A Stochastic Algorithm and Multiple Scale For Solution to PDE With Financial Application

BRIGHT O. OSU
Michael Okpara University of Agriculture
Department of Mathematics
Umuadike, Abia State
NIGERIA
megaobrait@hotmail.com

OKECHUKWU U. SOLOMON
Rhema University
Department of Physical Science
Aba, Abia State
NIGERIA
okesolo2000@yahoo.co.uk

Abstract: This paper presents an application of multiple scale and stochastic approximation method to discretize generic financial PDE. The multiple scale method was adopted in calculating the periodic solution resulted from a Hopf bifurcation of a discretized generic PDE to monitor and stabilize the oscillatory movement of the market price of stock, thereafter a stochastic algorithm was formulated to price an American option under the Black-Scholes model through a drifted financial derivative system. With finer discretization, positive periodic solution, space nodes and time nodes, we demonstrate that the drifted financial derivative system can be efficiently and easily solved with high accuracy, by using a stochastic approximation method which proves to be faster in pricing an American options. An illustrative example is given in a concrete setting.

Key–Words: Financial PDE; Stochastic algorithm; Multiple scale; Drifted system; Option pricing; Spatial discretization.

1 Introduction

As it is well known, the iteration methods play a fundamental role in numerical analysis due to their simple structure and flexibility in practical computation. Theoretically, all kinds of equations including functional equation(s) can be solved by using iteration method. For instance, the solution of first-order ordinary differential equation(s) (ODE) can be defined as the limit of the Picard iteration sequence. However the Picard sequence actually does not work in solving differential equations except for the very simple ODE, because it requires to compute integration repeatedly. An iteration method works in solving differential equations only if special features or special classes of equations are addressed, for which the solution can be obtained by a small number of iterations.

For numerical approximations, the most popular numerical methods for pricing American options can be classified to lattice method, Monte Carlo simulation and finite difference method. Sure, besides finite difference methods, there are other popular numerical method based on discretization for solving PDEs like finite element method, boundary element method, spectral and pseudo-spectral methods and etc. Here we just use finite difference to stand for methods of this kind. In fact, finite difference method ranks as the most popular one among its kind in financial engineering. The lattice method is simple and still widely used for evaluating American options. It was first introduced by Cox et al. [1], and the convergence of the lattice method for American options is proved by Amin and Khanna [2]. The Monte Carlo method is also popular among financial practitioners. It is appealing, simple to implement for pricing European options, and especially has advantage of pricing multi-asset options. For pricing American options, Monte Carlo method requests some further modification due to the early C exercise feature. Fu [3, 4] priced American-style options by using Monte Carlo method in conjunction with gradient-based optimization techniques. Duck et al. [5] proposed a technique which generates monotonically varying data to enhance the accuracy and reliability of Monte Carlo-based method in handling early exercise features.

The finite difference method for pricing American options was first presented in [6, 7, 8]. Jaillet et al. [9] showed the convergence of the finite difference method. A comparism of different numerical methods for American options pricing was discussed by Broadie and Detemple [10] and Geske and Shastri [11]. Generally, there still exist some difficulties in using these numerical methods. For finite difference method, the difficulty arises from the early exercise property, which changes the original Black-scholes equation to an inequality that cannot be solved via fractional finite difference process. Therefore, finding the
early exercise boundary prior to spatial discretization (discretization on underlying asset) is a must in each time step. Horng et al. [12] proposed a simple numerical method base on finite difference and method of lines to overcome this difficulty in American option valuation. To those who have ever dealt with Black Scholes equations, the instabilities and oscillatory behavior modeled by Black Scholes equation are all too well known. What perhaps not so familiar is that the Black Scholes equations (PDE) could be discretized into delay differential equation (DDE) which have the opposite effect in the financial market, namely that they could suppress oscillations and stabilize equilibria which would be unstable in the absence of delays. For instance, oscillatory behavior can often be connected to a Hopf bifurcation of an equilibrium solution under the variation of some parameter, and such local bifurcations share common qualities expressed in terms of the behavior on a low-dimensional center manifold. Hence, an analysis of stabilization near a generic Hopf bifurcation would yield general results applicable to any system near a Hopf instability and serve as a useful guide for understanding the behavior of a financial market systems under time delays.

Although the financial derivatives are governed by the celebrated parabolic partial differential Black-Scholes formula, but it is not clear how derivatives are controlled and stabilized, also the early exercise boundary prior to spatial discretization in each time step has been established for American option valuation, another approach used by Osu and Solomon [13] is proposed in this paper based on the fact that the stationary solution of (1) has exactly one pair of simple complex roots \(\lambda(q^*) = \alpha(\epsilon) \pm i\beta(\epsilon) \) such that at \(\epsilon = 0 \), one has, \(\alpha(0) = 0 \), \(w_0 = \beta(0) > 0 \) and all the other characteristic roots have negative real parts.

Equation (1) is assumed to admit a Hopf bifurcation at \(q^* = q^*_o \). The existence of the bifurcation can be characterized by the root location of the characteristic function \(D(q^*) \) of the linearized equation at \(x = 0 \) of (1) as follows:

(i) For a small \(\epsilon := q^* - q^*_o \), \(D(q^*) \) has exactly two way variable expansion method (also known as multiple scales) used in [14, 15] and [16] is proposed to understanding the behavior of a financial market systems under time delays.

