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Abstract: The presence of outliers in time series can seriously affect the model specification and parameter 

estimation. To avoid these adverse effects, it is essential to detect these outliers and remove them from time 

series. By the Bayesian statistical theory, this article proposes a method for simultaneously detecting the 

additive outlier (AO) and innovative outlier (IO) in an autoregressive moving-average (ARMA) time series. 

Firstly, an approximate calculation method of the joint probability density function of the ARMA time series is 

given. Then, considering the situation that AO and IO may present at the same time in an ARMA time series, a 

model for detecting outliers with the classification variables is constructed. By this model, this article 

transforms the problem of detecting outliers into a multiple hypothesis testing. Thirdly, the posterior 

probabilities of the multiple hypotheses are calculated with a Gibbs sampling, and based on the principle of 

Bayesian statistical inference, the locations and types of outliers can be obtained. What’s more, the abnormal 

magnitude of every outlier also can be calculated by the Gibbs samples. At last, the new method is tested by 

some experiments and compared with other methods existing. It has been proved that the new approach can 

simultaneously detect the AO and IO successfully and performs better in terms of detecting the outlier which is 

both AO and IO, and but cannot be recognized by other methods existing. 

 

Key-words: ARMA model; Additive outlier (AO); Innovative outlier (IO); Classification variable; Bayesian 

hypothesis test; Gibbs sampling 

 

1 Introduction 

Time series analysis is a very important statistical 

method of dynamic data processing in science and 

engineering [1-3]. A time series often contains all 

kinds of outliers, such as additive outlier (AO),                                                                                                                                                                                                                                                                                                     

innovative outlier (IO), temporary change (TC),     

level shift (LS), etc [4, 5]. As [6] pointed, the 

presence of these outliers could easily mislead the 

conventional time series analysis procedure 

resulting in erroneous conclusions. So, it is 

important to have procedures that detect and 

remove such outliers effects [7]. 
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  The bayesian method for detecting outliers in a 

time series had been considered by [8] in the earliest 

time. [9] used the Gibbs sampler in the Bayesian 

analysis of autoregressive (AR) time series and 

solved the problem of detecting the AO in the AR 

model by the Gibbs sampling. [10] illustrated the 

reason of masking and swamping, and proposed a 

solution to the problem based on the standard Gibbs 

sampling. [11] developed a procedure for detecting 

the AOs in the ARMA model by model selection 

strategies and Bayesian information criterion (BIC). 

  However, there are some disadvantages in the 

existing Bayesian approaches for detecting outliers 

in a time series. (a) As we all know, the ARMA 

model is widely applied in practice than the AR 

model, and yet the most of existing methods aim at 

detection of outliers in the AR model, only a few 

procedures focus on the ARMA model. (b) The joint 

probability density function of the ARMA time 

series is essential to Bayesian inference. However, it 

is complex to be not calculated accurately when the 

number of observations is large because of the 

correlation among the observations of the ARMA 

time series. So, there is no way to Bayesian 

inference to the ARMA model. (c) It is common that 

all kinds of outliers in the ARMA time series may 

appeared at the same time. But the existing 

Bayesian methods cannot detect them 

simultaneously.  

  Therefore, this article proposes a method for 

detecting all kinds of outliers simultaneously, 

especially for detecting AO and IO the most 

common outliers, in the ARMA time series by the 

Bayesian statistical theory. The rest of the paper is 

organized as follows. In section 2, a model of 

detecting the AO and IO in the ARMA time series 

simultaneously is constructed based on the 

classification variables of outliers, and a rule of 

detecting outliers is proposed by applying the 

principle of Bayesian hypothesis testing. Section 3 

develops a method of estimating the joint 

probability density function of the observations of 

the ARMA time series, and the conditional posterior 

distributions of unknown parameters are deduced. In 

section 4, a procedure of detecting all kinds of 

outliers simultaneously based on the Gibbs sampling 

is proposed. Section 5 shows the better 

performances of the approach proposed in this 

article comparing with other existing methods by 

some simulating experiments. Finally, some 

conclusions are given in section 6. 

