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Abstract: Stein et al. proposed a continuum mathematical model describing Glioblastoma invasion ob-
served in their experiments on the patterns of growth and dispersion of U87MG tumour spheroids in a
three-dimensional collagen-I gel. They identify and characterise discrete cellular mechanisms underlying
invasive cell motility from the experimental data. However in their experiments it is observed micro-
scopically that the U87MG invasive cells often exhibit more complicated and irregular behaviour than
expressed by their model. We propose a mathematical model by generalising the radially biased motility
term in their model based on the mechanism govering the behaviour of U87MG cell in the experiment.
We show a rigorous mathematical analysis of our model and give computer simulations of the experiment
based on our mathematical model.
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1 Introduction

In 2007 Stein et al. [30] presented results
from their experiment where tumour spheroids
are grown in three-dimensional collagen gels (cf.
[4], [8], [9], [28], [32]). They describe a continuum
mathematical model, based on a Swanson’s model
(see [29]), that allows us to quantitatively inter-
pret the data. Their mathematical model repro-
duces a characteristic behaviour of the U87MG
invasive cells that they have a strong radial direc-
tional motility bias away from the spheroid cen-
ter. Fitting the model to the experimental data
it is considered that glioma cells invade in a more
biased manner, away from the tumour spheroid
and are shed from the spheroid at a great rate,
suggesting lower cell-cell adhesion and they spec-
ified the extent of invasive cell population. If we
follow to their mathematical model, the path of
invasive cell should radiate along an invariant di-
rection and at a constant velocity. However it
is observed that they often exhibit more compli-
cated and unexpected behaviour, such as greatly
turn around or turn back to one’s path or so. In
order to describe such kind of behaviour of each
cell we generalise their mathematical model by

extending the radially biased motility term and
provide our mathematical model.

The goal of this paper is to better under-
stand the mechanism governing invasive cell be-
haviour. We show rigorous mathematical analy-
sis of our model and computer simulations of cell
motility closer to real trajectories from the experi-
ment than Stein’s one, based on our mathematical
model.

1.1 Mathematical models

Several mathematical models have been
known in the literature for cell invasion ([1]-[3],
[5], [10], [35]). In the model for core and invasive
cell behaviour by Swanson et al. [29], tumour
growth is described by a reaction-diffusion equa-
tion:

∂u

∂t
= D∇2u+ gu

(
1− u

umax

)
(1.1)

where cell concentration u moves along undi-
rected, random paths as a function of position
and time, cells throughout the tumour are as-
sumed to proliferate at a constant rate g until
they reach a limiting density, umax, the constant
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D is the diffusion (undirected motion); the larger
D becomes, the more motile the cells. This model
assumes spherical symmetry of the multicellular
tumour spheroid. The single-population reaction-
diffusion model has been used with some success
to describe how a tumour responds to chemother-
apy and why surgical removal of GBM is usually
not effective ([29]). This model is only applica-
ble for tumours that are > 1mm3 and it fails for
smaller tumours.

Stein et al. [30] considered that the inva-
sive cells are biased to move away from the center
of the tumour spheroid at an average speed, v
(cf. [32], [34]). It has been observed that invasive
cells may follow to radially directed paths away
from the tumour spheroid. The cause of this bias
might be due to some attractant in the environ-
ment, specified in Remark 1, repulsion from waste
products produced by the spheroid, or a realign-
ment of the collagen gel as the cells move. They
proposed the following equation for the evolution
of the cell population, u

∂u

∂t
= D∇2u︸ ︷︷ ︸

diffusion

− v∇r · u︸ ︷︷ ︸
a radially biased motility

+ sδ(r −R(t))︸ ︷︷ ︸
shedding invasive cells rate

+ gu

(
1− u

umax

)
︸ ︷︷ ︸

proliferation

. (1.2)

The behaviour of invasive cells can be de-
scribed by four parameters: {D, v, s, g}. Invasive
cells are introduced into the population through
shedding from the core surface, s, and prolifer-
ation, g. Cell motility is modeled as having an
undirected component, D, and a radially biased
motile constant, v. In the above equation, δ is the
Dirac delta function, r is the spatial coordinate for
the radial distance from the tumour center, and
R(t) is the radius of the core at time t.

In the experiment of glioma tumour 3D in-
vasion in collagen gel by Stein et al. (cf. [28],
[30],[32]), invasive cells with the radially directed
motility away from the spheroid center make a
progress in the beginning and later they often
exhibit more complicated behaviour (see Figure
1(a)). It seems that such complicated behaviour
of invasive cells can not be well reproduced by
their simulation as in Figure 1(b), because their
radially biased motility term of (1.2) is in the
linear form. In order to describe nonlinear paths
of cells we need to consider a mathematical model
generalised the radially biased component in (1.2)
to a nonlinear term. Then we give rigorous math-
ematical analysis of our mathematical model and

computer simulation of cell motility based on it.

(a) (b)

Figure 1. (a) Cell trajectories (b) Simulation
of cell trajectories, from in vitro experiment of
glioma tumour U87MG 3D invasion in collagen-I
gel performed by Stein and coworkers in [32] (cf.
[28]).

In Figure 1, compared (a) with (b), each path of
(b) is seen to be much simpler than (a).

1.2 Mathematical model generalising
the term of radially biased motil-
ity

Since we especially focus on the behaviour of
each dispersing cell leaving from the center the
spheroid, neglecting the effect of δ function and
proliferation in (1.2), that is, we consider instead
of (1.2)

∂u

∂t
= D∇2u− v∇r · u. (1.3)

Further we generalise ∇r · u to some nonlinear
term as follows. For r = (r1, · · · , rn) we have

∇r · u = (r1, · · · , rn) · (ux1 , · · · , uxn)

= ∇u · (r1, · · · , rn) = ∇ · u(r1, · · · , rn)
= ∇ · u∇(x1r1 + · · ·+ xnrn),

replacing (x1r1 + · · · + xnrn) by log(α + w) for
a new unknown function w and a non-negative
constant α

∇ · (u∇ log(α+ w)). (1.4)

Therefore (1.3) is extended to the following equa-
tion.

∂u

∂t
= D∇2u−∇ · (u∇ log(α+ w)). (1.5)

In fact, when we put w = ex1r1+···+xnrn − α, it is
seen that log(α + w) = x1r1 + · · · + xnrn, which
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means that (1.5) is a generalisation of (1.3) rig-
orously. (1.5) is considered in a more general
from by Othmer-Stevens [25] which is a contin-
uum model of reinforced random walk where w
is called control species and log(α + w) is a sen-
sitivity function (see Davis [6]). Hence it is seen
that (1.5) admits a random walking of the invasive
cell along the direction and the velocity indicated
by the radially biased component in (1.2). The
following system for (1.5) is applied to a under-
standing of tumour angiogenesis ([2], [24]).

(1.6)



∂u

∂t
= D∇2u−∇ · χ0(u∇ log(α+ w))

in Ω× (0,∞)

∂w

∂t
= −kuw in Ω× (0,∞)

∂

∂n
u|∂Ω = 0 on ∂Ω× (0,∞)

u(x, 0) = u0(x) in Ω

where D is a positive constant, Ω is a bounded
domain in Rn and ∂Ω is a smooth boundary of Ω
and n is the outer unit normal vector and χ0 is a
positive constant .

The second equation describes the inter-
action between each endothelial cell and some at-
tractant. In this paper we assume that such at-
tractant is N-cadherin.

Remark 1. In fact,it is known that N-cadherin
is produced on the surface of invasive tumour cell
due to the interaction with collagen-I and it trig-
gers tumour cells migration(see [23]).

2 Mathematical analysis

In this section we review known mathemati-
cal results related to Othmer and Stevens model
and Anderson and Chaplain model, which in-
cludes (1.6) and play an important role to carry
out the computer simulation in the latter.

2.1 Known result

In Kubo [17] and Kubo and Kimura [18] the
following initial Neumann-boundary value prob-
lems of nonlinear evolution equations is consid-

ered (cf. [19]-[22]).

(NE)



utt = D∇2ut +∇ · (χ(ut, e−u)e−u∇u)

in Ω× (0,∞) (2.1)

∂

∂n
u|∂Ω = 0 on ∂Ω× (0,∞) (2.2)

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω (2.3)

Suppose that the following assumption (A) holds.

(A) Let Br+ = Br ∩R×R+, where Br is a ball
of radius r at 0 in R2. For any constant r > 0
and (s1, s2) ∈ Br+ there exist positive constants
cr, c

′
r and δr such that for a parameter b > 0 and

any integer m ≥ [n/2] + 3

cr(b− δr) < χ(s1 + b, s2) ∈ Cm(R×R+), (2.4)

sup
(s1,s2)∈Br+

0≤k+l≤m

|(∂k
s1∂

l
s2χ)(s1 + b, s2)| ≤ c′r, (2.5)

where we denote
∂

∂si
= ∂si , i = 1, 2.

Now let us introduce function spaces. First,
H l(Ω) denotes the usual Sobolev space W l,2(Ω)
of order l on Ω. For functions h(x, t) and k(x, t)
defined in Ω× [0,∞), we put

(h, k)(t) =

∫
Ω
h(x, t)k(x, t)dx,

∥h∥2l (t) =
∑
|β|≤l

∥∂β
xh(·, t)∥2L2(Ω), (2.6)

where ∂x=(∂x1 , · · · , ∂xn), ∂xi =
∂

∂xi
, i = 1, · · · , n

and β = (β1, · · · , βn) is a multi-index.
The eigenvalues of −∆ with the homogeneous

Neumann boundary conditions are denoted by
{λi|i = 1, 2, · · · }, which are arranged as 0 < λ1 ≤
λ2 ≤ · · · → +∞, and φi = φi(x) indicates the L2

normalised eigenfunction corresponding to λi.
For a non-negative integer l, we denote

by W l(Ω) the function space spanned by
{φ1, φ2, · · · , φn, · · · } in H l(Ω). Taking λ1 ̸=
0 into account, it is noticed that we have∫
Ω h(x)dx = 0 for h(x) ∈ W l(Ω), which enables us
to use Poincare’s Inequality. Then the following
result is obtained in [17] and [18].

Theorem 2. Assume that (A) holds and
(h0(x), h1(x)) ∈ Wm+1(Ω)×Wm(Ω) for h0(x) =
u0(x)− a and h1(x) = u1(x)− b. For sufficiently
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large a and any b > 0 there is a solution u(x, t)(=

a+bt+v(x, t)) ∈
1∩

i=0

Ci([0,∞);Hm−i(Ω)) to (NE)

such that for u1 = |Ω|−1
∫
Ω
u1(x)dx

lim
t→∞

∥ut(x, t)− u1∥m−1 = 0. (2.7)

Remark 3. The above theorem implies that
u(x, t) is a classical solution of (NE) and
ut(x, t) → b as t → ∞. Also this result justifies
the computer simulation based on the mathemati-
cal model (1.6) shown in section 3.

2.2 Application to mathematical mod-
els

(i) First we apply Theorem 1 to our problem
(1.6) following to Levin and Sleeman [24]. Put

logw(x, t) = −
∫ t
0 u(x, τ)dτ = U(x, t) in the sec-

ond equation of (1.6), then the first two equations
of (1.6) are reduced to

Utt = D∆Ut +∇ ·
(

χ0e
−U

1 + αe−U
Ut∇U

)
which is regarded as the same type of equation as
(2.1) and satisfies the condition (A). Therefore
it is clear that Theorem 1 holds for (1.6) and it
implies that there exists a classical solution u(x, t)
to (1.6) such that

lim
t→∞

∥u(x, t)− u0∥m−1 = 0.

(ii) In [25] Othmer and Stevens proposed
a parabolic-ODE system arising from reinforced
random walks, which is applied to chemotactic
aggregation of myxobacteria etc.,

Pt = D∆P −D∇ · P∇ log Φ(W ),Wt = ±kWP,

in Ω× (0,∞)
(2.8)

P∇
(
log

P

Φ(W )

)
·n = 0, on ∂Ω×(0, T ) (2.9)

P (x, 0) = P0(x),W (x, 0) = W0(x) ≥ 0, in Ω
(2.10)

where the sensitivity function is given by Levin
and Sleeman [24] in the form

Φ(W ) =

(
W + α

W + β

)a

, α, β > 0,

the unknown functions P = P (x, t) and W =
W (x, t) stand for the particle density of a par-
ticular species and the density of local control
species, respectively. Levine and Sleeman [24] ap-
plied the model for the understanding of tumour
angiogenesis. The existence of global solutions of
(2.8)-(2.10) are studied (see [14]-[22]) in the same
manner as in (i).

We can carry out computer simulations of
these models appeared in (i)-(ii) by the rule of
reinforced random walk because Othmer-Stevens
model is a continuum model of reinforced random
walk (see Davis [6]) and based on it Sleeman and
Wallis [33]. Since (1.6) is considered as a special
case of Othmer-Stevens model, the simulations of
the models of (i)-(ii) can be conducted by using
the rule of reinforced random walk, which shown
in Figures 4 in the next section. As mentioned,
the cause of radially biased motility of cells mainly
depends on N-cadhelin and in our model we can
consider a mechanism deriving invasive cells radi-
ally as reinforced randomwalk instead of the linear
term deriving radially biased motility of invasive
cells in Stein et al. [30].

On the other hand, the simulation for a math-
ematical model of in vitro experiment for endothe-
lial cell migration is given by [27], [31] in the sim-
ilar way.

3 Computer simulation

In this sections we carry out computer sim-
ulation based on our mathematical model by re-
inforced random walk according to Sleeman and
Wallis [33] (see [25]), which are shown in Figures
5 and 6.

The following picture in Figure 2 is the image
of the 2D projection of the experiment in vitro
of glioma tumour 3D invasion in collagen gel per-
formed by Eke and coworkers in [8], which is the
same type of experiment as Stein et al. ([30]).
For our convenience we choose only seven typical
curved paths of each single invasive cell from the
experiment and draw them as solid lines marking
by (a)-(c) with moderately curved paths, (d)-(g)
with ｇ reatly curved trajectries of each single in-
vasive cell on the picture (see Figure 2). In Figure
3 we intend to reproduce the three solid lines in
Figure 2 by using 3D random walk type of simu-
lations based on our mathematical model.
All the computer simulations shown in this section
are conducted by Mathematica 8.

We can reproduce (a)-(g) in Figure 2 by
computer simulations in Figure 3 based on our
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model. It is evidently so closer to the real paths
than Stein’s type of simulation Figure 1 (b).

Figure 2. The image of 2D projection to x − y
plain of the experiment in vitro of U87MG glioma
3D invasion in collagen gel performed by Eke and
coworkers in [8], which is similar to the experi-
ment in [30], [35]. The path (c) indicates that the
cell initially radiates and after that turns around
greatly. In the path (b) it is observed that the cell
changes the direction several times. In the path
(a) once the cell arrives at the edge of the extent
of invasive cells, it suddenly turns back to one’s
way and after that moves from the center to the
outside again. The paths (d)-(g) are curved more
greatly.

Figure 3. Simulations of the path of each cell
corresponding to the solid lines (a)- (g) in Figure
2 respectively..

4 Conclusion

The data of the experiment provides clear ev-
idence that the tumour spheroid cells move away
from it at a constant rate initially in the radial
direction and after that the radial velocity bias

decrease. It seems to be important to gain the un-
derstanding of the mechanism of invasion in these
in vitro experiments so that their usefulness in
understanding the in vitro situation can be un-
derstood. However in the mathematical model by
Stein et al. [30] the radially biased component im-
plies that the cell motility with a constant velocity
and a constant radial direction is quite different
from real cell paths observed in the experiment.
Supposed that the cause of radial bias is due to
some attractant, N-cadhelin, we propose a math-
ematical model generalised and improved the ra-
dially biased motility term of the model of [30] so
that it covers more realistic motility as observed
in the experiment of Eke et al. [8] or Stein et al.
[30] [32]. In fact, we choose some typical paths
of U87MG cells in the experiment as shown in
Figure 2. We show a rigorous mathematical anal-
ysis of our model and give computer simulations
corresponding to solid lines in Figure 2 based on
our mathematical model, which realise more real-
istic behaviour of invasive cell than Stein’s type
of ones.
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