The analyses are made based on the discretization of Black-Scholes equation using central finite-difference approximation into first-order ordinary differential equation, which was transformed to a delay differential equation to monitor and stabilize the oscillatory movement of the market price of stock, using the multiple scale method and later transformed to a drifted financial derivative system. We solve the resulting drifted financial derivative system by employing a stochastic algorithm described and analyzed by Osu and Solomon [13] where each iteration requires the adjustment of the drift parameter based on the dividend yield.

The outline of the paper is the following: In section 2 we presented a scalar DDE and the properties it must satisfy for the existence of Hopf bifurcation. Illustrative example were also given. We review modeling of Black-Scholes, the partial differential equation which financial derivative have to satisfy and formulate Linear Complementary Problem (LCP) for an American option in section 3. In section 4, we discretize the generic PDE into LCP and drift financial derivative system and later transformed to DDE to check the stability of the market, while in section 5, multiple scale method were presented, applied and analyzed. A stochastic algorithm is formulated in section 6. Numerical experiments are presented in section 7 and conclusions are given in section 8.

2 Hopf Bifurcation of Time-Delay Systems

Consider the following scalar DDEs with a parameter (the delay or some other physical parameter)

\[
x^{(n)}(t) = F(x(t), x'(t), ..., x^{n-1}(t), x(t - \tau), x'(t - \tau), ..., x^{n-1}(t - \tau), q^*), \quad x \in \mathbb{R}
\]

where \(F \) has at least up to fourth order continuous derivatives satisfying \(F(0, 0, ..., 0, q^*) \equiv 0 \).

Equation (1) is assumed to admit a Hopf bifurcation at \(q^* = q^*_o \). The existence of the bifurcation can be characterized by the root location of the characteristic function \(D(q^*) \) of the linearized equation at \(x = 0 \) of (1) as follows:

(i) For a small \(\epsilon := q^* - q^*_o \), \(D(q^*) \) has exactly two way variable expansion method (also known as multiple scales) used in [14, 15] and [16] is proposed to understanding the behavior of a financial market systems under time delays.

Due to the Hopf bifurcation Theory, the bifurcated nontrivial periodic solution has a period approximately \(\frac{2\pi}{\beta(\epsilon)} \), and \(\frac{2\pi}{\beta(\epsilon)} \rightarrow \frac{2\pi}{w_0} \) as \(\epsilon \rightarrow 0 \). Thus, in the vicinity of the Hopf bifurcation, namely for a sufficiently small \(|\epsilon| \), the stationary solution of (1) has a form

\[
x(t) = r(\epsilon) \cos(w(\epsilon)t + \theta) + 0(\epsilon)
\]

\[
= r \cos(w_0 t) + 0(\epsilon)
\]

as done in applications of method of multiple scales, where \(r := r(\epsilon), \theta : \theta(0) \) for short. Therefore, it is expected that the time-delay system near the Hopf bifurcation behaves similar to the Black-Scholes differential equation involving a term \(x'(s) \). The key features of the Hopf bifurcation of (1) can be preserved if the right hand function is approximated with the third
or fifth order Taylor expansion, which is required in the computation of the averaged power function, defined by Wang and Hu[17]. That is to say, the local dynamics near the Hopf bifurcation of can be determined from the averaged power function by Wang and Hu[17].

Example 1 Let us study the following scalar DDE arising from laser physics in Schanz and Pelster [18].

\[
\dot{x}(t) = -\left(\frac{\pi}{2} + \epsilon\right) \sin x(t-1),
\]

where \(|\epsilon| << 1\) is a small parameter.

Equation (3) undergoes a Hopf bifurcation at \(\epsilon = 0\), because the following conditions in Iooss and Joseph [16] and Wang and Hu [17], holds:

i For small \(\epsilon < 0\), the zero solution \(x = 0\) of (3) is asymptotically stable.

ii At \(\epsilon = 0\), the characteristic function \(p(\lambda) := \lambda + \left(\frac{\pi}{2} + \epsilon\right)e^{-\lambda}\) has a pair of complex conjugate roots \(\lambda = \pm i\frac{e}{2}\), and the other roots of \(p(\lambda)\) have negative real parts.

iii \(R|\frac{\partial p}{\partial \lambda}|_{\lambda=0} \neq 0\), where \(R(z)\) stands for the complex conjugate of \(z\). The Hopf bifurcation can be determined from

\[
\dot{x}(t) = -\left(\frac{\pi}{2} + \epsilon\right) \times (x(t-1) - \frac{x^3(t-1)}{6} + \frac{x^3(t-1)}{120}),
\]

because Hopf bifurcation is a local property of dynamical systems and also refers to the analysis or evaluation of market conditions based on two distinct scenarios.

