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Abstract: For a variational inequality problem (VIP) with a psudomonotone mapping F on its solution set C∗,
we give equivalent statements for C∗ to be determined by the zeroes Γ(c∗) of the primal gap function of VIP,
where c∗ ∈ C∗. One sufficient condition is also presented in terms of weaker sharpness of C∗. With the
psudomonotonicity∗ of F onC∗ being characterized, C∗ turns out to coincide with the zeroes Λ(c∗) of the dual gap
function of VIP. If also F has the same direction on Γ(c∗), then Γ(c∗) coincides with C∗, Λ(c∗), and the solution
set C∗ of the dual variational inequality problem. This has further been shown to be equivalent to saying that F is
constant on Γ(c∗) when F is psudomonotonone+ on C∗.

Key–Words: Variational inequality, minimum principle sufficiency, weaker sharpness, pseudomonotonicity∗, gap
functions

1 Introduction
Let H be a Hilbert space and F : H → H a map-
ping. For a nonempty convex closed subset C in H ,
the variational inequality problem (VIP(C, F)) is to
find c∗ ∈ C such that

〈F (c∗), c− c∗〉 ≥ 0 for all c ∈ C

while the dual variational inequality problem
(DVIP(C, F)) is to solve the following inequality for
c∗ ∈ C such that

〈F (c), c− c∗〉 ≥ 0 for all c ∈ C.

We denote their solution sets by C∗ and C∗ respec-
tively and suppose that the solution sets are nonempty.

Variational inequality problems receive our atten-
tion because of their great number of applications for
which the reader can refer to [4, 5] and references
therein.

To study C∗ and C∗, we define the primal gap
function associated with VIP(C, F) by

g(x) := sup{〈F (x), x− c〉 : c ∈ C} for x ∈ H

and the dual gap function G(x) associated with
DVIP(C, F) by

G(x) := sup{〈F (c), x− c〉 : c ∈ C} for x ∈ H.

Their evaluation is relevant to the following two sets:

Γ(x) := {c ∈ C : 〈F (x), x− c〉 = g(x)};
Λ(x) := {c ∈ C : 〈F (c), x− c〉 = G(x)}.

It is easy to see that the functions g andG are nonneg-
ative on C. Using the above concepts and the follow-
ing relations, we can determine whether a point c ∈ C
lies in C∗ ∪ C∗ or not:

c ∈ C∗ ⇔ g(c) = 0 ⇔ c ∈ Γ(c);

c ∈ C∗ ⇔ G(c) = 0 ⇔ c ∈ Λ(c)

(see [10, Proposition 2.1]). In addition, there hold the
following inclusions

C∗ ⊆ Λ(c∗) for c∗ ∈ C∗,
C∗ ⊆ Γ(c∗) for c∗ ∈ C∗

([10, Proposition 2.3]). Hence, if Γ(c∗) ⊆ C∗ for
some c∗ ∈ C∗, then Γ(c∗) = C∗. In particular,
if Γ(c∗) ⊆ C∗ ⊆ C∗ for some c∗ ∈ C∗, then
C∗ = C∗ = Γ(c∗). In such case, C∗ (and C∗) co-
incides with Γ(c∗) and the VIP is said to possess min-
imum principle sufficiency (MPS). As a solution set
of a linear programming, Γ(x) is easier to be found
than others. So it makes sense to study sufficient
conditions for Γ(x) ⊆ C∗ to hold. In [3], Ferris
and Mangasarian studied a convex quadratic program-
ming with nonempty solution set S. They have proved
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that the MPS property is equivalent to the span of the
Hassian of the objective function being contained in
the normal cone to the feasible region at any solu-
tion point, plus the cone generated by the gradient
of the objective function at any solution point. This
is in turn equivalent to the quadratic program having
a weak sharp minimum, which has been extended in
[1]. As one sufficient condition for Γ(c∗) ⊆ C∗, the
concept of weak sharpness of C∗ has similarly been
introduced in [8] and extensively studied in terms of
gap functions for several special cases of C∗ ⊆ C∗
(see [6, 7, 10, 11, 13]).

For the general caseC∗ ⊆ C∗, it is easy to see that
Γ(c∗) ⊆ C∗ iff C∗ = Γ(c∗) = C∗. So it is of certain
significance to characterize Γ(c∗) ⊆ C∗ without other
assumptions. In this paper we first present such a char-
acterization in Section 2. In Section 3, we apply the
characterization to the case where C∗ is weaker sharp
(a more general case than weakly sharp) and weaker
sharpness of C∗ will be further characterized. Sec-
tion 4 is devoted to characterizing a pseudomonotone∗
mapping on C∗ in which the same direction of F on
Γ(c∗) implies the minimum principle sufficiency of
VIP. In Section 5 we study a pseudomonotone+ map-
ping on C∗ and show that constancy of F on Γ(c∗) is
equivalent to minimum principle sufficiency of VIP.

For further discussion, we recall some notions for
this paper as below.

For a nonempty convex set C, the normal cone
NC(x) to C at x ∈ H is defined by{
{ ξ ∈ H : 〈ξ, c− x〉 ≤ 0 for all c ∈ C} if x ∈ C;
∅ if x 6∈ C.

The tangent cone to C at x is given by

TC(x) := {v ∈ H : 〈v, ξ〉 ≤ 0 for all ξ ∈ NC(x)}
= {v ∈ H : d′C(x; v) = 0}

(see [2]), where dC stands for the distance function
associated with C given by

dC(x) := inf{‖c− x‖ : c ∈ C} for x ∈ H

and d′C(x; v) is the directional derivative of dC at x in
the direction v ∈ H:

d′C(x; v) := lim
t→0+

dC(x+ tv)− dC(x)

t
.

For c∗ ∈ C∗, we have

−F (c∗) ∈ NC(c∗) = [TC(c∗)]◦,

whereA◦ is the polar set ofA. The setC∗ is said to be
weakly sharp (according to Patriksson [9]) provided
that

−F (c∗) ∈ int
⋂
c∈C∗

[TC(c)∩NC∗(c)]◦ for all c∗ ∈ C∗.

This is equivalent to saying that for each c∗ ∈ C∗

there exists α > 0 such that

αB ⊆ F (c∗) +
⋂
c∈C∗

[TC(c) ∩NC∗(c)]◦,

whereB denotes the open unit ball inH withB being
its closure.

A mapping F : H → H is said to be

(i) pseudomonotone at x ∈ C if for each y ∈ C
there holds

〈F (x), y − x〉 ≥ 0⇒ 〈F (y), y − x〉 ≥ 0;

(ii) pseudomonotone∗ at x ∈ C if F is pseudomono-
tone at x and, for each y ∈ C,

〈F (x), y − x〉 ≥ 0 and 〈F (y), y − x〉 = 0

⇒ F (y) = k(y)F (x) for some k(y) > 0;

(iii) pseudomonotone+ at x ∈ C if F is pseudomono-
tone at x and, for each y ∈ C,

〈F (x), y − x〉 ≥ 0 and 〈F (y), y − x〉 = 0

⇒ F (y) = F (x);

(iv) pseudomonotone (pseudomonotone∗, pseu-
domonotone+) on a set A ⊆ C if it is
pseudomonotone (pseudomonotone∗, pseu-
domonotone+) at each x ∈ A.

2 Characterization of Γ(x) ⊆ C1

For x ∈ C, let Γ(x) 6= ∅. By the definitions of C∗ and
Γ(x), x ∈ C∗ iff 〈F (x), c−x〉 ≥ 0 for all c ∈ Γ(x) iff
there exists c ∈ Γ(x) such that 〈F (x), c− x〉 ≥ 0. So
if Γ(x) ⊆ C1 ⊆ C and 〈F (x), c − x〉 ≥ 0 for all c ∈
C1, then x ∈ C∗. In addition, for each c ∈ C\Γ(x)
there exists c ∈ Γ(x) such that

〈F (x), x− c〉 < 〈F (x), x− c〉,

from which we have 〈F (x), c − c〉 > 0. The follow-
ing proposition states that it is the inequality that com-
pletely characterizes the inclusion Γ(x) ⊆ C1.

Proposition 1 Let ∅ 6= C1 ⊆ C. Then, for x ∈ H ,
the following are equivalent:

(i) Γ(x) ⊆ C1.

(ii) For each c ∈ C\C1 there exists c ∈ C such that

〈F (x), c− c〉 > 0.
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Hence, for x ∈ H , if ∅ 6= C1 ⊆ Γ(x), then Γ(x) = C1

iff (ii) holds.

Proof: (i) ⇒ (ii): Let Γ(x) ⊆ C1. Then, since
C1 ⊆ C, C\C1 ⊆ C\Γ(x). So, for each c ∈ C\C1,
c 6∈ Γ(x), that is, there exists c ∈ C such that

〈F (x), x− c〉 < 〈F (x), x− c〉.

Thus (ii) follows.
(ii)⇒ (i): Suppose that for any c ∈ C\C1 there

exists c ∈ C such that 〈F (x), c− c〉 > 0. Then

〈F (x), c〉 6= inf{〈F (x), x〉 : x ∈ C},

that is, c 6∈ Γ(x). Hence Γ(x) ⊆ C1. ut

Remark 2 Statement (ii) in Proposition 1 is equiva-
lent to saying that for each c ∈ C\C1 the set

{c ∈ C : 〈F (x), c− c〉 ≤ 0}

is a proper subset of C. If also C1 ⊆ Γ(x), then C1 =
Γ(x). A natural question is whether there exists x ∈
H such that C1 = Γ(x). Recall that C∗ ⊆ Γ(c∗) for
all c∗ ∈ C∗. Upon taking C1 = C∗ and x = c∗ ∈ C∗
in Proposition 1, we obtain

Corollary 3 Let C∗ 6= ∅. Then, for c∗ ∈ C∗, the
following are equivalent:

(i) C∗ = Γ(c∗).

(ii) For each c ∈ C\C∗ there exists c ∈ C such that

〈F (c∗), c− c〉 > 0.

For a pseudomonotone mapping on C∗, the inclu-
sion Γ(c∗) ⊆ C∗ implies that both C∗ and C∗ can be
represented by Γ(c∗). This can be characterized by
Proposition 1 as below.

Theorem 4 Let c∗ ∈ C∗. Then the following are
equivalent:

(i) C∗ = Γ(c∗) = C∗.

(ii) C∗ ⊆ C∗ and for each c ∈ C\C∗ there exists
c ∈ C such that 〈F (c∗), c− c〉 > 0.

(iii) C∗ ⊆ C∗ and for each c ∈ C\C∗ there holds

〈F (c∗), c− c∗〉 > 0.

(iv) C∗ ⊆ C∗ and for each c ∈ C\C∗ there holds
〈F (c∗), c− c〉 > 0 for all c ∈ C∗.

If also C∗ is closed, then

(i)⇔ (ii)⇔ (iii)⇔ (iv)⇔ (v), where

(v) C∗ ⊆ C∗ and for each c ∈ C\C∗ there exists
α := α(c∗, c) > 0 such that

αdC∗(c) ≤ 〈F (c∗), c− c∗〉.

Proof: (i) ⇔ (ii): Since C∗ ⊆ Γ(c∗), (i) is valid iff
C∗ ⊆ C∗ and Γ(c∗) ⊆ C∗, which, by Proposition 1,
is equivalent to (ii).

(i)⇔ (iii): If (i) is true, then for each c ∈ C\C∗
there holds c 6∈ Γ(c∗) and hence

〈F (c∗), c∗ − c〉 6= 0,

that is, (iii) is valid since c∗ ∈ C∗.
Now, for any c ∈ C\C∗, suppose that

〈F (c∗), c− c∗〉 > 0.

Then (ii) is true for c = c∗. Thus (i) follows.
(iii)⇔ (iv): If C∗ ⊆ C∗, then

〈F (c∗), c∗ − c〉 = 0 for all c ∈ C∗.

It follows that

〈F (c∗), c− c〉 = 〈F (c∗), c∗ − c〉+ 〈F (c∗), c− c∗〉
= 〈F (c∗), c− c∗〉.

Thus (iii)⇔ (iv).
Finally, if C∗ is closed and C∗ ⊆ C∗, then for

each c ∈ C\C∗ there holds ‖c − c∗‖ ≥ dC∗(c) > 0.
Taking

α :=
〈F (c∗), c− c∗〉
‖c− c∗‖

,

we obtain (iii)⇔ (v). The proof is complete. ut

Remark 5 The equivalence (i) ⇔ (iii) stated in
Theorem 4 shows that, for a pseudomonotone map-
ping F on C∗, C∗ = Γ(c∗) for c∗ ∈ C∗ iff

〈F (c∗), c− c∗〉 > 0 for all c ∈ C\C∗.

When C1 is closed and convex, the following re-
sult provides a sufficient condition for (ii) of Propo-
sition 1 to hold, and hence for Γ(x) ⊆ C1 to be valid.

Theorem 6 Let C1 be a nonempty closed and convex
subset of C. For x ∈ H , if each x ∈ C1 satisfies

−F (x) ∈ int [TC(x) ∩NC1(x)]◦, (1)

then Γ(x) ⊆ C1. In particular, if each x ∈ C1 satisfies

−F (x) ∈ int NC(x) ∪ TC1(x),
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then Γ(x) ⊆ C1.
If x ∈ C∗ satisfies (1) with C1 = C∗, then x ∈

Γ(x) = C∗. Hence if each c∗ ∈ C∗ satisfies (1) with
x = c∗ and C1 = C∗, then

C∗ ⊆ Γ(c∗) = C∗ for all c∗ ∈ C∗.

If C∗ is closed and convex and x ∈ C∗ satisfies
(1) with C1 = C∗, then C∗ ⊆ Γ(x) ⊆ C∗. Hence,
if also each c∗ ∈ C∗ satisfies (1) with x = c∗ and
C1 = C∗, then C∗ = Γ(c∗) = C∗ for all c∗ ∈ C∗.

Proof: Let x ∈ H be such that each x in C1 satis-
fies (1). Suppose that c ∈ C\C1. Then, since C1 is
closed and convex, there exists a unique c1 ∈ C1 such
that ‖c − c1‖ = dC1(c). This with (1) implies that c1
satisfies

c− c1 ∈ TC(c1) ∩NC1(c1)

and there exists δ > 0 such that

〈−F (x) + u, c− c1〉 ≤ 0 for all u ∈ δB,

from which, taking u = δ
2‖c−c1‖(c− c1), we obtain

0 <
δ

2
‖c− c1‖ ≤ 〈F (x), c− c1〉.

Thus it follows from Proposition 1 that Γ(x) ⊆ C1.
Now if for each x ∈ C1 there holds

−F (x) ∈ int NC(x) ∪ TC1(x),

then

−F (x) ∈ int [TC(x)]◦ ∪ [NC1(x)]◦

⊆ int [TC(x) ∩NC1(x)]◦.

So Γ(x) ⊆ C1.
Next, if x ∈ C∗ satisfies (1) with C1 = C∗, then

Γ(x) ⊆ C∗. This implies x ∈ Γ(x) = C∗ based on
[10, Propositions 2.1 and 2.3].

Finally, if C∗ is closed and convex and x ∈ C∗

satisfies (1) with C1 = C∗, then, by [10, Propo-
sition 2.3] and the first conclusion of the theorem,
C∗ ⊆ Γ(x) ⊆ C∗. ut

Remark 7 For a closed and convex C∗, as stated in
Theorem 6, if x ∈ C∗ satisfies (1) withC1 = C∗, then
C∗ ⊆ Γ(x) ⊆ C∗. This implies that C∗ = Γ(x) = C∗

if F is pseudomonotone. Hence Theorem 6 extends
[8, Theorem 4.2] in which F is continuous and pseu-
domonotone and C∗ is weakly sharp.

Based on Theorem 6, the following convergence
result is immediate.

Theorem 8 Let C∗ be a closed and convex set in H .
Suppose that {xn} is a compact sequence in H . If
each convergent subsequence {xnk

} of {xn} and each
c∗ ∈ C∗ satisfy

−F (xnk
) ∈ int [TC(c∗) ∩NC∗(c∗)]◦

for sufficiently large k, then Γ(xn) ⊆ C∗ for suffi-
ciently large n. In particular, if each convergent sub-
sequence {xnk

} of {xn} and each c∗ ∈ C∗ satisfy

−F (xnk
) ∈ int NC(c∗) ∪ TC∗(c∗)

for sufficiently large k, then Γ(xn) ⊆ C∗ holds for
sufficiently large n.

Proof: Suppose that Γ(xn) ⊆ C∗ is not true for all
sufficiently large n. Then there exists a subsequence
{xnk

} of {xn} such that Γ(xnk
) 6⊆ C∗. By assump-

tion, there exists a convergent subsequence {xnki
} of

{xnk
} such that for each c∗ ∈ C∗ the inclusion

−F (xnki
) ∈ int [TC(c∗) ∩NC∗(c∗)]◦

is satisfied. This with Theorem 6 gives Γ(xnki
) ⊆ C∗,

a contradiction. ut
Theorem 8 extends some existing algorithm re-

sults such as [10, Theorem 3.2] and [7, Theorem 2].

3 Weaker sharpness of C∗

To get more results than the relation

C∗ = Γ(x) = C∗,

we need the following concept.

Definition 9 Let C1 be a closed and convex subset of
C. The setC1 is said to be weaker sharp provided that
each c1 ∈ C1 satisfies

−F (c1) ∈ int [TC(x) ∩NC1(x)]◦ for all x ∈ C1.

The set C1 is said to be weakly sharp provided that
each c1 ∈ C1 satisfies

−F (c1) ∈ int ∩x∈C1 [TC(x) ∩NC1(x)]◦.

It is easy to see that the weak sharpness of C1

implies the weaker sharpness of C1 since

int ∩c∈C1 [TC(c) ∩NC1(c)]◦

⊆ ∩c∈C1 int [TC(c) ∩NC1(c)]◦

⊆ int [TC(x) ∩NC1(x)]◦ for all x ∈ C1.

As a result of Theorem 6, next theorem shows that
both C∗ and C∗ can be determined by Γ(c∗) for c∗ ∈
C∗ in the case where C∗ ∩ C∗ 6= ∅ and both C∗ and
C∗ are weaker sharp.
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Theorem 10 Let C∗ be closed and convex. If C∗ ∩
C∗ 6= ∅ and both C∗ and C∗ are weaker sharp, then
C∗ = Γ(c∗) = C∗ for all c∗ ∈ C∗.

Next result shows that both C∗ and C∗ can be de-
termined by Γ(c∗) when C∗ ⊆ C∗ and C∗ is weaker
sharp.

Theorem 11 Let C∗ be nonempty, closed, and con-
vex. Then

(i)⇔ (ii)⇒ (iii)⇒ (iv) and (iv′)

for the following statements:

(i) C∗ is weaker sharp.

(ii) For each (c1, c
∗) ∈ C∗ × C∗ there exists α :=

α(c1, c
∗) > 0 such that

αB ⊆ F (c1) + [TC(c∗) ∩NC∗(c∗)]◦.

(iii) For each (c1, c
∗) ∈ C∗ × C∗ there exists α :=

α(c1, c
∗) > 0 such that

α‖v‖ ≤ 〈F (c1), v〉 for all v ∈ TC(c∗)∩NC∗(c∗).

(iv) For each (c1, c) ∈ C∗ × C there exist c∗ ∈ C∗
and α := α(c1, c) > 0 such that

α‖c− c∗‖ = αdC∗(c) ≤ 〈F (c1), c− c∗〉. (2)

(iv′) For each c ∈ C there exist c∗ ∈ C∗ and α :=
α(c∗, c) > 0 such that

α‖c− c∗‖ = αdC∗(c) ≤ 〈F (c∗), c− c∗〉. (3)

Furthermore, if F is constant on C∗, then
(iv′)⇔ (iv′′), where

(iv′′) For each c ∈ C \ C∗ there exists α := α(c) > 0
such that

αdC∗(c) ≤ 〈F (c∗), c− c∗〉 for all c∗ ∈ C∗.

If also C∗ ⊆ C∗, then (iv)⇔ (v)⇔ (vi), where

(v) C∗ = Γ(c1) = C∗ for all c1 ∈ C∗;

(vi) For each (c1, c) ∈ C∗ × C there exists α :=
α(c1, c) > 0 such that

αdC∗(c) ≤ 〈F (c1), c− c∗〉 for all c∗ ∈ C∗. (4)

If (vi) holds with

α(c1, c
∗) := lim inf

C3c→c∗
α(c1, c) > 0,

then C∗ is weaker sharp.

Proof: (i) ⇔ (ii) is obvious from the definition of
weaker sharpness of C∗.

(ii) ⇒ (iii): Suppose that for each (c1, c
∗) ∈

C∗ × C∗ there exists α > 0 such that

αB ⊆ F (c1) + [TC(c∗) ∩NC∗(c∗)]◦.

Then for every y ∈ B we have

αy − F (c1) ∈ [TC(c∗) ∩NC∗(c∗)]◦.

It follows that for each 0 6= v ∈ TC(c∗) ∩ NC∗(c∗)
there holds 〈

α
v

‖v‖
− F (c1), v

〉
≤ 0,

from which we obtain

α‖v‖ ≤ 〈F (c1), v〉 for all v ∈ TC(c∗) ∩NC∗(c∗).

(iii) ⇒ (iv): The conclusion is obviously true if
c ∈ C∗. For each c ∈ C\C∗, since C∗ is closed and
convex, there exists c∗ ∈ C∗ such that

‖c− c∗‖ = dC∗(c),

which implies that c − c∗ ∈ TC(c∗) ∩ NC∗(c∗). For
each c1 ∈ C∗, by (iii), there exists α > 0 such that

α‖v‖ ≤ 〈F (c1), v〉 for all v ∈ TC(c∗) ∩NC∗(c∗).

Taking v = c− c∗ gives (2).
(iii) ⇒ (iv′): Let (iii) be true. Then, by taking

c1 = c∗ in the proof of (iii)⇒ (iv), we obtain (iv′).
(iv′) ⇔ (iv′′): If F is constant on C∗, then

(iv′)⇐ (iv′′) is immediate. Now for each c ∈ C\C∗
and c∗ in (iv′), 〈F (c∗), c∗〉 = 〈F (c), c〉 for all c ∈ C∗.
Thus (iv′′) follows from (iv′).

Next, to prove (iv) ⇔ (v) ⇔ (vi), we suppose
that C∗ ⊆ C∗.

(iv) ⇒ (v): Let (iv) be true. Then for each
(c1, c) ∈ C∗ × (C \ C∗) we have

0 < 〈F (c1), c− c∗〉 for all c∗ ∈ C∗.

By Theorem 4, (v) follows.
(v)⇒ (vi): Note that C∗ ⊆ C∗. We have

〈F (c1), c1 − c∗〉 = 0 for all (c1, c
∗) ∈ C∗ × C∗.

This implies that for each c1 ∈ C∗ there holds
〈F (c1), c

∗〉 = 〈F (c1), c1〉 for all c∗ ∈ C∗. Thus (vi)
follows from (v) and Theorem 4.

(vi)⇒ (iv) is immediate by taking c∗ ∈ C∗ such
that ‖c− c∗‖ = dC∗(c) for each c ∈ C.

Finally, suppose that for each (c1, c) ∈ C∗ × C
there exists α(c1, c) > 0 such that each c∗ ∈ C∗ satis-
fies (4) and α(c1, c

∗) := lim infC3c→c∗ α(c1, c) > 0.
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To show that C∗ is weaker sharp, it suffices to claim
that for each c∗ ∈ C∗ there holds

α(c1, c
∗)B ⊆ F (c1) + [TC(c∗) ∩NC∗(c∗)]◦, (5)

where α(c1, c
∗) := lim infC3c→c∗ α(c1, c) > 0. This

is obvious for each c∗ ∈ C∗ satisfying TC(c∗) ∩
NC∗(c∗) = {0}. It remains to show that (5) still holds
for any c∗ in C∗ with TC(c∗) ∩NC∗(c∗) 6= {0}.

Let c∗ ∈ C∗ and 0 6= v ∈ TC(c∗) ∩ NC∗(c∗).
Then

〈v, v〉 > 0 and 〈v, y∗ − c∗〉 ≤ 0 for all y∗ ∈ C∗.

So C∗ and c∗ + v are separated by the hyperplane

Hv := {x ∈ H : 〈v, x− c∗〉 = 0}.

In addition, for each positive sequence {tk} decreas-
ing to 0, by [2, Theorem 2.4.5], there exists a se-
quence {vk} such that vk → v and c∗ + tkvk ∈ C
for sufficiently large k. Hence, for sufficiently large k,
c∗ + tkvk lies in the open set

{x ∈ H : 〈v, x− c∗〉 > 0}

which is separated by Hv from C∗. Thus

dC∗(c∗ + tkvk) ≥ dHv(c∗ + tkvk) =
tk〈vk, v〉
‖v‖

.

It follows that

〈F (c1), v〉 = lim
k→+∞

〈F (c1), (c
∗ + tkvk)− c∗〉
tk

≥ lim inf
k→+∞

α(c1, c
∗ + tkvk)dC∗(c∗ + tkvk)

tk
≥ α(c1, c

∗)‖v‖.

For each u ∈ B we have

〈α(c1, c
∗)u − F (c1), v〉

= 〈α(c1, c
∗)u, v〉 − 〈F (c1), v〉

≤ α(c1, c
∗)‖v‖ − α(c1, c

∗)‖v‖ = 0.

This implies that (5) is valid. Thus C∗ is weaker
sharp. ut

Remark 12 When C∗ is closed and convex and sat-
isfies C∗ ⊆ C∗, [12, Theorem 2.1] states that C∗ is
weakly sharp iff for each c1 ∈ C∗ there exists α > 0
such that

αdC∗(c) ≤ 〈F (c1), c− c∗〉 for all (c∗, c) ∈ C∗ × C.

In this case, (vi) of Theorem 11 is satisfied with
α(c1, c) = α. Such a condition is stronger than
weaker sharpness of C∗ for C∗ = Γ(c∗).

4 Pseudomonotone∗ mappings on C∗

It is easy to see that F is pseudomonotone on C∗

iff C∗ ⊆ C∗. For the special case where F is
pseudomonotone∗ on C∗, we will show that C∗ =
Γ(c∗) for c∗ ∈ C∗ iff F (c) and F (c∗) have the same
direction for all c ∈ Γ(c∗). We begin with a charac-
terization of a pseudomonotone∗ mapping on C∗.

Proposition 13 Let C∗ 6= ∅. Then F is
pseudomonotone∗ on C∗ iff C∗ ⊆ C∗, for each c∗ ∈
C∗, C∗ = Λ(c∗), and for each c ∈ Λ(c∗) there exists
k(c) > 0 such that F (c) = k(c)F (c∗).

Proof: We first prove the necessity. Let F be
pseudomonotone∗ on C∗. For each c∗ ∈ C∗ and
all c ∈ C, we have 〈F (c∗), c − c∗〉 ≥ 0. By the
pseudomonotonicity∗ of F on C∗, 〈F (c), c−c∗〉 ≥ 0.
So C∗ ⊆ C∗ and G(c∗) = 0, from which it follows
that for c ∈ Λ(c∗) we have

〈F (c), c− c∗〉 = −G(c∗) = 0

and hence F (c) = k(c)F (c∗) for some k(c) > 0.
Since c∗ ∈ C∗ ⊆ C∗, it follows from [10, Proposi-
tion 2.3 and Theorem 2.6] that C∗ = Λ(c∗).

To show the sufficiency, we suppose that C∗ ⊆
C∗ and for each c∗ ∈ C∗, C∗ = Λ(c∗), and for each
c ∈ Λ(c∗) there exists k(c) > 0 such that F (c) =
k(c)F (c∗). Then for each c∗ ∈ C∗ and all c ∈ C,

〈F (c∗), c− c∗〉 ≥ 0⇒ 〈F (c), c− c∗〉 ≥ 0.

This implies that F is pseudomonotone on C∗ and
G(c∗) = 0, which is equivalent to saying that c∗ ∈
Λ(c∗) (see [10, Proposition 2.1]).

Now, if 〈F (c), c − c∗〉 = 0, then c ∈ Λ(c∗) and
hence, by assumption, F (c) = k(c)F (c∗) for some
k(c) > 0. Therefore F is pseudomonotone∗ on C∗. ut

Remark 14 If F is pseudomonotone∗ on C∗, then
from Proposition 13 we see that, for any c∗ ∈ C∗, C∗
can be determined by Λ(c∗) and, for any c ∈ Λ(c∗),
F (c) and F (c∗) have the same direction. Note that
k(c) in Proposition 13 may also depend on c∗ but we
write it in the simple way here and in what follows.

For a pseudomonotone∗ mapping F on C∗, we
have Λ(c∗) = C∗ ⊆ C∗ and hence F is pseudomono-
tone on Λ(c∗). If also Γ(c∗) ⊆ C∗, then, by Proposi-
tion 13, for each c ∈ Γ(c∗) there exists k(c) > 0 such
that F (c) = k(c)F (c∗). This with pseudomonotonic-
ity of F on Λ(c∗) in turn supplies a sufficient con-
dition for F to be pseudomonotone∗ on C∗ and for
C∗ = Γ(c∗).
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Proposition 15 Let c∗ ∈ C∗ ∩ C∗ and let F be pseu-
domonotone on Λ(c∗). If for each c ∈ Γ(c∗) there
exists k(c) > 0 such that F (c) = k(c)F (c∗), then F
is pseudomonotone∗ on C∗ and

C∗ = C∗ = Γ(c∗) = Λ(c∗).

Proof: By assumption and Proposition 13 we only
need to prove

C∗ = C∗ = Γ(c∗) = Λ(c∗).

By assumption and [10, Proposition 2.3], we have
C∗ ⊆ C∗ ⊆ Γ(c∗). In addition, by [10, Proposition
3.1], Γ(c∗) ⊆ C∗. So C∗ = Γ(c∗) = C∗.

Now, for c ∈ Γ(c∗), we have c ∈ C∗ ⊆ Λ(c∗) (by
[10, Proposition 2.3]). Thus Γ(c∗) ⊆ Λ(c∗).

Next, to show Λ(c∗) ⊆ Γ(c∗), let c ∈ Λ(c∗).
Then

〈F (c), c∗ − c〉 = G(c∗) = 0.

The pseudomonotonicity of F on Λ(c∗) implies that
〈F (c∗), c∗ − c〉 ≥ 0. Since c∗ ∈ C∗,

〈F (c∗), c∗ − c〉 = g(c∗) = 0.

Thus c ∈ Γ(c∗) and hence Λ(c∗) ⊆ Γ(c∗). The proof
is complete. ut

Remark 16 As we know, for c∗ ∈ C∗, Γ(c∗) is the
solutions to minimize

f(x) := 〈F (c∗), x− c∗〉 subject to x ∈ C.

Under the conditions of Proposition 15, the solution
set C∗ to VIP and C∗ to DVIP can be determined by
Γ(c∗) as well as Λ(c∗).

For a pseudomonotone∗ mapping F on C∗ and
each c∗ ∈ C∗, by Propositions 13 and 15, the state-
ment that F has the same direction on Γ(c∗) as F (c∗)
is equivalent to saying that there holds the relation

C∗ = C∗ = Γ(c∗) = Λ(c∗).

Proposition 17 Let F be pseudomonotone∗ on C∗.
Then, for each c∗ ∈ C∗, the following are equivalent:

(i) For each c ∈ Γ(c∗) there exists k(c) > 0 such
that F (c) = k(c)F (c∗).

(ii) C∗ = C∗ = Γ(c∗) = Λ(c∗).

Proof: For each c∗ ∈ C∗, by Proposition 13, F is
pseudomonotone on Λ(c∗). The implications (i) ⇒
(ii) and (ii) ⇒ (i) follow from Propositions 15 and
13, respectively. ut

Furthermore the following result states that for
a pseudomonotone∗ mapping F on C∗ the equality
C∗ = Γ(c∗) for each c∗ ∈ C∗ implies (ii) in Proposi-
tion 17 for all c∗ ∈ C∗.

Theorem 18 Let F be pseudomonotone∗ on C∗.
Then the following are equivalent:

(i) For each c∗ ∈ C∗ and each c ∈ Γ(c∗) there exists
k(c) > 0 such that F (c) = k(c)F (c∗).

(ii) C∗ = C∗ = Γ(c∗) = Λ(c∗) for each c∗ ∈ C∗.

(iii) C∗ = Γ(c∗) = Λ(c∗) for each c∗ ∈ C∗.

(iv) C∗ = Γ(c∗) for each c∗ ∈ C∗.

Proof: The implication (i) ⇒ (ii) is from Proposi-
tion 17 while the implications (ii) ⇒ (iii) ⇒ (iv)
are obvious. Finally (iv) ⇒ (i) is direct from Propo-
sition 13. ut

Based on the above two results, we obtain the
well-known simple result: If F is pseudomonotone∗
on C, then

C∗ = C∗ = Γ(c∗) = Λ(c∗) for each c∗ ∈ C∗.

5 A pseudomonotone+ mapping and
its properties

In this section, we first study a pseudomonotone+
mapping on C∗. With its characterizations be-
ing obtained, we will see that a pseudomonotone
mapping F on C is constant on Γ(c∗) iff C∗ =
Γ(c∗) and F is pseudomonotone+ on C∗ and that a
pseudomonotone+ mapping F on C∗ is constant on
Γ(c∗) iff C∗ = Γ(c∗).

For a pseudomonotone∗ mapping F on C∗ and
c∗ ∈ C∗, if it is constant on Γ(c∗), then, by Propo-
sition 17, C∗ = C∗ = Γ(c∗) = Λ(c∗). In this
case, by Proposition 13, the mapping F must be
pseudomonotone+ on C∗. Conversely, [8, Theorem
3.1] states that F is constant on C∗ if F is continu-
ous and pseudomonotone+ on C. Based on [11, The-
orem 2.3], the Gâteaux differentiability of G on C∗
with C∗ ⊆ C∗ also implies the constancy of F on
C∗. Indeed in the second case the mapping F must
also be pseudomonotone+ on C∗ which turns out to
be completely characterized by the constancy of F on
C∗ with Λ(c∗) = C∗ ⊆ C∗ for all c∗ ∈ C∗ as we see
from Proposition 13. The following result gives more
exact characterizations.

Proposition 19 Let C∗ 6= ∅. Then the following are
equivalent:

(i) F is pseudomonotone+ on C∗.

(ii) C∗ ⊆ C∗, F is constant on Λ(c∗) for each c∗ ∈
C∗.

WSEAS TRANSACTIONS on MATHEMATICS Zili Wu

E-ISSN: 2224-2880 54 Volume 16, 2017



(iii) C∗ ⊆ C∗, F is constant on C∗, and C∗ = Λ(c∗)
for each c∗ ∈ C∗.

Proof: The implications (iii) ⇒ (i) ⇒ (ii) can eas-
ily be obtained from Proposition 13, so it suffices to
show C∗ = Λ(c∗) for (ii) ⇒ (iii). Since C∗ ⊆ C∗,
by [10, Proposition 2.3], we have C∗ ⊆ Λ(c∗). It re-
mains to show Λ(c∗) ⊆ C∗.

Now, since F (c) = F (c∗) for all c ∈ Λ(c∗) and
the inclusion C∗ ⊆ Λ(c∗) implies

〈F (c), c∗ − c〉 = 〈F (c∗), c∗ − c∗〉 = 0,

〈F (c), c− c〉 = 〈F (c∗), c− c∗〉 ≥ 0 for all c ∈ C,

from which it follows that Λ(c∗) ⊆ C∗. The proof is
complete. ut

Remark 20 The statement (iii) in Proposition 19
has been presented in [7, Proposition 3] if F is
pseudomonotone+ on C. Such a condition is suffi-
cient for (iii) but not necessary, as we see from Propo-
sition 19.

Based on Propositions 17 and 19, the
pseudomonotonicity∗ of F on C∗ with its constancy
on Γ(c∗) indeed implies the pseudomonotonicity+ of
it on C∗ as the following result states.

Proposition 21 Let c∗ ∈ C∗. Then the following are
equivalent:

(i) F is pseudomonotone∗ on C∗ and constant on
Γ(c∗).

(ii) F is pseudomonotone+ on C∗ and Γ(c∗) = C∗.

Obviously for c∗ ∈ C∗ ⊆ C∗ the constancy of F
on Γ(c∗) implies that of it on C∗. In addition, accord-
ing to Proposition 19, if F is pseudomonotone+ on
C∗, then so is it on Λ(c∗) for c∗ ∈ C∗. The following
result shows that its converse is valid if F is constant
on Γ(c∗).

Proposition 22 For c∗ ∈ C∗ ∩ C∗, the following are
equivalent:

(i) F is pseudomonotone on Λ(c∗) and constant on
Γ(c∗).

(ii) F is pseudomonotone+ on C∗ and Γ(c∗) = C∗.

Proof: The implication (ii)⇒ (i) is immediate from
Proposition 19 while (i)⇒ (ii) follows directly from
Propositions 15 and 19. ut

If F is pseudomonotone on C and constant on
Γ(c∗) for c∗ ∈ C∗, then, by Proposition 22, F must
be pseudomonotone+ on C∗. From Propositions 15,
19, and 22 and the relation C∗ ⊆ Γ(c∗) for c∗ ∈ C∗,
next result is immediate.

Theorem 23 Let c∗ ∈ C∗ ∩ C∗ and F pseudomono-
tone on Λ(c∗). Then the following are equivalent:

(i) F is constant on Γ(c∗).

(ii) C∗ = C∗ = Γ(c∗) = Λ(c∗) and F is constant on
C∗.

(iii) C∗ = Γ(c∗) = Λ(c∗) and F is constant on C∗.

(iv) Γ(c∗) = Λ(c∗) and F is pseudomonotone+ on
C∗.

(v) C∗ = Γ(c∗) and F is pseudomonotone+ on C∗.

For a differentiable convex function f : Rn → R,
its gradient∇f is pseudomonotone onRn, so if∇f is
constant on Γ(c∗) for c∗ ∈ C∗, then, by Theorem 23,
∇f is pseudomonotone+ on C∗ and C∗ = Γ(c∗) for
c∗ ∈ C∗. Usually, for a pseudomonotone+ mapping
F on C∗, we have the following equivalent statements
for C∗ = Γ(c∗) for c∗ ∈ C∗.

Theorem 24 Let F be pseudomonotone+ on C∗.
Then for each c∗ ∈ C∗ the following are equivalent:

(i) F is constant on Γ(c∗).

(ii) C∗ = C∗ = Γ(c∗) = Λ(c∗).

(iii) C∗ = Γ(c∗) = Λ(c∗).

(iv) Γ(c∗) = Λ(c∗).

(v) C∗ = Γ(c∗).

Remark 25 When F is pseudomonotone+ on C (in-
stead of C∗), the equivalence (i) ⇔ (ii) in Theo-
rem 24 has been obtained in [7, Proposition 5]. The
equivalence (iii) ⇔ (v) in Theorem 24 has been
stated in [8, Theorem 4.3] under the condition that
F is pseudomonotone+ and continuous on a compact
polyhedral C. Theorem 24 has presented more equiv-
alent statements under a weaker condition.
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