 

 

2 The model and rule for outlier 

detection with the classification 

variables 

  Assume that { }tz  be a time series following a 

general ARMA (p,q) process, 

   
2

( ) ( )

  . .   ( 0 , )

t t

t

B z B

i i d N

  

 





            (1) 

where 
2

1 2( ) p

pB I B B B        , ( )B I  

2

1 2

q

qB B B     , p q , B is a backshift 

operator such that , 1,2,k

t t kB z z k  , { }t is a 

sequence of independent random errors identically 

distributed
2(0, )N  . To ensure the ARMA (p,q) 

model being stationary and invertible, assume that 

all of the zeros of ( )B and ( )B are on or outside 

the unite circle [1-3]. 

  On the basis of the definitions of AO and IO [4-7], 

the observation ty  that is affected by an AO or an 

IO or by both of them simultaneously can be written 

with the classification variables [8,10,12,13] as 

follows: 

1( ) ( )AO AO IO IO

t t t t t ty z B B         
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From above, a model of detecting the AO and IO in 

the ARMA time series { }ty simultaneously is 

constructed as follows: 

1 1 1 1

2  . .   (0, )

AO AO

t t t t

t t p t p t t q t q

IO IO

t t t t

t

y x

x x x

a

a i i d N

 

      

  



   

  


      


 



 (2)                      

Where tx  is the observation which may affected by 

IO. 
AO

t is a classification variable of AO, and 

AO

t follows a Bernoulli distribution. If 1AO

t  , 

the observation ty is an AO that the abnormal 

magnitude is 
AO

t ; if 0AO

t  , the observation ty

is not an AO. 
IO

t is a classification variable of IO, 

and it is also follows a Bernoulli distribution. If 

1IO

t  , the observation ty is an IO that the 

abnormal magnitude is
IO

t ; if 0IO

t  , the 

observation ty  is not an IO. 

  Suppose that there are n  observations of the 

time series{ }ty , say 1 2, , , ny y y , and the front p

observations 1 2, , ,  , py y y p n are not outliers[8]. 

If we want to judge whether  ( 1, , )jy j p n   is 

an AO or IO or not, it is necessary to test a multiple 

hypothesis: 

1, 2,

3, 4,

: 0, 0    : 1, 0

: 1, 1     : 0, 1

AO IO AO IO

j j j j j j

AO IO AO IO

j j j j j j

H H

H H

   

   

    


    

 (3)                

Here, if the hypothesis 1, jH  is accepted, we can 

conclude that jy  is neither an AO nor an IO. If 

2, jH  is accepted, jy is an AO but not an IO. That

3, jH  is accepted means that jy  is both AO and IO. 

What’s more, if 4, jH  is accepted, jy is an IO but 

not an AO. 

  Based on the principle of Bayesian hypothesis 

testing[14], we need to choose an appropriate prior 

distribution for every unknown parameter and 

calculate the posterior probability of every 

hypothesis as follows: 

1, 2, 3, 4,( | ), ( | ), ( | ), ( | )j j j jP H Y P H Y P H Y P H Y  

where 1 2( , , , )T

p p nY y y y  . If ,( | ) maxi jP H Y 

1, 2, 3, 4,{ ( | ), ( | ), ( | ), ( | )}j j j jP H Y P H Y P H Y P H Y , the

,i jH will be accepted, which means that jy  can be 

identified to be a normal observation or some kind 

of outlier. 

 

 

3 Estimating the joint probability 

density function of observations and 

calculating the conditional posterior 

distribution of unknown parameters 

3.1 Estimating the joint probability density 

function of observations 

  When the parameters 1 2( , , , )T

p    , 

1 2( , , , )T

q    and 2 in the ARMA (p,q) 

model (1) are known, assume that the observations 

1 2, , , nz z z are got and the mean of every 

observation is zero, so 1 2( , , , )T

nZ z z z  follows 
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an n-variate normal distribution and can be 

expressed as (0, )nZ N  by the definition of the 

ARMA model. Due to the correlation among the 

observations of the ARMA time series, the 

covariance matrix   of Z is an n-order matrix 

related to the parameters 1 2 1 2, , , , , , ,p q     

and 2 . From above, it is difficult to calculate 

accurately the joint probability density function of 

Z when the number n  is very large. And further, it 

is more difficult to calculate accurately the joint 

probability density function of Y which may 

include all kinds of outliers even though the first p

observations 1 2, , , py y y are normal. To calculate 

the conditional posterior distributions of unknown 

parameters which will be used in the following 

Gibbs sampling, an approach for approximately 

estimating the joint probability density function of 

Y is considered as follows:  

When 1 2( , , , )T

nY y y y  , 1( , )T

p   ， ,

1( , )T

q   ， , 1( , , )AO AO AO T

p n   , 

1( , , )IO IO IO T

p n   , 1( , , )AO AO AO T

p n   ,

1( , , )IO IO IO T

p n   and 2 are known, based on 

the model (2), we can estimate the  1, ,
T

n  

by the equations, 1 0p    ,

( ) ( )

AO AO T T

t t t t t ty X        ,where

( ) 1( , , )T

t t t pX x x   , , 1, ,AO AO

m m m mx y m t    

t p , and ( ) 1( , , )T

t t t q     . By the model (2), 

( ) ( )

AO AO T T

t t t t t ty X        ,

2( , ),  1, ,IO IO

t t tN t p n       , so the 

probability density function of ty is 

1

2 12( | , , , , , , ) (2 )AO AO IO IO

t t t t tp y       


    

2

( ) ( )2

1
exp{ ( ) }

2

AO AO IO IO T T

t t t t t t ty X    


     

1,t p n  . At last, the joint probability density 

function of Y is calculated by

2

( ( 1)) ( )( | , , , , , , , , )AO AO IO IO

p tp Y x             

2

1

( | , , , , , , )
n

AO AO IO IO

t t t t t

t p

p y     
 

  

( )2
2

1

1
(2 ) exp{ (

2

n p n
n p AO AO

t t t

t p

y   





 

 

 

2

( ) ( ) ) }IO IO T T

t t t tX                   (4) 

 

3.2 Calculating the conditional posterior 

distributions of unknown parameters 

  Firstly, based on the selection principles of prior 

distributions [15], suppose that there is a small prior 

probability  that every observation

 ( 1, , )jy j p n   is an AO or an IO, which 

means that ( 1) ( 1)AO IO

j jp p      [8,10]. So, 

the prior distributions of all unknown parameters are 

selected as follows: 

1

0~ ( , )pN V   ， that is
1

2 2( ) (2 ) exp
p

p V


 

0 0

1
{ ( ) ( )}

2

T V   . 

1

0~ ( , )qN W   ， that is
1

2 2( ) (2 ) exp
q

p W


 

0 0

1
{ ( ) ( )}

2

T W   . 

2

1 1~ ( , )AO

j N u  ，
2

2 2~ ( , )IO

j N u   

~ (1, )AO

j b  , that is
1

( ) (1 )
AO AO
j jAO

jp
 

  


   
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~ (1, )IO

j b  , that is
1

( ) (1 )
IO IO
j jIO

jp
 

  


   

2 ~ ( , )
2 2

v v
IG


 , where 

1 1 2

0 0 1 1 2, , , , , , ,V W u u  

2

2 , ,v  and  are the hyper parameters that are 

known. 

  The conditional posterior distributions of 

unknown parameters are acquired by the Bayesian 

formulas [16] as follows where 1( , , )T

n    

and the joint posterior probability density function

( ( 1)) ( )( | , , ,p tp Y x      2, , , , , )AO AO IO IO     of Y

are estimated as described before. 

(1)  The conditional posterior distribution of is 

                               

2 1

0
ˆˆ| , , , , , , ~ ( , )AO AO IO IOY N V            (5) 

where 
1 1

( ) ( )2
1

1ˆ [ ]
n

T

t t

t p

V X X V


 

 

 

  ， 1

0
ˆˆ V  

( ) ( ) 02
1

1
[ ( ) ]

n
AO AO IO IO T

t t t t t t t

t p

X y V    


 

 

     . 

(2)  The conditional posterior distribution of 2 is  

2 | , , , , , , ~ ( , )AO AO IO IOY IG a b             (6) 

where
2

n p v
a

 
 ,

1

1
[ (

2

n
AO AO IO IO

t t t t t

t p

b y    
 

  

2

( ) ( ) ) ]T T

t tX v     . 

(3)  The conditional posterior distribution of  is 

2 1

0
ˆ ˆ| , , , , , , ~ ( , )AO AO IO IOY N W              (7) 

where 
1 1

( ) ( )2
1

1ˆ ( )
n

T

t t

t p

W W 


 

 

 

  ， 1

0
ˆ Ŵ   

( ) ( ) 02
1

1
( ( ) )

n
AO AO IO IO T

t t t t t t t

t p

y X W    


 

 

     . 

(4)  The conditional posterior distribution of

,AO IO

j j  can be calculated as follows:  

2

1 ( ) ( )( 0, 0 | , , , , , , , )AO IO AO AO IO IO

j j j j jP P Y           

2

( )2

1
exp{ (

2

T
AO AO IO IO T

t t t t t t

t j

y X    






           

2

( ) ) }T

t                               (8) 

2

2 ( ) ( )( 1, 0 | , , , , , , , )AO IO AO AO IO IO

j j j j jP P Y           

( )2

1
(1 )exp{ (

2

T
AO AO IO IO T

t t t t t t

t j

y X     






     

2

( ) ) }T

t                               (9) 

2

3 ( ) ( )( 1, 1| , , , , , , , )AO IO AO AO IO IO

j j j j jP P Y           

2

( )2

1
 (1- ) exp{ (

2

T
AO AO IO IO T

t t t t t t

t j

y X    






    

2

( ) ) }T

t                               (10) 

2

4 ( ) ( )( 0, 1| , , , , , , , )AO IO AO AO IO IO

j j j j jP P Y           

( )2

1
(1 )exp{ (

2

T
AO AO IO IO T

t t t t t t

t j

y X     






     

2

( ) ) }T

t                               (11) 

where min( , )T n j p  . 

(5)  The conditional posterior distribution of
AO

j

is 
2

( )| , , , , , , , ~AO AO AO IO IO

j jY            

2ˆˆ( ,( ) )AO AO

j jN                          (12) 

where

2

2 2 2 1

12 2

1

( ) 1ˆ( ) [ (1 ) ]

AO

jAO

j N j


  

 



     , 

2

( ) ( )2
ˆˆ ( ) [ ( )

AO

jAO AO IO IO T T

j j j j j j jy X


    


    

1 12
1

(
T

m j AO AO AO IO IO

j m m m m m m

m j

y x


     






 

    

1
( ) 2

1

) ]T

m j j p m p m

u
y x  


        

WSEAS TRANSACTIONS on MATHEMATICS Guochao Zhang, Qingming Gui

E-ISSN: 2224-2880 107 Volume 16, 2017



(6)  The conditional posterior distribution of 
IO

j

is 
2

( )| , , , , , , , ~IO AO AO IO IO

j jY          

2ˆˆ( ,( ) )IO IO

j jN                         (13) 

where

2

2 1

2 2

2

( ) 1ˆ( ) [ ]

IO

jIO

j




 

  , 2

2
ˆˆ ( ) [ (

IO

jIO IO

j j jy


 




2
( ) ( ) 2

2

) ]AO AO T T

j j j j

u
X  


     . 

 

 

4 The implementation for outlier 

detection 

When the orders p  and q  of the ARMA  

model (1) are known, but the parameters

1 2( , , , )T

p    , 1 2( , , , )T

q    and 2 are 

unknown, the posterior probability ,( | )i jP H Y

cannot be calculated directly by the Bayesian 

formula. Thus, we can use the Gibbs sampling based 

on the conditional posterior distributions of 

unknown parameters to estimate ,( | )i jP H Y . 

Above all, a procedure for detecting the AO and 

IO in an ARMA time series simultaneously is 

proposed based on the Gibbs sampling [15, 17] as 

follows: 

Step 1: Choose the hyper parameters 
1

0 0, , ,V    

1 2 2

1 1 2 2, , , , , ,W u u v  
and  for the prior distributions  

of all unknown parameters in the ARMA model. 

Step 2: Choose the initial values (0) (0) 2 0, , ,  （ ）（ ）  

0 (0) 0( ) ,( ) ,( )AO AO IO  （ ） （ ）
and

(0)( )IO for the Gibbs  

sampling. 

Step 3: Implement the Gibbs sampling as follows  

and get the Gibbs samples. Suppose that the (k-1)-th  

sample
( 1) ( 1) 2 ( 1 ( 1 ( 1)( , , ,( ) ,( ) ,k k k AO k AO k        ） ）（ ）  

1 ( 1)( ) ,( ) )IO k IO k  （ ）
has been acquired. Then, the  

k-th sample can be obtained by the following  

procedure: 

(a)  Estimate the ( )k by the equations, 1    

0p   an
( 1) ( 1) ( 1)

( )( ) ( ) ( )AO k AO k k T

t t t t ty X    

     

( 1)

( )( )k T

t

  , 1, ,t p n  . 

(b)  Obtain ( )k  from
( 1) 2 1| , ,( ) ,k kY    （ ）

 

1 ( 1) 1 ( 1) ( )( ) ,( ) ,( ) ,( ) ,AO k AO k IO k IO k k       （ ） （ ）
. 

(c)  Obtain 2 ( )k（ ）  from 
2 ( ) ( 1)| , , ,k kY    

1 ( 1) 1 ( 1) ( )( ) ,( ) ,( ) ,( ) ,AO k AO k IO k IO k k       （ ） （ ）
. 

(d)  Obtain ( )k  from 
( ) 2| , ,( ) ,k kY   （ ）

 

1 ( 1) 1 ( 1) ( )( ) ,( ) ,( ) ,( ) ,AO k AO k IO k IO k k       （ ） （ ）
. 

(e)  Calculate
( ) ( ) ( )

1 2 3, ,k k k

j j jP P P  and
( )

4

k

jP , and obtain 

( ) ( )(( ) , ( ) )AO k IO k

j j  from
( ) ( ), | , , ,AO IO k k

j j Y     

2 1 ( 1, ) 1 ( 1, )

( ) ( )( ) ,( ) ,( ) ,( ) ,( ) ,k AO k AO k k IO k IO k k

j j       

 

（ ） （ ） （ ）
    

( )k , where
( 1, ) ( ) ( )

( ) 1 1( ) (( ) , ,( ) ,AO k k AO k AO k

j p j  

    

( 1) ( 1)

1( ) , , ( ) )AO k AO k

j n  

  and
( 1, )

( )( )IO k k

j 

   

( ) ( ) ( 1) ( 1)

1 1 1(( ) , , ( ) ,( ) , , ( ) )IO k IO k IO k IO k

p j j n    

   . 

(f)  Obtain 
( )( )AO k

j from 
( ) ( )| , , ,AO k k

j Y    

2 ( , 1) ( ) 1 ( 1)

( )( ) ,( ) ,( ) ,( ) ,( )k AO k k AO k IO k IO k

j      



（ ） （ ）
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  ( ), k ,where
( 1, ) ( ) ( )

( ) 1 1( ) (( ) , , ( ) ,AO k k AO k AO k

j p j  

    

( 1) ( 1)

1( ) , ,( ) )AO k AO k

j n  

 . 

(g)  Obtain
( )( )IO k

j from
( ) ( ) 2 ( )| , , , ( ) ,IO k k k

j Y    

( ) ( ) ( 1, ) ( ) ( )

( )( ) ,( ) ,( ) ,( ) ,AO k AO k IO k k IO k k

j    

 , 

where 
( 1, ) ( ) ( )

( ) 1 1( ) (( ) , , ( ) ,IO k k IO k IO k

j p j  

    

( 1) ( 1)

1( ) , , ( ) )IO k IO k

j n  

 . 

Implement and end the iterative procedure after  

the Gibbs sampling is convergent. 

Step 4: Make the Bayesian inference. Supposing  

that N samples are acquired and the Gibbs sampling  

is convergent after acquiring the M-th sample, we  

use the last N-M samples to make the following  

Bayesian inference. 

(a)  Get the locations and types of outliers. 

By the above Gibbs sampling, the posterior 

probabilities of four hypotheses can be calculated 

approximately by  

1,( | ) ( 0, 0 | )AO IO

j j jP H Y P Y      

( )

1

( ) ( ) ( ) ( )
1 1 2 3 4

1
kN
j

k k k k
k M j j j j

P

N M P P P P    
    (14) 

2,( | ) ( 1, 0 | )AO IO

j j jP H Y P Y      

( )

2

( ) ( ) ( ) ( )
1 1 2 3 4

1
kN
j

k k k k
k M j j j j

P

N M P P P P    
     (15) 

3,( | ) ( 1, 1| )AO IO

j j jP H Y P Y      

( )

3

( ) ( ) ( ) ( )
1 1 2 3 4

1
kN
j

k k k k
k M j j j j

P

N M P P P P    
     (16) 

4,( | ) ( 0, 1| )AO IO

j j jP H Y P Y      

( )

4

( ) ( ) ( ) ( )
1 1 2 3 4

1
kN
j

k k k k
k M j j j j

P

N M P P P P    
      (17) 

where 

( )

( ) ( ) ( ) ( )

1 2 3 4

( 1,2,3,4)

k

ij

k k k k

j j j j

P
i

P P P P


  
is the 

conditional posterior probability of , ( 1,2,3,4)i jH i   

at the k-th Gibbs sampling. 

If , 1, 2, 3,( | ) max{ ( | ), ( | ), ( | ),i j j j jP H Y P H Y P H Y P H Y

4,( | )}jP H Y , the hypothesis ,i jH is accepted, and jy  

can be identified to be a normal observation or some 

kind of outlier. 

(b)  Estimate the abnormal magnitudes of 

outliers. 

If  ( 1, , )jy j p n  is recognized as an AO, its 

abnormal magnitude may estimated by 

( )

1

( )

ˆ

N
AO k

j
AO k M
j

N M



  


            (18) 

If  ( 1, , )jy j p n  is recognized as an IO, its 

abnormal magnitude may estimated by 

( )

1

( )

ˆ

N
IO k

j
IO k M
j

N M



  


             (19) 

5 Examples and analysis 

  In order to illustrate the performance of the 

approach for detecting outliers in the ARMA model 

proposed by this article, three examples are 

designed based on 100 observations from an ARMA 

model of orders (2,2), 

1 2 1 20.5 0.3 0.15 0.1

   . .    (0,1)

t t t t t t

t

x x x

i i d N

  



       



, 

  Example 1: Add an IO of the abnormal magnitude 

equals to 5 at t=30; add an AO of the abnormal 

magnitude equals to 10 at t=80. Calculate the 

posterior probabilities of four hypotheses, and they  

are shown in Fig.1. 
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The Fig.1 shows that 4,30( | ) maxP H Y 

1,30 2,30 3,30 4,30{ ( | ), ( | ), ( | ), ( | )}P H Y P H Y P H Y P H Y ,

2,80 1,80 2,80 3,80( | ) max{ ( | ), ( | ), ( | )P H y P H Y P H Y P H Y

4,80, ( | )}P H Y ,and 1, 1,( | ) max{ ( | )j jP H Y P H Y

2, 3, 4,, ( | ), ( | ), ( | )} ,  30,80j j jP H Y P H Y P H Y j  . 

What’s more, the abnormal magnitudes of outliers 

can be calculated by formula (18) and (19). At last, 

the results of detecting outliers are that the 30
th
 

observation is an IO and the 80
th
 observation is an 

AO, and the estimates of their abnormal magnitudes 

are 30
ˆ 4.6494IO  and 80

ˆ 8.9637AO  , respectively. 

We also use the iterative procedure proposed by 

[18] to outlier detection and the results are that both 

30
th
 and 80

th
 observations are AOs and their 

abnormal magnitudes are 30
ˆ 3.7522AO  and

80
ˆ 8.2626AO  , respectively, the 35

th
 observation is 

an IO and its abnormal magnitude is 35
ˆ 3.7044IO   . 

  Compared two results above, we can see clearly 

that the approach proposed in this article can locate 

and recognize precisely the outliers in an ARMA 

time series, and the abnormal magnitudes of these 

outliers can be estimated accurately. However, the 

erroneous identification for the locations and types 

of outliers is presented in the detection results of the 

iterate procedure proposed by [18]. 

Example 2: Add an AO of the abnormal 

magnitude equals to 6, 10 at t=30, 80, respectively. 

The posterior probabilities of four hypotheses are 

shown in Fig.2. 

 

The Fig.2 shows that 2,30 1,30( | ) max{ ( | ),P H Y P H Y

2,30 3,30 4,30( | ), ( | ), ( | )}P H Y P H Y P H Y , 2,80( | )P H Y 

1,80 2,80 3,80 4,80max{ ( | ), ( | ), ( | ), ( | )}P H Y P H Y P H Y P H Y

and 1, 1, 2, 3,( | ) max{ ( | ), ( | ), ( | ),j j j jP H Y P H Y P H Y P H Y

4,( | )}  ,  30,80jP H Y j  . The abnormal magnitudes 

of outliers also can be calculated by formula (18). 

At last, the results of detecting outliers are that both 

30th and 80th observations are AOs and the 

estimates of their abnormal magnitudes are

30
ˆ 5.2475AO   and 80

ˆ 8.2772AO  , respectively.  

Since the method proposed by [11] only can 

detect the AO in the ARMA time series, we use it to 

detect the outliers and get the results that the 30
th
, 
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53
th
 and 80

th
 all are AOs and their abnormal 

magnitudes are 30
ˆ 2.62AO  , 53

ˆ 3.6966AO   and 

80
ˆ 5.9822AO  , respectively. 

Compared the results above, it is obvious that the 

method proposed in this article can detect precisely 

the multiple outliers in an ARMA time series. But, 

the method proposed by [11] cannot locate the 

outliers accurately and may cause misjudgment of 

AO. What’s more, the abnormal magnitudes of AOs 

still include a seriously bias. 

Example 3: Add an AO of the abnormal 

magnitude equals to 10 and an IO of the abnormal 

magnitude equals to 8 at t=50 simultaneously; add 

an AO of the abnormal magnitude equals to 10 at 

t=80.The posterior probabilities of four hypotheses 

are shown in Fig.3.  

 

Similarly, the 50
th
 observation is recognized as 

both an AO of the abnormal magnitude equals to 

9.7421and an IO of the abnormal magnitude equals 

to 7.3540, and the 80
th
 observation is recognized as 

an AO of the abnormal magnitude equals to 9.0487. 

  From the three examples above, we can see that 

the Bayesian approach proposed in this article can 

get the locations, types, abnormal magnitudes of AO 

and IO in an ARMA time series precisely. 

Especially, the approach has a good performance of 

detecting the observation which is both AO and IO. 

In addition, by the comparison of example 1 and 2, 

the phenomenon can be found that the Bayesian 

approach proposed in this article can more accurate 

detect the AO and IO in an ARMA time series than 

the previous methods in the literatures.  

 

 

6 Conclusions 

  In view of some difficulties existed in the 

detection of outliers in the ARMA time series, this 

paper suggests many solutions. 

  Firstly, if the number of the observations from the 

ARMA time series is very large, calculating the 

joint probability density function of the observations 

is very difficult. To solve this problem, a method of 

estimating the function is considered. And this 

method also be embed into the Gibbs sampling latter 

in order to realize the outlier detection for the 

ARMA time series. 

  Secondly, in order to simultaneously detect the 

AO and IO in an ARMA time series, this paper 

constructs a model which can be used to reflect the 

observation affected by AO and IO at the same time 

and conclude the problem of simultaneously 

detecting AO and IO to a multiple hypothesis 

testing. 

  Nextly, the Gibbs sampling is suggested to 

calculate the posterior probability of every 

hypothesis, and then the multiple hypothesis is 

tested based on the principle of Bayesian hypothesis 

testing, so that the kinds of outliers can be detected. 

  In addition, this article shows a completely 

procedure from Bayesian approach for detecting 

outliers in an ARMA time series after solving the 

problems mentioned above. 

  Finally, in order to show the effect of approach 

proposed in this article, three simulation 

experiments are designed. The results of this 

procedure are compared with other existing methods, 

which shows that the approach for simultaneously 

detecting AO and IO in an ARMA time series can 

get the locations with types of outliers accurately 
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and has a better detection results than other methods. 

Especially, the observation that is both AO and IO 

can be recognized easily by this procedure proposed 

in this article. 
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