3 Option Pricing Model

Here, we consider the Black and Scholes Model[14] and Merton[19] and the partial differential equation which financial derivative (stock) have to satisfy. The Black-Scholes Model assumes a market consisting of a single risky asset (\(S\)) and a risky-free bank account (\(r\)). This market is given by the equations:

\[
\begin{align*}
 dS &= \mu dt + \sigma S dz \\
 dB &= rB dt
\end{align*}
\]

(5)

(6)

Here (5) is a geometric Brownian-Motion and (6) a non-stochastic. \(S\) is a Brownian-Motion, \(Z\) is a Wiener process \(\mu\) is a constant parameter called the drift. It is a measure of the average rate of growth of the asset price. Meanwhile, \(\mu\), is a deterministic function of time. When \(\mu\) is constant, (5) is the original Black-Scholes Model of the movement of a security, \(S\). In this form \(\mu\) is the mean return of \(S\), and \(\mu\) is a variance. The quantity \(dz\) is a random variable having a normal distribution with mean 0 and variance \(dt\).

\[
dz \propto N(0, (\sqrt{dt})^2).
\]

For each interval is a sample drawn from the distribution \(N(0, (\sqrt{dt})^2)\), this is multiplied by \(\sigma\) to produce the term \(\sigma dz\). The value of the parameters \(\mu\) and \(\sigma\) may be estimated from historical data. Under the usual assumptions, Black and Scholes [14] and Merton [19] have shown that the worth of any contingent claim written on a stock, whether it is American or European, satisfies the famous Black-Scholes equation:

\[
\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2} + (r-q)S\frac{\partial V}{\partial S} - rV = 0 \quad (7)
\]

where volatility \(\mu\), the risk-free rate \(r\), and dividend yield \(q\) are all assumed to be constants. The value of any particular contingent claim is determined by the terminal and boundary conditions. For an American option, the PDE only holds in the not-yet-exercised region. At the place where the option should be exercised immediately, the equality sign in (7) would turn into an inequality one. That means the option value \(V(S, t)\) at each time follows either \(V(S, t) = \wedge(S, t)\) for the early exercised region or (7) for the not-yet-exercised region, where \(V(S, t)\) is the payoff of an American option at time \(t\). The generic form of is derived by the change of variable \(\tau = T - t\) to

\[
\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2S^2\frac{\partial^2 V}{\partial S^2} + (r-q)S\frac{\partial V}{\partial S} - rV = LV \quad (8)
\]

where \(V(\cdot, \tau) \equiv V(\cdot, T - \tau), \sigma(\cdot, \tau) \equiv \sigma(\cdot, T - \tau), \tau = 0 \rightarrow \tau = T, S_{min} < S_{max},\) subject to the initial condition \(V(S,0) = \wedge(S)\).

For the computations, the unbounded domain is truncated to

\[
(S, t) \in (0, S) \times (0, T) \quad (9)
\]

with sufficiently large \(S \equiv S_{max}\).

The worth \(V\) of an American option under Black-Scholes model satisfies an LCP

\[
\begin{cases}
LV \geq 0 \\
V \geq \wedge \\
(LV)(V - \wedge) = 0
\end{cases} \quad (10)
\]

we impose the boundary conditions

\[
\begin{cases}
V(0, t) = 0 \\
V(S, t) = \wedge(S), S \in (0, S_{max}),
\end{cases} \quad (11)
\]

Beyond the boundary \(S = S_{max}\) the worth \(V\) is approximated to be the same as the payoff \(\wedge\), that is \(V(S, t) = \wedge(S)\) for \(S \geq S_{max}\).
4 Discretizing the Financial PDE

American options can be exercised at any time before expiry. Formally, the value of an American put option with a strike price k is

$$V(0, k) = \sup(0 \leq \tau^* \leq T : E(e^{-\tau^* (k - S_{\tau^*})})).$$

The optimal exercise time τ^* is the value that maximizes the expected payoff - any scheme to price an American must calculate this.

For American options with payoff $\wedge(S)$, the equivalent of equation (8) is

$$\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - (r - q) S \frac{\partial V}{\partial S} + r V \geq 0$$

$$V(S, T) \geq \wedge(S),$$

which can be written as

$$\left(\frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - (r - q) S \frac{\partial V}{\partial S} + r V \right) [V(S, T) \geq \wedge(S)] = 0 \quad (12)$$

Consider a uniform spatial mesh on the interval $[S_{min}, S_{max}]:$

$$S_j = S_{min} + j \delta S, j = 0, 1, ..., n + 1$$

where

$$\delta S = \frac{S_{min} - S_{max}}{n + 1},$$

$$S_{max} = S_0 \exp((r - q - \frac{\sigma^2}{2})T + \sigma \sqrt{T}). \quad (13)$$

The truncated domain \bar{D} has the lower bound $S_{min} = 0$ and upper bound S_{max} as in (13).

Replacing all derivatives with respect to S by their central finite-difference approximations, we obtain the following approximation to the Black-Scholes PDE

$$\frac{\partial V(\tau, S)}{\partial \tau} =$$

$$\frac{1}{2} \sigma^2 (S) S^2 \frac{\partial^2 V(\tau, S + \delta S) - 2V(\tau, S) + V(\tau, S - \delta S)}{\delta S^2}$$

$$+ (r - q) V(\tau, S + \delta S) - 2V(\tau, S) + V(\tau, S - \delta S)$$

$$\frac{\partial V(\tau, S)}{\partial S} - r V(\tau, S) + 0(\delta S^2). \quad (14)$$

Let $V_j(\tau)$ denote the semi-discrete approximation to $V_j(\tau, S_j)$. Applying (14) at each internal node S_j, we obtain the following system of first-order ordinary differential equations;

$$\frac{dV_j(\tau)}{d\tau} = \frac{1}{2} \left(\frac{\sigma(S_j) S_j^2}{\delta S} - \frac{(r - q) S_j}{\delta S} V_{j-1}(\tau) - \frac{(-\sigma(S_j) S_j^2)}{\delta S} V_j(\tau) \right)$$

$$+ \left(\frac{(\sigma(S_j) S_j^2)}{\delta S} + \frac{(r - q) S_j}{\delta S} V_{j+1}(\tau) \right), j = 1, 2, ..., n;$$

with discretized form given as

$$\frac{dV_j(\tau)}{d\tau} = L_{j,j-1} V_{j-1}(\tau) - L_{j,j} V_j(\tau) + L_{j,j+1} V_{j+1}(\tau). \quad (15)$$

System (15) has n equation in $n + 2$ unknown functions, $V_0(\tau), V_1(\tau), ..., V_n(\tau), V_{n+1}(\tau).$ Using the boundary conditions we have the functions $V_0(\tau)$ and $V_{n+1}(\tau)$ which respectively approximate the solution at the boundary nodes $S_0 = S_{min}$ and $S_{n+1} = S_{max}$. As a result, the system of differential equations (15) can be written as the following matrix-vector differential equation with an $n \times n$ tri-diagonal coefficient matrix L whose entries are defined in (15)

$$\frac{dV(\tau)}{d\tau} = LV(\tau) + G(\tau), \quad (16)$$

subject to the initial condition

$$V(0) = \wedge := [\wedge(S_1), \wedge(S_2), ..., \wedge(S_n)]^T \quad (17)$$

Here we use the notation:

$$L = \begin{bmatrix}
L_{11} & L_{12} & 0 & \cdots & 0 & 0 \\
L_{21} & L_{22} & L_{23} & \cdots & 0 & 0 \\
0 & L_{32} & L_{33} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & L_{n-1,n-1} & L_{n-1,n} \\
0 & 0 & 0 & \cdots & L_{n,n-1} & L_{n,n}
\end{bmatrix},$$

$$V(\tau) = \begin{bmatrix}
V_1(\tau) \\
V_2(\tau) \\
\vdots \\
V_{n-1}(\tau) \\
V_n(\tau)
\end{bmatrix},$$

The vector $G(\tau) \in R^n$ is given by

$$G(\tau) = \begin{bmatrix}
\frac{\sigma^2(S_0) S_0^2}{2 \delta S^2} - \frac{(r - q) S_0}{2 \delta S} V_0(\tau), 0, \cdots, 0, \\
\cdots, 0, \frac{\sigma^2(S_{n+1}) S_{n+1}^2}{2 \delta S^2} - \frac{(r - q) S_{n+1}}{2 \delta S} V_{n+1}(\tau)
\end{bmatrix}^T.$$
The spatial discretization leads to:
Semi-discrete LCP, according to White [20] from (13), (16) and (17), we have
\[
\begin{align*}
L^j V^{j+1} &\geq g^j \\
V^{j+1} &\geq \Lambda \\
(V^{j+1} - \Lambda)T(L^j V^{j+1} - g^j) &= 0
\end{align*}
\]
(18)
where \(L \) is \(n \times n \) tri-diagonal coefficient matrix, \(g \) is a vector resulting from the second term in equation (15) \(V \) and \(\Lambda \) are vectors containing the grid point values of the worth \(V \) and the pay off \(\Lambda \), respectively. This again must be solved at every time step. A crude approximation is to solve the system \(L^j X = g^j \), then set \(L^j + 1 = \max(X, \Lambda) \).

Drifted financial derivative system:
According to Shihi [21], \(G(\tau) \) term in (16) can be treated as an enforced input to the financial derivative system, resulted from boundary condition, defined in (11). With zero boundary condition, equation (16) yields.
\[
\dot{V} = LV
\]
(19)
, which represents a pfafian constraint (see Luca and Oriolo [22]) for pfafian differential constraints but not of kinematic nature arises from the conservation on non-zero financial derivatives. The transformed financial derivative system (19) can be re-expressed as
\[
LV = d
\]
(20)
, System (20) represents a drifted financial derivative system with a drift term \(d \). In such a system the derivative value \(V \) can be solved by computing the stochastic algorithm used by Osu and Solomon [13]. In general equation (16) can be denoted in the form
\[
\frac{dv}{dt} = - (Lv_t + \varepsilon f(v_t; \varepsilon))
\]
(22)
where \(L : C \rightarrow R^n \) is a linear operator and \(f \) is a \(C^2 \) function with \(f(0; \varepsilon) = 0 \) for all \(\varepsilon \). Equation (22) is a perturbation of the linear equation (See Cole [15])
\[
\frac{dv}{dt} = - Lv_t.
\]
(23)

5 Multiple Scale and Financial Derivatives
In this section, we show how the method of multiple scale can be applied to the discretized PDE in equation (23).

Example 2 Consider the DDE problem, one that has an exact solution, namely;
\[
\frac{dx}{dt} = -x(t - T), \quad T = \frac{\pi}{2} + \varepsilon \mu
\]
(24)
Equation (24) undergoes a Hopf bifurcation at \(\varepsilon = 0 \) because the following conditions in example 1 hold. Hence, equation (24) behaves similar to Black-Scholes differential equation involving a term \(X''(S) \).

Lemma 3 Let \(t \) be replaced by two time variable: regular time \(B = t \) (A riskless Bond (cash) as in (5)) and slow time \(S = \varepsilon t \) (underlying security which evolves in accordance with stock price \(S \), as in (6)), then the solution of (24) is given by
\[
X_o = R_o \exp \left(\frac{4 \mu S_o e^{(\mu - \frac{\sigma^2}{2})t}}{\pi^2 + 4} \right) \times \cos \left(r^{-1} \ln B_o^{-1} - \frac{2 \pi \mu S_o e^{(\mu - \frac{\sigma^2}{2})t}}{\pi^2 + 4} t + \sigma \sqrt{t} \right) + \theta_o
\]
(25)
Proof. Let the dependent variable \(x(t) \) be replace by \(x(B, S) \). Hence,
\[
\frac{dx}{dt} = \frac{\partial x}{\partial B} dB + \frac{\partial x}{\partial s} ds
\]
\[
\frac{dx}{dt} = \frac{\partial x}{\partial B} dB + \frac{\partial x}{\partial s} ds
\]
\[
\frac{dx}{dt} = \frac{\partial x}{\partial B} dB + \frac{\partial x}{\partial s} ds
\]
From equation (24), we have
\[\frac{\partial x}{\partial B} + \varepsilon \frac{\partial x}{\partial S} = -x(B - T, S - \varepsilon T) \] (26)

Since \(T = \frac{\pi}{2} + \varepsilon \mu \) the delayed term may be expanded for small \(\varepsilon \) as follows;
\[x(B - \frac{\pi}{2} - \varepsilon \mu, S - \varepsilon \pi - \varepsilon^2 \mu) \]
\[= x(B - \frac{\pi}{2}, S) - \varepsilon \mu \frac{\partial x_0}{\partial B} - \varepsilon \pi \frac{\partial x_1}{\partial S} + O(\varepsilon^2) \]
(27)

where \(x_0 \) is an abbreviation for \(x(B - \frac{\pi}{2}, S) \)

Next we expand
\[x = x_0 + \varepsilon x_1 + 0(\varepsilon^2), \] (28)

so
\[\frac{\partial x}{\partial B} = \frac{\partial x_0}{\partial B} + \varepsilon \frac{\partial x_1}{\partial B} + 0(\varepsilon^2) \] (29)
\[\frac{\partial x}{\partial S} = \frac{\partial x_0}{\partial S} + \varepsilon \frac{\partial x_1}{\partial S} + 0(\varepsilon^2). \] (30)

By substituting equation (27), (29) and (30) into (26), gives
\[\frac{\partial x_0}{\partial B} + \frac{\partial x_1}{\partial B} + \varepsilon \frac{\partial x_0}{\partial S} + \varepsilon^2 \frac{\partial x_1}{\partial S} = x_0(B - \frac{\pi}{2}, S) - \varepsilon x_1(B - \frac{\pi}{2}, S) + \varepsilon \mu \frac{\partial x_0}{\partial B} + \varepsilon \pi \frac{\partial x_1}{\partial S} + O(\varepsilon^2) \]
(31)
\[\frac{\partial x_0}{\partial B} + x_0(B - \frac{\pi}{2}, S) = 0, \] (32)
\[\frac{\partial x_1}{\partial B} + x_1(B - \frac{\pi}{2}, S) = \mu \frac{\partial x_0}{\partial B} + \pi \frac{\partial x_1}{\partial S} - \frac{\partial x_0}{\partial S}. \] (33)

Equation (32) has periodic solution (since (24) is autonomous)
\[x_0 = R(S) \cos(B - \theta(S)) \] (34)

where as usual in this method \(R(S) \) (the approximated amplitude of a periodic motion of stock) and \(\theta(S) \) (the frequency of the bifurcated periodic solution) are yet undetermined function of slow times \(S \).

Take \(x_0 = -\frac{\partial x_0}{\partial B} \) in equation (33)
\[\frac{\partial x_1}{\partial B} + x_1(B - \frac{\pi}{2}, S) = -\mu \frac{\partial^2 x_0}{\partial B^2} - \pi \frac{\partial^2 x_0}{\partial B \partial S} - \frac{\partial x_0}{\partial S}. \] (35)

To substitute equation (34) into (35)
\[\frac{\partial x_0}{\partial B} = -R \sin(B - \theta) \]
\[\frac{\partial x_0}{\partial S} = R \theta' \sin(B - \theta) + R' \cos(B - \theta) \]
\[\frac{\partial^2 x_0}{\partial B^2} = -R \cos(B - \theta) \]
\[\frac{\partial^2 x_0}{\partial B \partial S} = -R \theta' \sin(B - \theta) \]
\[R' \cos(B - \theta) = R \theta' \sin(B - \theta) \]

Let \(B - \theta = \psi \) by substituting \(\frac{\partial x_0}{\partial B} \), \(\frac{\partial x_0}{\partial S} \), \(\frac{\partial^2 x_0}{\partial B^2} \) and \(\frac{\partial^2 x_0}{\partial B \partial S} \) in (35), we have
\[\mu R \cos(\psi) - \frac{\pi}{2} R \theta' \cos(\psi) + \frac{\pi}{2} R' \sin(\psi) \]
\[- R \theta' \sin(\psi) - R' \cos(\psi) \]
\[= \frac{\partial x_1}{\partial B} + x_1(B - \frac{\pi}{2}, S). \] (36)

Equating coefficient of \(\sin(\psi) \) and \(\cos(\psi) \) to zero
\[\mu R - \frac{\pi}{2} R \theta' - R' = 0 \] (37)
\[\frac{\pi}{2} R' - R \theta' = 0. \] (38)

From equation (38)
\[\theta' = \frac{\pi R'}{2R} \] (39)

Plug equation (39) in equation (38)
\[R' = \frac{4\mu R}{\pi^2 + 4} \] (40)

Plug (40) in equation (39)
\[\theta' = \frac{2\pi \mu}{\pi^2 + 4} \] (41)

From equation (40), we get
\[\frac{1}{R} dR = \frac{4\mu}{\pi^2 + 4} ds \]
so that
\[InR = \frac{4\mu S}{\pi^2 + 4} + K, \]
and
\[R(S) = R_o \exp\left(\frac{4\mu S}{\pi^2 + 4}\right) \] (42)

Similarly,
\[\theta(S) = \frac{2\pi \mu S}{\pi^2 + 4} + \theta_o \] (43)
substitute \(R(s) \) and \(\theta(s) \) in equation (34)

\[
x \approx x_0 = R_0 \exp\left(\frac{4\mu S}{\pi^2 + 4}\right) \cos(t - \frac{2\pi \mu S}{\pi^2 + 4} + \theta_0) \tag{44}
\]

It is not difficult to show from (5) and (6) that

\[
B = B_0 e^{rt} \tag{45}
\]

and

\[
S = S_0 e^{(\mu - \frac{\sigma^2}{2})t + \sigma w_t} \tag{46}
\]

respectively. Solving for \(t \) in (45) and plugging it in (44) using (46), we have (25) as required.

Remark 4 The periodic solution derived from two way variable expansion method (25) proves that, if the time is delayed, the oscillatory movement of the price of stock can be monitored and instability controlled. Using the slow time \(S = \varepsilon t \) and equation (46), we have

\[
S_0 = \varepsilon t \exp\left(\frac{\sigma^2}{2} - \mu t - \sigma w_t \right) \tag{47}
\]

Plugging (47) into (25) we arrive at

\[
X_0 = R_0 \exp\left(\frac{4\mu \varepsilon t}{\pi^2 + 4}\right) \cos(\nu^{-1} \ln BB_0^{-1} \left(\frac{2\pi \mu \varepsilon t}{\pi^2 + 4} + \theta_0) \right) \tag{48}
\]

Notice that \(S_0 \to 0 \) as \(\varepsilon \to 0 \) and \(X_0 \) fluctuate according to \(r \).

6 Formulation of Stochastic Algorithm

We consider the finite dimensional variation problem: find \(v \in D(\phi) \) such that

\[
Lv + \partial \phi(v) \ni b , \tag{49}
\]

subject to equation (18), where \(\phi \) is convex function,

\[
D(\phi) = \{ v \in \mathbb{R}^n : \phi(v) < \infty \neq \varnothing \}
\]

then for \(v \in D(\phi) \), the sub gradient \(\partial \phi \) of \(\phi : \mathbb{R}^n \to \mathbb{R} \) at \(v \) is defined as

\[
\partial \phi(v) = \left\{ g \in \mathbb{R}^n : \phi(t + v) - \phi(v) \geq \langle g, t \rangle \right\}
\]

(50)

It is well known that if a function \(f \) on \(\mathbb{R}^n \) is differentiable, then there exists \(d \in \mathbb{R}^n \) such that

\[
f(v) - f(v_o) = \langle d, v - v_o \rangle \tag{51}
\]

where \(d = \frac{\partial f(v)}{\partial v} \) is the gradient of the function \(f \).

Denote \(\partial f^k = \frac{\partial f(v^k)}{\partial v}, \partial^2 f(v^k) = \frac{\partial^2 f}{\partial v \partial s} \) as in Okoroafor and Osu [23], we constructed a sequence of random vector \(d^k \in \mathbb{R}^n \) that strongly approximate \(\partial f^k = \partial f(v^k) \) for each \(k \) in the sense that

\[
E \| d^k_j - \partial f^k \| = 0 \tag{52}
\]

and their expected Euclidean distance

\[
E \| d^k_j - \partial f^k \|^2 = M^{-1}\sigma^2
\]

is minimum so that a search in the direction of the random sequence \(d^k \) approximate a search through the true gradient \(\partial f^k \) and this is expected to lead to the non-zero global minimizing factor if it exists. To this end, we consider the natural Taylors expansion of a quadratic function \(f \) about point \(v_o \) given by

\[
f(v) - f(v_o) = \langle \partial f(v_o), v - v_o \rangle + \frac{1}{2} \langle (v - v_o)H(v_c)(v - v_o) \rangle (53)
\]

where \(v_c \) is on the line segment between \(v \) and \(v_o \) and \(H(v_c) \) is the Hessian of \(f \) at \(v_c \).

Given that

\[
E(e(v_j)) = 0 \text{ for each } j.
\]

and

\[
E(e(v_j)e(v_j)) = \sigma^2 \delta_{ij}, \quad 0 < \sigma^2 < \infty.
\]

Let \(Y(v_1), Y(v_2), ..., Y(v_m) \) be real-valued independent observable random variable performed on \(v_1, v_2, ..., v_n, n + 2 < m \leq \frac{1}{2} n(n + 1) \) chosen in the neighbourhood of \(v^k \) for a fixed \(K \), then

\[
Y_j = Y(v_j) = f(v + t_j) - f(v) = \langle \partial f(v^k), t_j \rangle + \frac{1}{2} \sum_{k=1}^{m} \sum_{r=1}^{\infty} t_{kj} t_{jr} \partial^2 f_{kr} + e(v_j) (54)
\]

is identifiable with (49) so the fixed \(t_j \in \mathbb{R}^n \) satisfying

\[
\sum_{i=1}^{m} t_{ij} = 0, M^{-1} \sum_{i=1}^{\infty} t_{ij}^2 \text{ linearizes } f \text{ (Okoroafor and Osu [24]) and hence the least square approximation,}
\]

\[
d^k = M^{-1} \sum_{i=1}^{m} t_{ij} Y_j, M = \sum_{i=1}^{m} t_{jj}' \tag{55}
\]

exist and is adequate for approximating \(\partial f \) such that Euclidean distance

\[
E \| d^k - \partial f(v^k) \| = 0
\]
for each \(k \), also yield

\[
E \| d^k - \partial f(v^k) \|^2 = M^{-1} \sigma^2
\]

In the sequel we assume without loss of generality that \(\sigma^2 = 1 \). \(\langle d^k \rangle \) is thus a sequence of independently and identically distributed random vector and determines the direction of search. It follows that by letting \(v^0 \) be an initial point, the sequence of path produce by \(\{v^k\}_{k=0}^{\infty} \) through its definition

\[
v^{k+1} = V^k - p_k^k d^k
\]

by successive iteration, is the trajectory of the point \(v^0 \) and any limiting point of the sequence is therefore attractor of \(v^0 \).

6.1 Getting the domain of attraction

Let \(R_n - N(0) \) be petitioned into exclusive segment \(S_j, j = 1, 2, \ldots, n < t \leq 2^n \). Let \(v_j \) be chosen randomly in \(S_j \), such that \(f(v_j) > 0 \forall j \). Let \(P_j = P(v_j = \infty) \) be the probability that \(v_j = \infty \) so that \(P_j \geq 0, \sum_{j=1}^{\infty} P_j = 1 \). Put

\[
P_j = \frac{f(v_j)}{\sum_{j=1}^{t} f(v_j)}
\]

so that

\[
\bar{v} = \sum_{j=1}^{t} v_j P_j = \frac{v_j f(v_j)}{\sum_{j=1}^{t} f(v_j)}
\]

(54)

It is shown in Okoroafor and Osu that if

\[
\dot{v} = \bar{v} - pd, p > 0
\]

(55)

where \(d \) is as (53), then

\[
f(\dot{v}) = \min f(v_j) : v_j \in S.
\]

It follows that the segment \(S_T \) if when \(\dot{v} \in S_T \) contains \(v > 0 \) for which \(f(v) \) is minimum and hence we have \(\phi(U_\bar{v}) \subseteq S_T \) so that if \(\langle 0 \rangle \) is the attractor of the point \(\dot{v} \) and \(\phi(0) \cap \phi(V_\bar{v}) = \emptyset \) then \(N(0) \cap N(U_\bar{v}) \) where

\[
U_{\bar{v}} = \{V^* \in R^n : V^* > 0 : \partial f(v^*) = 0\}
\]

(56)

is a way of stochastically solving problem (53). Thus we have

Lemma 5 Suppose that \(U_\bar{v} \). Thus there exist a neighborhood \(N(U_\bar{v}) \subseteq D(\partial f) \) of \(U_\bar{v} \) such that for any initial guess \(\dot{v} \in (U_\bar{v}) \) the non-negative minimizer \(U_\bar{v} \) is obtained as a limit of iteratively constructed sequence \(\langle v^j \rangle_{j=1}^{\infty} \) generated from \(\dot{v} \) by \(V^{j+1} = V^j - P^j d^j \).

Then with \(\dot{v} \) as our starting point we search for the minimizer of \(f \) as follows:

- **Starting at** \(\dot{v} \) as in equation (55)
 1. **Compute the** \(d^k \) **as in equation (53)**
 2. **Compute the** corresponding \(p \) **as specified below**
 3. **Compute** \(V^{k+1} = V^k - p_k^k d^k \).

Has the process converge? i.e. \(\| V^{k+1} - V^k \| < \sigma, \sigma > 0 \), if yes then \(\| V^{k+1} - V^k \| = 0 \).

Theorem 6 Let \(p_k \) be a real sequence such that

1. \(p^0 = 1, 0 < p^k < 1, \forall k > 1 \),
2. \(\sum_{k=0}^{\infty} p_k = \infty \),
3. \(\sum_{k=0}^{\infty} p_k^2 < \infty \).

Then the sequence \(\langle v^k \rangle_{k=0}^{\infty} \) generated by \(\dot{v} \in \phi(U_\bar{v}) \subseteq D(\partial f) \) and defined iteratively by \(V^{j+1} = V^j - P^j d^j \) remain in \(D(\partial f) \) and coverage strongly to \(U_\bar{v} \).

Proof. Let \(b_k = p_k \| d^k - \partial f^k \| \). Then \(\langle b_k \rangle_{k=1}^{\infty} \) is a sequence of independent random variable and \(E(b_k) = 0 \) for each \(k \). Noticing that the sequence of partial sums \(\langle S_k \rangle_{k=1}^{\infty} = \sum_{j=1}^{k} b_j \) is a martingale. Therefore

\[
E(S^2_k) = \sum_{j=1}^{k} b_j^2 = \sum_{j=1}^{k} P^2 j E \| d^j - \partial f^j \|^2
\]

\[
= M^{-1} \sigma^2 \sum_{j=1}^{k} p^2 j
\]

and \(\sum E b_j^2 < \infty \), since \(\sum_{j=1}^{k} P^2 j < \infty \). Hence by a version of martingale convergence theorem whittle [25], we have

\[
\log_{k \to \infty} S_k = \sum_{j=1}^{\infty} p^2 j < \infty
\]

so that

\[
\log_{k \to \infty} p_k \| d^k - \partial f^k \| = 0.
\]

Noticing that in (49), \(L \) is positive definite so that \(f(v) \) is convex and hence \(\partial f \) is monotone. But an earlier result in theory of monotone operators, due to chidume [26], shows that the sequence \(\langle V^k \rangle \) generated by \(V^0 \in D(\partial f) \) and defined iteratively by

\[
V^{k+1} = V^k - p_k^k \partial f^k
\]

remain in \(D(\partial f) \) and converges strongly to \(V^* \) if \(U_\bar{v} \neq 0 \). It follows from this result that our sequence converges strongly to \(U_\bar{v} \) if \(U_\bar{v} \neq 0 \).
7 Numerical Experiment

In our numerical example, we price American put options. The parameters for the Black-Scholes model are the same as in White [20] and they are defined below:

Table 1: Estimated parameters for the Black-Scholes model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Notation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk free interest rate</td>
<td>r</td>
<td>0.2</td>
</tr>
<tr>
<td>Dividend yield</td>
<td>q</td>
<td>0.1</td>
</tr>
<tr>
<td>Strike price</td>
<td>k</td>
<td>7</td>
</tr>
<tr>
<td>Volatility</td>
<td>σ</td>
<td>0.3</td>
</tr>
<tr>
<td>Time to expiry</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>Spot price</td>
<td>S_0</td>
<td>10</td>
</tr>
<tr>
<td>Ratio of Nodes</td>
<td>ϑ</td>
<td>30</td>
</tr>
</tbody>
</table>

We illustrate the method in a concrete setting, by first plugging the parameter in table 1 in (44) which gives $X_o \approx 17$ a positive periodic solution, satisfying that the stock price is positively correlated with the market. Hence substituting in (13 and 15), with time nodes 3×10^3 and space nodes 9×10^4 satisfying the ratio of nodes ϑ as stipulated, we have the financial matrix (3×3 tri-diagonal coefficient matrix);

$$L = \begin{pmatrix} 0.2 & 0.05 & 0 \\ -0.1 & 0.2 & 0.1 \\ 0 & -0.15 & 0.2 \end{pmatrix}.$$

By using the equation of total investment return;

$$r = d + q \quad (57)$$

where r is the risk adjusted discount rate for V (the worth); q is the dividend yield (or convenience yield in case of commodities) and d is the drift (or capital gain rate). Hence $d = 0.1$ for $q = 0.1$ and $d = 0.2$ for $q = 0.0$ (No dividend yield).

From (20), we have

$$\begin{pmatrix} 0.2 & 0.05 & 0 \\ -0.1 & 0.2 & 0.1 \\ 0 & -0.15 & 0.2 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} 0.2 \\ 0.2 \\ 0.2 \end{pmatrix}. $$

The actual solution by White [20] is $V(S,t) = 1.171339$ the PDE result is 0.14459568, which by Bjerksunet and Stensland [27] gives 0.14275. Approximations such as Bjerksunet and Stensland [27] are not accurate enough to test the accuracy of the finite different scheme. The stochastic approximation method above starting at $V_o = (0,0,0)$ gives a fixed point $V^*(S,t) = 1.2$ after one iteration for both values of the drift. This solution is the same as in White [20].

This shows that a stochastic approximation method can be used on a discretized financial PDE to price an American option and European option with a considerable success.

8 Conclusion

Wang et al [28] studied a financial PDE by the pricing of forward starting options under regime switching jump diffusion models, where they supposed that a market economy has only two states, one being stable state, the other a high volatility state. Wei et al. [29] studied an optimal reinsurance and investment problem for insurers under the mean-variance criterion in the stochastic interest rate and stochastic volatility environment, where the financial market consists of two assets: one is the risk-free asset (i.e. bond) and the other is the risky-asset (i.e. stock) whose volatility satisfying the Heston model. In this paper we considered a stochastic algorithm and multiple scale method on a drifted financial derivative system for pricing American options under the Black-Scholes model. For the Black-Scholes partial derivative, we employed central finite-difference approximation into first-order ordering differential equation and later transformed to a drifted financial derivative system. The multiple scale method was adopted in calculating the periodic solution resulted from a Hopf bifurcation of a discretized generic PDE to monitor and stabilize the oscillatory movement of the market price of stock, thereafter a stochastic algorithm was formulated to price an American option under the Black-Scholes model through a drifted financial derivative system. In numerical experiment, we formed a financial matrix and the value of the drift parameter using Table 1. With finer discretization, positive periodic solution; space nodes, and time nodes. We demonstrate that the drifted financial derivative system can be efficiently and easily solved with stochastic approximation method. This approach in turn, yields a fast method of pricing American option.

References:

