not \(P_5 \)-equicoverable, we have \(n \neq 6, 7, 9 \). It is easy to find that \(C(C_8 \cdot P_4; P_3) > c(C_8 \cdot P_4; P_3) \). \(C_8 \cdot P_4 \) is \(P_5 \)-equicoverable. For \(n \geq 10 \), \(C_n \) is not \(P_5 \)-equicoverable. We can use \(C(C_n) \) copies of \(P_5 \) to cover the \(C_n \) part and one copy of \(P_5 \) to cover the else. Also, we can use \(c(C_n) \) copies of \(P_5 \) to cover the \(C_n \) part and one copy of \(P_5 \) to cover the else. While \(c(C_n \cdot P_4) \leq c(C_n) + 1 < C(C_n) + 1 \), \(G \) is not \(P_5 \)-equicoverable.

\(\square \)

Lemma 13 \(C_n \cdot P_5(n \geq 6) \) is not \(P_5 \)-equicoverable.

Lemma 14 \(C_n \cdot K_{1,t}(n \geq 4, t \geq 3) \) is not \(P_5 \)-equicoverable.

Lemma 15 \(C_n \cdot P_2 \cdot K_{1,t}(n \geq 4) \) is not \(P_5 \)-equicoverable.

Lemma 16 \(C_n \cdot P_3 \cdot K_{1,t}(n \geq 6) \) is not \(P_5 \)-equicoverable.

Lemma 17 \(G \) is a connected graph that is not a cycle. If \(G \) doesn’t contain cycles with length smaller than 6 and contains a 6-cycle, \(G \) is \(P_5 \)-equicoverable if and only if \(G \) is \(C_6 \cdot P_4 \).

Proof: Case 1: \(G \) is obtained by adding copies of \(P_2 \) to the vertices of \(C_6 \).

(1) If we add one \(P_2 \) to only one vertex of \(C_6 \), by Lemma 10, it is not \(P_5 \)-equicoverable.

(2) If we add \(n(n \geq 2) \) copies of \(P_2 \) to only one vertex of \(C_6 \), there will be a minimal \(P_5 \)-covering whose covering number is \(n + 2 \). While the number of the minimum \(P_5 \)-covering number is less than or equal to \(n + 1 \).

(3) If we add \(n(n \geq 2) \) copies of \(P_2 \) to at least two vertices of \(C_6 \) and each vertex of \(C_6 \) can be added to at most one \(P_2 \), \(G \) must be one of the eleven graphs
shown in Figure 7. For each graph which contains a 6-cycle, we can blow up a vertex that no \(P_2 \) is added to of \(C_6 \) to two vertices. As a consequence, the original graph with a 6-cycle turns out to be a tree. A blowing up that makes the result tree not \(P_5 \)-equicoverable must exist. So \(G \) is not \(P_5 \)-equicoverable. For example, we blow up \(v_1 \) of the left graph to two vertices \(v_2 \) and \(v_3 \) of the right graph in Figure 8. Obviously, it’s not \(P_5 \)-equicoverable.

![Figure 7: graphs obtained by adding \(n(n \geq 2) \) copies of \(P_2 \) to at least two vertices of \(C_6 \) can be added to at most one \(P_2 \)](image)

Figure 8: \(v_1 \) blown up to two vertices \(v_2 \) and \(v_3 \)

(4) If we add \(n(n \geq 2) \) copies of \(P_2 \) to at least two vertices of \(C_6 \) and each vertex of \(C_6 \) can be added to any copies of \(P_2 \). Without loss of generality, suppose \(G \) is obtained by adding \(m \) copies of \(P_2 \) to \(G_0 \), where \(G_0 \) is one of graphs above in (3). Then there exists a minimal \(P_5 \)-covering whose covering number is \(C(G_0) + m \). We can use \(C(G_0) \) copies of \(P_5 \) to cover the \(G_0 \) part and use \(m \) copies of \(P_5 \) to cover other parts. While the number of the minimum \(P_5 \)-covering number is at most \(c(G_0) + m \). As we all know, for each \(G_0 \), there exists a minimal \(P_5 \)-covering whose \(C(G_0) > c(G_0) \), then it is not \(P_5 \)-equicoverable.

Case 2: \(G \) is obtained by adding copies of \(P_3 \) to the vertices of \(C_6 \).

