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Abstract:We propose the sparse multinomial logistic regression (SMLR) model for spectral-spatial classification
of hyperspectral images. In the proposed method, the parameters of SMLR are iteratively estimated from log-
posterior by using Laplace approximation. The proposed update rule provides a faster convergence compared to
the state-of the-art methods used for SMLR parameter estimation. The estimated parameters are used for spectral-
spatial classification of hyperspectral images using a spatial prior. The experimental results on real hyperspectral
images show that the classification accuracy of proposed method is also better than those of state-of-the art meth-
ods.
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1 Introduction

Hyperspectral image classification is a challenging
problem due to high dimensionality and spatial corre-
lation. Several deterministic and probabilistic classi-
fication methods are proposed in the literature. Multi-
nomial logistic regression (MLR) and its sparse ver-
sion is a probabilistic state-of-art-method used in hy-
perspectral image classification. MLR is known as
softmax in machine learning and neural network lit-
erature [4]. It is also used in recently emerged deep
learning studies [1]. In this study, we use SMLR for
spectral-spatial classification of hyperspectral images
along with a new learning rule that improves the con-
vergence speed and classification accuracy.

Krishnapuram et al [11] propose SMLR and re-
lated parameter estimation algorithms which are ob-
tained by using Taylor series expansion and a lower
bound for Hessian matrix proposed in [5]. In [11]
Laplace prior is used for the parameters of the classi-
fier. SMLR is firstly applied to hyperspectral images
in [6], [7]. In those studies, a faster version of the
algorithm in [11] is proposed using the block Gauss-
Siedel method [13]. In [12], a less computationally
complex algorithm called LORSAL [3] is proposed
for parameter estimation in MLR.

In this study, we use a new parameter estimation
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algorithm for SMLR [8]. Since parameter estimation
in SMLR is nonlinear problem without closed-form
solution, we resort to an iterative algorithm. The al-
gorithm is based on two approximations 1) 2nd order
Taylor series expansion of the log-posterior of the pa-
rameters and 2) an approximate Hessian matrix [5].
We also use a spatial model as a prior to SMLR model
to achieve contextual classification. The spatial model
is based on spatially varying mixture model proposed
in [10], [9].

The organization of the paper is as follows. Sec-
tion 2 introduces the proposed model. Section 3 gives
the details of the SMLR parameter estimation algo-
rithm. Section 4 presents the spatial model and con-
textual classification algorithm. The experimental re-
sults are reported in Section 5. Section 6 summarizes
the conclusion.

2 Proposed Model
A pixel is denoted by the vectorsn of lengthL in a
hyperspectral image which hasN pixels andL spec-
tral bands. Each element of a pixel vector comes from
a spectral band, therefore a hyperspectral image can
be considered as a collection ofL different images.

In this study, the hyperspectral image is modeled
as a mixture of multinomial logistic regression mod-
els, therefore each pixel is assumed to be generated
from a different multinomial distribution. In addition
to spectral modeling, an spatial model is used in order
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to take advantage of pixel neighborhoods for classifi-
cation.

Assuming that there areK number of land cover
classes in the hyperspectral image, we define aK-
dimensional label vectorzn ∈ {0, 1}K for each pixel
with the property that

∑K
k=1 zn,k = 1. The joint den-

sity of sn andzn for n = 1, 2, . . . , N is given by

p(s1:N , z1:N |ω1:K , β) = (1)
[

N
∏

n=1

K
∏

k=1

p(sn|ωk)
zn,k

]

p(z1:N |β)

where the class densityp(sn|ωk) and the spatial prior
density of the class labelsp(z1:N |β) are explained in
the following sections. In (1),ωk is the vector of re-
gression parameters.

3 Multinomial Logistic Regression
We assume that a pixel vector is generated from one of
K multinomial distributions each of which represents
a class. Probability of a pixel given a class label can
be written as follows:

p(sn|zn,k = 1,ω1:K) =
eω

T
k
sn

∑K
j=1 e

ω
T
j
sn

(2)

wherezn,k is the binary label forkth class. Using
(2), the conditional probability of hyperspectral vector
sn given the class label vectorzn and the regression
parametersω1:K is a multinomial distribution such as

p(sn|zn,ω1:K) =
K
∏

k=1





eω
T
k
sn

∑K
j=1 e

ω
T
j
sn





zn,k

(3)

In order to obtain sparse regression coeffi-
cients, we may define some sparse prior distributions.
Widely used sparse prior in Bayesian estimation is
Laplace prior given as follow:

p(ω1:K |λ) =
K
∏

k=1

λ

2
e−λ||ωk||1 (4)

where||ωk||1 =
∑L

l=1 |ωk,l| denotes thel1 norm.
To find the maximum-a-posteriori estimate of

the regression coefficientωk, let consider the log-
posterior obtained by using (3) and (4) as follows:

L(ω) =
N
∑

n=1

[

K
∑

k=1

zn,kω
T
k sn (5)

− log
K
∑

j=1

exp
(

ω
T
j sn

)



− λ
K
∑

k=1

||ωk||1

whereω = [ωT
1 , . . . ,ω

T
K ]T . The second order Taylor

series expansion ofL(ω) aroundω(t) is

L(ω)− L(ω(t)) = (ω − ω
(t))TgL(ω

(t)) (6)

+
1

2
(ω − ω

(t))THL(ω
(t))(ω − ω

(t))

whereHL(ω
(t)) is the Hessian matrix andgL(ω(t)) is

the gradient vector. We can decomposeHL(ω
(t)) in

two parts, i.e. thatHL(ω
(t)) = Hℓ(ω

(t))+λΛ(ω(t)).
The first and the second terms are the Hessian ma-
trices obtained from the log-likelihood and log-prior,
respectively. Maximizing the right-hand side of (6)
yields the following lower bound iterate

ω
(t+1) = ω

(t) − (Hℓ(ω
(t)) + λΛ(ω(t)))−1gL(ω

(t))
(7)

According to Theorem 2.1 in [5], the Hessian ma-
trix Hℓ(ω

(t)) can be lower bounded such as

HL(ω) = Hℓ(ω) + λΛ(ω) ≥ B+ λΛ(ω) (8)

Rather than calculating the Hessian matrixHℓ(ω)
in each iterations, we can use its constant approxima-
tion. In this case, the iterations becomes as follow

ω
(t+1) = ω

(t) − (B+ λΛ(ω(t)))−1gL(ω
(t)) (9)

The update equation in (9) is different from
the one given in [11], because we apply the Tay-
lor approximation to log-posterior rather than log-
likelihood. To reduce the computational cost due to
large scale matrix inversion in (9), component-wise
update rule can be used. In each iteration one of the
regression coefficients can be updated. Update rule
for thekth regression vector is found as follows

ω
(t+1)
k = ω

(t)
k − [Bkk + λΛ(ω

(t)
k )]−1[gk(ω

(t)
k )

+
1

2

∑

j 6=k

(Bkj + λΛ(ω
(t)
j ))ej

+λsign(ω
(t)
k )] (10)

where
ej = ω

(t)
j − ω

(t−1)
j (11)

Each block of the approximate Hessian matrixB is
calculated as

Bkj = −
1

2
(δkj − 1/K)STS (12)
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whereS = [s1, s2, . . . , sN ]T and δkj is Kronecker
delta function. The gradient vector with respect toωk

is calculated as

gk(ω
(t)
k ) =

N
∑

n=1

(zn,k − πn,k)sn (13)

where

πn,k =
eω

T
k
sn

∑K
j=1 e

ω
T
j
sn

(14)

We use the sameΛ function proposed in [11] such as

Λ(ωk) = diag{|ωk,1|
−1, |ωk,2|

−1, . . . , |ωk,L|
−1}

(15)

4 Spatial Smoothing
For spatial smoothing of classification map, we use
spatially varying mixture model proposed in [10], [9].
Spatial prior is given by

p(z1:N |β) = (16)
∏K

k=1 exp
{

β
∑N

n=1 zn,k
(

1 + 1
2

∑

m∈ñ zm,k

)}

Z(β)

whereZ(β) is the normalization term and̃n denotes
the set of pixels around thenth pixel.

After learning the parametersω1:K , we can per-
form the classification step by maximizing the poste-
rior of the class labelszn, n ∈ B whereB is the set
of test data indices. Since the joint maximization of
the posterior of the class labels is not possible, we re-
sort to iterated conditional mode (ICM) algorithm [2].
From (3) and (16), we can write the conditional ofzn
to be maximized as

p(zn|zn, sB, θ̂1:K , β) ∝ p(sn|zn, θ̂1:K)p(zn|zñ, β)

=
K
∏

k=1





eω
T
k
sn

∑K
j=1 e

ω
T
j
sn

eβvn,k

∑K
j=1 e

βvn,j





zn,k

(17)

wheren = {1, 2, . . . , N}\{n}.

5 Experimental Results
For experiments, we use four well-known HSI data
sets which are Indian Pines, Pavia Centre, Pavia Uni-
versity, and Salinas. Indian Pines data set is obtained
by Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) over Northern Indiana on June 12, 1992.
The data set contains a145 × 145 pixels and 220
bands HSI, and a 16-class ground-truth map. We re-
move the 20 noisy bands and use 200 spectral bands

in our experiments. Pavia Centre and Pavia University
data sets are obtained by the ROSIS sensor over Pavia,
Italy. Pavia Centre data set consists of an HSI that has
1096 × 715 pixels and 102 spectral bands, and Pavia
University data set contains a610 × 340 pixels and
103 spectral bands. Both Pavia Centre and Pavia Uni-
versity data sets have ground truth maps of 9 classes.
Salinas data set is an HSI image of 224 spectral bands
that was acquired by the AVIRIS sensor over Salinas
Valley, California. It contains512× 217 pixels within
16 classes, and we remove the 20 noisy bands in our
experiments.

We compare the performance of the proposed
learning rule APSMLR with its two predecessors,
namely component-wise SMLR (CWSMLR) [11] and
LORSAL [3]. We use Markov random fields prior as
a spatial model for CWSMLR and LORSAL.

We construct the training set by randomly choos-
ingNk = 50 pixels from each class, and use the rest of
the pixels as test sets. Since some of the classes have
small sample size, we use following rule to assignNk

i.e. Nk = min{Nk, Nc/2} whereNc is total number
of the ground-truth pixels. The initial values ofω1:K

are set to1/1000. In order to completely remove the
intervention of the training samples, we do not use
the training samples at initialization ofzn. Otherwise,
training samples affect the results diffusely due to spa-
tial smoothing model.

Table 1-4 lists the average overall accuracies
(OAs) calculated using the results of 20 random runs
of the algorithms. As seen from Table 1-4, proposed
APSMLR algorithm gives better classification results
than other two algorithms according to OA andκ
measures. Considering the standard deviations cal-
culated over 20 random runs, APSMLR algorithm
yields better results as well. While the slowest al-
gorithm is CWSMLR, LORSAL is the fastest one.
Although LORSAL is more or less 5 times faster
than APSMLR, its OA andκ values are worse than
APSMLR.

Table 1: Average OAs andκ measures along with
standard deviations and computation time for Indian
Pines.

OA std. κ std. time

CW-SMLR 55.96 ± 8.96 0.55 ± 0.0912 6.4276

LORSAL 55.92 ± 7.29 0.55 ± 0.0742 0.0854

APSMLR 75.92 ± 7.02 0.75 ± 0.0719 0.6339

As seen from Fig. 1, CWSMLR and LORSAL al-
gorithms are not converged to a stable point after 100
iterations. However, APSMLR algorithm converges
after a few iterations. According to our experiment,
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Table 2: Average OAs andκ measures along with
standard deviations and computation time for Pavia
Centre.

OA std. κ std. time

CW-SMLR 93.56 ± 3.53 0.93 ± 0.0253 1.2166

LORSAL 76.38 ± 8.77 0.76 ± 0.0882 0.0354

APSMLR 98.08 ± 0.34 0.98 ± 0.0035 0.1167

Table 3: Average OAs andκ measures along with
standard deviations and computation time for Pavia
University.

OA std. κ std. time

CW-SMLR 65.96 ± 7.77 0.65 ± 0.0785 1.2142

LORSAL 59.91 ± 4.91 0.59 ± 0.0498 0.0333

APSMLR 76.91 ± 4.38 0.76 ± 0.0439 0.1020

Table 4: Average OAs andκ measures along with
standard deviations and computation time for Salinas.

OA std. κ std. time

CW-SMLR 70.40 ± 3.91 0.70 ± 0.0839 9.0545

LORSAL 66.67 ± 8.30 0.66 ± 0.0394 0.1018

APSMLR 93.72 ± 0.74 0.93 ± 0.0075 0.8127

5-10 iterations are adequate for APSMLR.
Fig. 2 shows the classification maps of Indian

Pines data obtained by three algorithms along with the
ground-truth.

6 Conclusion
We propose a new iterative algorithm for sparse MLR
(or softmax) parameter estimation. The proposed al-
gorithm converges to a solution faster than its prede-
cessors. Its classification performance is better. In this
study, we apply the algorithm to hyperspectral image
classification problem but it can be used in any appli-
cation area for classification.
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