(1) If we add one \(P_3 \) to only one vertex of \(C_6 \), by Lemma 11, it is not \(P_5 \)-equicoverable.

(2) If we add \(n(n \geq 2) \) copies of \(P_3 \) to only one vertex of \(C_6 \), there will be a minimal \(P_5 \)-covering whose covering number is \(n + 2 \). While the number of the minimum \(P_5 \)-covering number is less than or equal to \(n + 1 \).

(3) If we add \(n(n \geq 2) \) copies of \(P_3 \) to at least two vertices of \(C_6 \) and each vertex of \(C_6 \) can be added to at most one \(P_3 \), \(G \) must be one of the eleven graphs similar to Figure 7. For each graph which contains a 6-cycle, we can blow up a vertex that no \(P_3 \) is added to of \(C_6 \) to two vertices. As a consequence, the original graph with a 6-cycle turns out to be a tree. A blowing up that makes the result tree not \(P_5 \)-equicoverable must exist. So \(G \) is not \(P_5 \)-equicoverable.

(4) If we add \(n(n \geq 2) \) copies of \(P_3 \) to at least two vertices of \(C_6 \) and each vertex of \(C_6 \) can be added to any copies of \(P_3 \). Without loss of generality, suppose \(G \) is obtained by adding \(m \) copies of \(P_3 \) to \(G_0 \), where \(G_0 \) is one of graphs above in (3). Then there exists a minimal \(P_5 \)-covering whose covering number is \(C(G_0) + m \). We can use \(C(G_0) \) copies of \(P_5 \) to cover the \(G_0 \) part and use \(m \) copies of \(P_5 \) to cover other parts. While the number of the minimum \(P_5 \)-covering number is at most \(c(G_0) + m \). As we all know, for each \(G_0 \), there exists a minimal \(P_5 \)-covering whose \(C(G_0) > c(G_0) \), then it is not \(P_5 \)-equicoverable.

Case 3: \(G \) is obtained by adding copies of \(K_{1,t}(t \geq 3) \) to the vertices of \(C_6 \).

Similar to Case 2, \(G \) is not \(P_5 \)-equicoverable.

Case 4: \(G \) is obtained by adding copies of \(P_4 \) to the vertices of \(C_6 \).

(1) If we add one \(P_4 \) to only one vertex of \(C_6 \), by Lemma 12, it is \(P_5 \)-equicoverable.

(2) The following proof is similar to (2), (3), (4) in Case 2, \(G \) is not \(P_5 \)-equicoverable.

Case 5: \(G \) is obtained by adding copies of \(P_2, P_3, P_4, K_{1,t}(t \geq 3) \) to the vertices of \(C_6 \).

There are eleven subcases: \(G \) is obtained by adding copies of at least two of \(P_2, P_3, P_4, K_{1,t}(t \geq 3) \). Similar to the proof process of Case 2, \(G \) is not \(P_5 \)-equicoverable.
Case 6: G is obtained by adding copies of P_5 to the vertices of C_6.

(1) If we add one P_5 to only one vertex of C_6, by Lemma 13, it is not P_5-equicoverable.

(2) If G is not the graph in (1), G can be decomposed into two connected components: a graph which is not P_5-equicoverable and a P_5-coverable graph. By Lemma 3, G is not P_5-equicoverable.

Case 7: G is obtained by adding copies of P_4 and P_5 to the vertices of C_6.

If only copies of P_4 or only copies of P_5 are added, G has been discussed in previous. Otherwise, similar to Case 4 of Lemma 9, G is not P_5-equicoverable.

Case 8: G is a graph not contained in Case 1-7.

We decompose G into two connected components: a graph G_0 contained in Case 1-7 and a graph which is P_5-coverable. G_0 is not P_5-equicoverable, by Lemma 3, G is not P_5-equicoverable.

In summary, G is not P_5-equicoverable unless it satisfies one of the following: $G \equiv C_6 \cdot P_4$.

Lemma 18 G is a connected graph that is not a cycle.

If G doesn’t contain cycles with length smaller than 7 and contains a 7-cycle, G is P_5-equicoverable if and only if G is $C_7 \cdot P_3$.

Lemma 19 G is a connected graph that is not a cycle.

If G doesn’t contain cycles with length smaller than 8 and contains an 8-cycle, G is P_5-equicoverable if and only if G is $C_8 \cdot P_2$.

Lemma 20 G is a connected graph that is not a cycle.

If G doesn’t contain cycles with length smaller than 9, G is not P_5-equicoverable.

Proof: Case 1: If G is one of the graphs in Lemma 10-Lemma 16, G is not P_5-equicoverable.

Case 2: If G is not a graph in Case 1, according to the proof process of Lemma 17, G can be decomposed into connected components: a tree which is not P_5-equicoverable and P_5-coverable graphs.

In the end, we conclude the main results: A connected graph G is P_5-equicoverable if and only if G satisfies one of the following:

Theorem 21 Let G be a connected graph that doesn’t contain 3-cycles or 4-cycles and contains a cycle with length at least 5. Then G is P_5-equicoverable if and only if either of the following holds:

1. G is a cycle C_n ($n = 5, 6, 7, 9$);
2. G is $C_5 \cdot S_n^3$ ($n \geq 1$);
3. G is obtained by adding n copies of $P_3 \cdot K_{1,t}$ ($t \geq 3$) to only one vertex of C_5.
4. G is $C_6 \cdot P_4$.
5. G is $C_7 \cdot P_3$.
6. G is $C_8 \cdot P_2$.

For disconnected graphs, we have:

Theorem 22 A graph G that doesn’t contain 3-cycles or 4-cycles and contains at least one cycle with length larger than 4 is P_5-equicoverable if and only if each component of G is P_5-equicoverable.

3 Results of P_k-equicoverable graphs

Theorem 23 $C_n \cdot P_2$ is P_k-equicoverable if and only if $n = k - 1$ or $n = 2k - 2$.

Proof:

1. When $n \leq k - 2$, $C_n \cdot P_2$ doesn’t contain the subgraph of P_k. Then it is not P_k-equicoverable.

2. When $n = k - 1$, $C_n \cdot P_2$ is P_k-equicoverable and $C(C_n \cdot P_2; P_k) = c(C_n \cdot P_2; P_k) = 2$.

3. When $k - n \leq 2k - 3$, it is easy to find $c(C_n \cdot P_2; P_k) = 2$. Conveniently, denote the edges of $C_n \cdot P_2$ by $e_0, e_1, \cdots e_n$. There exits a minimal P_k-covering as following: we denote it by $H = \{H_1, H_2, H_3\}$,

$$H_1 = \{e_0, e_1, e_2, \cdots, e_{k-2}\},$$
$$H_2 = \{e_n, e_1, e_2, \cdots, e_{k-2}\},$$
$$H_3 = \{e_{k-1}, e_k, e_{k+1}, \cdots, e_{n-1}\}.$$

Then H is a minimal P_k-covering instead of the minimum P_k-covering of C_n. It is not P_k-equicoverable.

4. When $n = 2k - 2$, $C_n \cdot P_2$ is P_k-equicoverable. It is clear that $c(C_n \cdot P_2; P_k) = 3$. We denote the vertices of $C_n \cdot P_2$ by $v_0, v_1, v_2, \cdots, v_{2k-2}$. Generally speaking, suppose that there exists a copy of P_k covering the edge v_1v_2, which is denoted by $H_0 = \{v_1v_2, v_2v_3, \cdots, v_{k-1}v_k\}$. Then there also exists a copy of P_k covering the edge v_kv_k, which is denoted by $H_i = \{v_{i+1}v_{i+2}, v_{i+2}v_{i+3}, \cdots, v_{i+k-2}v_{i+k-1}\}$ ($0 \leq i \leq k - 1$). Similarly, there must be a copy of P_k covering the edge v_kv_0, which is denoted by $H_1 = \{v_{k+1}v_{k+2}, v_{k+2}v_{k+3}, \cdots, v_{2k-3}v_{2k-2}, v_{2k-2}v_{1}, v_{1}v_{0}\}$. And by the definition of the equicoverable, $\{H_0, H_i, H_1\} \leq i \leq k - 1\}$ is the family of the minimal P_k-covering of $C_n \cdot P_2$. (or}

$$H_0 = \{v_0v_1, v_1v_2, v_2v_3, \cdots, v_{k-2}v_{k-1}\},$$
$$H_i = \{v_{i+1}v_{i+2}, v_{i+2}v_{i+3}, \cdots, v_{i+k-2}v_{i+k-1}\}$$
$$2 \leq i \leq k - 1,$$
$$H_1 = \{v_{k+1}v_{k+2}, v_{k+2}v_{k+3}, \cdots, v_{2k-3}v_{2k-2},$$
$$v_{2k-2}v_{1}, v_{1}v_{0}\}.$$
As a result, the number of minimal P_k-covering of $C_n \cdot P_2$ is only 3. $C_n \cdot P_2$ is P_k-equicoverable.

(5) When $n = 3k - 3$, it is easy to find $c(C_n \cdot P_2; P_k) = 4$. We denote the edges of $C_n \cdot P_2$ by $e_0, e_1, \cdots, e_{3k-3}$. There exists a minimal P_k-covering as following: we denote it by $H = \{H_1, H_2, H_3, H_4, H_5\}$,

$$
\begin{align*}
H_1 &= \{e_0, e_1, e_2, \cdots, e_{k-2}\}, \\
H_2 &= \{e_1, e_2, \cdots, e_{k-1}\}, \\
H_3 &= \{e_k, e_{k+1}, \cdots, e_{2k-2}\}, \\
H_4 &= \{e_{k+1}, e_{k+2}, \cdots, e_{2k-1}\}, \\
H_5 &= \{e_{2k}, e_{2k+1}, \cdots, e_{3k-3}, e_1\}.
\end{align*}
$$

So it is not P_k-equicoverable.

(6) When $2k - 1 \leq n \leq 3k - 4$ and $n \geq 3k - 2$, $C_n \cdot P_2$ is not P_k-equicoverable by Theorem 4.

Corollary 24 $C_n \cdot P_3(n \geq k + 1)$ is P_k-equicoverable if and only if $n = 2k - 3$.

Corollary 25 $C_n \cdot P_4(n \geq k + 1)$ is P_k-equicoverable if and only if $n = 2k - 4$.

Corollary 26 $C_n \cdot P_5(n \geq k + 1)$ is P_k-equicoverable if and only if $n = 2k - 5$.

Theorem 27 $C_n \cdot P_k(n \geq k + 1, k \geq 6)$ is not P_k-equicoverable.

Proof:

(1) When $k + 1 \leq n \leq 2k - 2$ and $n \geq 2k$, it is easy to come to the conclusion according to Theorem 5.

(2) When $n = 2k - 1$, $c(C_n \cdot P_k; P_k) = 4$. We denote its edges by $e_{p_1}, e_{p_2}, \cdots, e_{p(k-1)}, e_{c_1}, e_{c_2}, \cdots, e_{c(2k-1)}$. There exits a minimal P_k-covering as following: we denote it by $H = \{H_1, H_2, H_3, H_4, H_5\}$,

$$
\begin{align*}
H_1 &= \{e_{c_1}, e_{p_1}, e_{p_2}, \cdots, e_{p(k-2)}\}, \\
H_2 &= \{e_{c(2k-1)}, e_{p_1}, \cdots, e_{p(k-2)}\}, \\
H_3 &= \{e_{p_1}, e_{p_2}, \cdots, e_{p(k-1)}\}, \\
H_4 &= \{e_{c_2}, e_{c_3}, \cdots, e_{c_k}\}, \\
H_5 &= \{e_{ck}, e_{c(k+1)}, \cdots, e_{c(2k-2)}\}.
\end{align*}
$$

So it is also not P_k-equicoverable.

Corollary 28 $C_n \cdot K_{1,t}(n \geq k - 1, t \geq 3)$ is not P_k-equicoverable.

Theorem 29 $C_n \cdot S_m^{(k-2)*}$ is P_k-equicoverable if and only if $3 \leq n \leq k$ and $c(G) = C(G) = m + 2$.

Proof:

(1) When $n \geq k + 1$, it is not P_k-equicoverable by Theorem 27.

(2) When $3 \leq n \leq k - 1$, the subgraph C_n doesn’t contain P_k. There must be m copies of P_k covering the part of $S_m^{(k-2)*}$; the else can be covered by using only two copies of P_k. It is P_k-equicoverable and $c(G) = C(G) = m + 2$.

(3) When $n = k$, the $S_m^{(k-2)*}$ part must be covered by m copies of P_k. We can only use two copies of P_k to cover the else C_n part. Then the $C_n \cdot S_m^{(k-2)*}$ is P_k-equicoverable.

The next comment follows immediately from Theorem 29.

Corollary 30 $C_n \cdot P_{k-2} \cdot K_{1,t}$ is P_k-equicoverable if and only if $3 \leq n \leq k$.

References:

