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Abstract: This work is one of many that are devoted to the further investigation of local interpolating polynomial
splines of the fifth order approximation. Here, new polynomial and trigonometrical basic splines are presented.
The main features of these splines are the following; the approximation is constructed separately for each grid
interval (or elementary rectangular), the approximation constructed as the sum of products of the basic splines and
the values of function in nodes and/or the values of its derivatives and/or the values of integrals of this function
over subintervals. Basic splines are determined by using a solving system of equations which are provided by
the set of functions. It is known that when integrals of the function over the intervals is equal to the integrals
of the approximation of the function over the intervals then the approximation has some physical parallel. The
splines which are constructed here satisfy the property of the fifth order approximation. Here, the one-dimensional
polynomial and trigonometrical basic splines of the fifth order approximation are constructed when the values of the
function are known in each point of interpolation. For the construction of the spline, we use the discrete analogues
of the first derivative and quadrature with the appropriate order of approximation. We compare the properties of
these splines with splines which are constructed when the values of the first derivative of the function are known in
each point of interpolation and the values of integral over each grid interval are given. The one-dimensional case
can be extended to multiple dimensions through the use of tensor product spline constructs. Numerical examples
are represented.

Key–Words: Polynomial splines, Trigonometrical splines, Integro-Differential Splines, Interpolation.

1 Introduction

The idea of spline interpolation was born in England
at the end of the 19th century when British engineers
designed the first railroad tracks. These splines are
now known as B-splines or in other words as splines
with maximum smoothness. The polynomial spline
interpolation was then considered as a more appropri-
ate alternative to polynomial interpolation. Now there
are a variety of different types of splines that are used
for solving different mathematical, mechanical, phys-
ical and engineering problems.

This method of approximation using polynomial
splines is widely used for the interpolation and ap-
proximation of discrete data. A lot of research has
been devoted to the application of various splines with
different properties for approximation and estimation
of data. Special attention is given to methods of con-
structing images, splines can be used in signal pro-
cessing [1–11].

As is well known, the one-dimensional case can
be extended to multiple dimensions through the use of
tensor product spline constructs [12–14].

Kireev V.I. became the first to use values of one-
variable integrals of a function over subintervals for
the construction of approximations.

Polynomial and trigonometrical basic splines of
the fifth order approximation were constructed in
[15, 16] when both the values of the function and its
first derivative are known at the ends of each subinter-
val. In addition, values of the integrals over the subin-
tervals are known.

Here, the one-dimensional polynomial and
trigonometrical basic splines of the fifth order approx-
imation are constructed when the values of the func-
tion are known in each point of interpolation. For the
construction of the spline, we use the discrete ana-
logues of the first derivative and quadrature with the
appropriate order of approximation.

Suppose that n is a natural number, while a, b are
real numbers, h = (b− a)/n. Let us build the grid of
interpolation nodes xj = a+ jh, j = 0, 1, . . . , n.
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2 Quadrature formula construction

Let the function u(x) be such that u ∈
C6([xj−1, xj+1]). Suppose that the values of
the function u(x) and its first derivative are known in
xj−1, xj , xj+1. We construct an approximation for
u(x) in [xj−1, xj+1] in the following form:

ũ(x) = uj−1ωj−1,0(x) + ujωj,0(x) + uj+1ωj+1,0(x)

+u′j−1ωj−1,1(x) + u′jωj,1(x) + u′j+1ωj+1,1(x), (1)

where uk = u(xk), u′k = u′(xk). Basic splines
ωk,i(x) we determine from the system

ũ(x)− u(x) = 0, u(x) = 1, x, x2, x3, x4, x5. (2)

We have
xj+1∫
xj−1

ωj,1(x)dx = 0. Now we obtain the fol-

lowing formula:

xj+1∫
xj−1

ũ(x)dx = uj−1

xj+1∫
xj−1

ωj−1,0(x)dx+

+uj

xj+1∫
xj−1

ωj,0(x)dx+ uj+1

xj+1∫
xj−1

ωj+1,0(x)dx+

+u′j−1

xj+1∫
xj−1

ωj−1,1(x)dx+ u′j+1

xj+1∫
xj−1

ωj+1,1(x)dx,

where
xj+1∫

xj−1

ωj,0(x) dx =
16h

15
,

xj+1∫
xj−1

ωj+1,0(x) dx =
7h

15
,

xj+1∫
xj−1

ωj−1,0(x) dx =
7h

15
,

xj+1∫
xj−1

ωj−1,1(x) dx =
h2

15
,

xj+1∫
xj−1

ωj+1,1(x)dx = −h2

15
.

Lemma 1. Let function u(x) be such that u ∈
C6([xj−1, xj+1]). The following quadrature is valid:∫ xj+1

xj−1

u(x)dx = Vj(u) +
h7

4725
u(6)(ξ), (3)

where ξ ∈ [xj−1, xj+1],

Vj(u) =
h

15
(7u(xj−1) + 7u(xj+1) + 16u(xj))−

−h2

15
(u′(xj+1)− u′(xj−1)).

Proof. The construction of the quadrature is evi-
dent. The remainder of the quadrature can be found in
book [17].

In trigonometric cases we receive quadrature for-
mulae in a similar way. We put

ũt(x) = uj−1ω
t
j−1,0(x)+ujω

t
j,0(x)+uj+1ω

t
j+1,0(x)+

+u′j−1ω
t
j−1,1(x)+u′j+1ω

t
j+1,1(x), x ∈ [xj−1, xj+1],

where ωt
k,i(x), k = j− 1, j, j+1, i = 0, 1, have been

determined from the system ũt(x)− u(x) = 0, when
u(x) = 1, sin(x), cos(x), sin(2x), cos(2x).

For xj+1 − xj = h and xj − xj−1 = h we obtain
the following formula:

V T
j (u) =

xj+1∫
xj−1

ũt(x)dx = uj−1Ij−1,0 + ujIj,0+

+uj+1Ij+1,0 + u′j−1Ij−1,1 + u′j+1Ij+1,1, (4)

where

Ij,0 =
2h cos(h)2 − 3 sin(2h)/2 + h

cos(h)2 − 2 cos(h) + 1
=

= 16h/15 +O(h3),

Ij+1,0 =
3 sin(2h)/2−4 cos(h)h+h

2(cos(h)2 − 2 cos(h) + 1)
=

= 7h/15 +O(h3),

Ij−1,0 =
3 sin(2h)/2− 4 cos(h)h+ h

2(cos(h)2 − 2 cos(h) + 1)
=

= 7h/15 +O(h3),

Ij−1,1 =
h− sin(2h)

2 +2 cos(h)h−2 sin(h)

2(cos(h)− 1) sin(h)
=

= h2/15 +O(h4),

Ij+1,1 =
sin(2h)

2 −2 cos(h)h+2 sin(h)−h

2(cos(h)− 1) sin(h)
=

= −h2/15 +O(h4).
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3 About approximation of derivative

The following formula is well known:

u′(xj)=
u(xj−2)−8u(xj−1)+8u(xj+1)−u(xj+2)

12h

+
h4

30
u(5)(ξ1), ξ1 ∈ (xj−2, xj+2).

For obtaining u′(xj) for a set of trigonometrical
functions we can use the following approximation:

ũT (x) = u(xj−2)W
T
j−2 + u(xj−1)W

T
j−1 + u(xj)W

T
j

+u(xj+1)W
T
j+1 + u(xj+2)W

T
j+2,

where W T
i we obtain from the system ũT (x)−u(x) =

0, when u(x) = 1, sin(x), cos(x), sin(2x), cos(2x).
We can get basic splines as follows:

W T
j+2(x) = sin(x/2 − xj−2/2) sin(x/2 −

xj−1/2) sin(x/2− xj/2) sin(x/2− xj+1/2)/F
T
1 ,

F T
1 = sin(−xj+2/2 + xj−2/2) sin(−xj+2/2 +

xj−1/2) sin(−xj+2/2 + xj/2) sin(−xj+2/2 +
xj+1/2),

W T
j+1(x) = − sin(x/2 − xj−2/2) sin(x/2 −

xj−1/2) sin(x/2− xj/2) sin(x/2− xj+2/2)/F
T
2 ,

F T
2 = sin(−xj+1/2 + xj−2/2) sin(−xj+1/2 +

xj−1/2) sin(−xj+1/2 + xj/2) sin(−xj+2/2 +
xj+1/2),

W T
j (x) = sin(x/2 − xj−2/2) sin(x/2 −

xj−1/2) sin(x/2− xj+1/2) sin(x/2− xj+2/2)/F
T
3 ,

F T
3 = sin(xj/2 − xj−2/2) sin(xj/2 −

xj−1/2) sin(−xj+1/2+xj/2) sin(−xj+2/2+xj/2),
W T

j−1(x) = sin(x/2 − xj−2/2) sin(x/2 −
xj/2) sin(x/2− xj+1/2) sin(x/2− xj+2/2)/F

T
4 ,

F T
4 = sin(−xj−1/2 + xj−2/2) sin(xj/2 −

xj−1/2) sin(−xj+1/2 + xj−1/2) sin(−xj+2/2 +
xj−1/2),

W T
j−2(x) = − sin(x/2 − xj−1/2) sin(x/2 −

xj/2) sin(x/2− xj+1/2) sin(x/2− xj+2/2)/F
T
5 ,

F T
5 = sin(−xj−1/2 + xj−2/2) sin(xj/2 −

xj−2/2) sin(−xj+1/2 + xj−2/2) sin(−xj+2/2 +
xj−2/2).

Finally, using the approximation ũT (x) we obtain
the following formula:

u′(xj) = Fj(u) +O(h4), (5)

where

Cj

4 sin(h)(8 cos4(h/2)−6 cos2(h/2)+1)
,

Cj = (
(
8 cos2(h/2)− 16 cos4(h/2)

)
u(xj−1) +(

16 cos4(h/2)− 8 cos2(h/2)
)
u(xj+1) + u(xj−2) −

u(xj+2)).

It can be shown that the formulae obtained above
for the polynomial and trigonometrical functions are
connected by the following expression:

Cj

16 sin(h)(8 cos4(h/2)−6 cos2(h/2)+1)
=

=
u(xj−2)

12h
−2u(xj−1)

3h
+
2u(xj+1)

3h
−u(xj+2)

12h
+O(h).

4 Left polynomial splines of one vari-
able

Suppose that the values of the function u and its first
derivative are known in every grid node xj . We denote
by ũ(x) an approximation of the function u(x) on the
interval [xj , xj+1] ⊂ [a, b]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

+u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+Vj(u)ω
<0>
j (x). (6)

The basic splines ωj,0(x), ωj+1,0(x), ωj,1(x),
ωj+1,1(x), ω<0>

j (x), we obtain from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (7)

Suppose that suppωk,α = [xk−1, xk+1], α = 0, 1,
suppω<0>

k = [xk, xk+1]. It is easy to see that
ωk,0, ωk,1, ω

<0>
k ∈ C1(R1). We have for x = xj+th,

t ∈ [0, 1] the next formulae:

ωj,0(xj + th)=(2t+ 1)(t− 1)2, (8)

ωj+1,0(xj + th)=− (1/8)t2(15t2 − 14t− 9), (9)

ωj,1(xj + th)=(1/4)th(5t+ 4)(t− 1)2, (10)

ωj+1,1(xj + th)=(1/8)ht2(5t+ 3)(t− 1), (11)

ω<0>
j (xj + th)=(15/16)t2(t− 1)2/h. (12)

Figures 1, 2, 3 show the graphics of the ba-
sic functions ωj,0(x), ωj+1,0(x), ωj,1(x), ωj+1,1(x),
ω<0>
j (x), when h = 1. Figure 3 (right) shows the

error of approximation of the Runge function u(x) =
1/(1 + 25x2) with the polynomial splines, h = 0.1,
x ∈ [−1, 1].

Let us take Ũ(x), x ∈ [a, b], such that Ũ(x) =
ũ(x), x ∈ [xj , xj+1]. Let ∥u∥[a,b] = max

[a,b]
|u(x)|.

Theorem 1. Let function u(x) be such that u ∈
C5([a, b]). For approximation u(x), x ∈ [xj , xj+1]
by (6), (8) – (12) we have:

|ũ(x)− u(x)|[xj ,xj+1] ≤ K1h
5∥u(5)∥[xj−1,xj+1],

(13)
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Figure 1: Plots of the basic functions: ωj,0(x) (left),
ωj+1,0(x) (right)
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Figure 2: Plots of the basic functions: ωj,1(x), when
h = 1(left), ωj+1,1(x), when h = 1 (right)

|ũ′(x)− u′(x)|[xj ,xj+1] ≤ K2h
4∥u(5)∥[xj−1,xj+1],

(14)
where K1 = 0.0225, K2 = 0.0994,

|Ũ(x)− u(x)|[a+h,b] ≤ K1h
5∥u(5)∥[a,b]. (15)

Proof. Inequality (13) follows from Taylor’s the-
orem and the inequalities:

|ωj,0(x)| ≤ 1, |ωj+1,0(x)| ≤ 1,
|ωj,1(x)| ≤ 0.216h, |ωj+1,1(x)| ≤ 0.1198h,
|ω<0>

j (x)| ≤ 0.0586/h.
We have the next expressions for derivatives of basic
functions:

ω′
j,0(xj + th) = 6t(t− 1)/h,

ω′
j+1,0(xj + th) = −(3/4)t(−7t− 3 + 10t2)/h,

ω′<0>
j (xj + th) = (15/8)t(1 + 2t2 − 3t)/h2,

ω′
j,1(xj + th) = −(3/2)t− (9/2)t2 + 5t3 + 1,

ω′
j+1,1(xj + th) = −(3/4)t− (3/4)t2+(5/2)t3.

Inequality (14) follows from Taylor’s theorem and the
inequalities:

|ω′
j,0(x)| ≤ 1.5/h, |ω′

j+1,0(x)| ≤ 1.626/h,
|ω′

j,1(x)| ≤ 1, |ω′
j+1,1(x)| ≤ 1,

|ω′<0>
j (x)| ≤ 0.181/h2.

Inequality (15) follows from (13).

Theorem 2. Let function u(x) be such that u ∈
C5([a, b]), ũ(x), x ∈ [xj , xj+1] has form (6), (8) –
(12) We have:∫ xj+1

xj

(ũ(x)−u(x))dx ≤ 0.0081h6∥u(5)∥[xj−1,xj+1].

The proof is similar to Theorem 1.
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Figure 3: Plots of the basic functions: ω<0>
j (x), when

h = 1 (left), and the error of approximation of the
Runge function with the polynomial splines, h = 0.1,

x ∈ [−1, 1] (right)

5 New left polynomial approxima-
tions of one variable

We denote by ũn(x) an approximation of the function
u(x):

ũn(x) = u(xj)ω
n
j,0(x) + u(xj+1)ω

n
j+1,0(x)+

+upjω
n
j,1(x) + upj+1ω

n
j+1,1(x)+

+Vj(u)ω
n<0>
j (x), (16)

x ∈ [xj , xj+1], where Vj(u) has form (2),

upj=
(u(xj−2)−8u(xj−1)+8u(xj+1)−u(xj+2))

12h
,

upj+1=
(u(xj−1)−8u(xj)+8u(xj+2)−u(xj+3))

12h
,

ωn
j,0(xj + th) = (2t+ 1)(t− 1)2,

ωn
j+1,0(xj + th) = −(1/8)t2(15t2 − 14t− 9),

ωn
j,1(xj + th) = (1/4)th(5t+ 4)(t− 1)2,

ωn<0>
j (xj + th) = 15t2(t−1)2

16h ,
ωn
j+1,1(xj + th) = (1/8)ht2(5t+ 3)(t− 1).

Another form of (16) is next:

ũn(x) = u(xj−2)ω
n
j,1(x)/(12h)+

u(xj−1)(−8ωn
j,1(x)/(12h) + ωn

j+1,1(x))+

u(xj)(8ω
n
j+1,1(x)) + ωn

j,0(x))+

u(xj+1)(8ω
n
j+1,0(x) + ωn

j,1(x)/(12h))+

u(xj+2)(−ωn
j,1(x)/(12h) + 8ωn

j+1,1(x)/(12h))+

u(xj+3)(−ωn
j+1,1(x)/(12h)) + Vj(u)ω

n<0>
j (x),

x ∈ [xj , xj+1].

Theorem 3. Let function u(x) be such that u ∈
C6([a, b]). For approximation u(x), x ∈ [xj , xj+1]
by (16) we have:

|ũ(x)− u(x)|[xj ,xj+1] ≤ K3h
5∥u(5)∥[xj−2,xj+3]+

+K4h
6∥u(6)∥[xj−1,xj+1], (17)
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where K3 = 0.0624, K4 = 0.00007.
Proof. Inequality (17) follows from Taylor’s the-

orem, Lemma 1 and the inequalities:
|ωn

j+1,0(x)| ≤ 1,
|ωn

j,1(x)| ≤ 0.216h, |ωn
j+1,1(x)| ≤ 0.1198h,

|ωn<0>
j (x)| ≤ 0.0586/h.

6 Left trigonometrical splines of one
variable

We denote by ũT (x) an approximation of the function
u(x) on the interval [xj , xj+1] ⊂ [a, b]:

ũT (x) = u(xj)ω
T
j,0(x) + u(xj+1)ω

T
j+1,0(x)+

+u′(xj)ω
T
j,1(x) + u′(xj+1)ω

T
j+1,1(x)+

+V T
j (u)ω<0>T

j (x), (18)

where V T
j (u) has form (4). The basic splines ωT

j,0(x),
ωT
j+1,0(x), ω

T
j,1(x), ω

T
j+1,1(x), ω

<0>T
j (x), we obtain

from the system:

ũT (x) ≡ u(x), u(x) = 1, sin(kx), cos(kx), k = 1, 2.
(19)

Suppose that suppωT
k,α = [xk−1, xk+1], α = 0, 1,

suppω<0>T
k = [xk, xk+1]. It is easy to see that

ωT
k,0, ω

T
k,1, ω

<0>T
k ∈ C1(R1). We have for x = xj +

th, t ∈ [0, 1] the next formulae:
ωT
j,0(xj + th) = (7 sin(h(−1 + 2t)) +

16h cos(th) − 12h cos(h(−1 + 2t)) + 8h cos(h(t −
3)) − 24h cos(h(t + 1)) − 2 sin(h(4 + t)) +
2 sin(h(t− 4))+ sin(h(2t+3))− 7 sin(h(2t− 3))−
4h cos(h(2t− 3))− 4 sin(2h(t+ 1)) + 4 sin(2h(t−
1))−sin(h(1+2t))+8 sin(h(3+t))+16h cos(2th)−
4 sin(h(t+ 1)) + 3 sin(3h) − 14 sin(h) + sin(5h) −
8 sin(h(t − 1)) + 4 sin(h(t − 3)) − 4 sin(4h) +
8 sin(2h))/(sin(5h)+15 sin(3h)−18 sin(h)+32h−
8 sin(4h)− 36 cos(h)h+ 4h cos(3h)),

ωT
j+1,0(xj + th) = −(7 sin(h(−1 + 2t)) +

12h cos(h(−1 + 2t)) + 4h cos(h(1 + 2t)) −
16h cos(h(t − 1)) − 2 sin(h(4 + t)) + 2 sin(h(t −
4))+sin(h(2t+3))−7 sin(h(2t−3))−4 sin(2h(t+
1)) + 4 sin(2h(t − 1)) + 24h cos(h(−2 + t)) −
8h cos(h(2 + t)) − 16h cos(2h(t − 1)) − sin(h(1 +
2t))+8 sin(h(3+t))−4 sin(h(t+1))−12 sin(3h)+
4 sin(h)−8 sin(h(t−1))+4 sin(h(t−3))+4 sin(4h)+
8 sin(2h))/(sin(5h)+15 sin(3h)−18 sin(h)+32h−
8 sin(4h)− 36 cos(h)h+ 4h cos(3h)),

ωT
j,1(xj + th) = (4 cos(2th) − cos(th) +

2 cos(h(1+2t))+6 cos(h(t−1))−8 cos(h(t+1))+
2 cos(h(3 + t)) − 2 cos(h(2t − 3)) − 12h sin(th) +
3 cos(h(−2+t))−3 cos(h(2+t))−3 cos(2h(t−1))−

cos(2h(t+1))−4h sin(h(−2+t))−8h sin(h(t−1))+
8h sin(h(−1+2t))+4h sin(2h(t−1))−3+cos(h(t−
4)) + 4 cos(2h) − cos(4h))/(sin(4h) + 2 sin(2h) −
6 sin(3h)+10 sin(h)+4h cos(2h)−12h+8 cos(h)h),

ωT
j+1,1(xj+th)=(−1+ cos(th))(cos(th) cos(h)+

sin(th) sin(h)−1)/(cos2(h) sin(h) − sin(2h) −
2 sin(h) + cos(h)h+ 2h),

ω<0>T
j (xj + th) = (−4 + 4 cos(2th) −

4 cos(h(−1 + 2t)) + 4 cos(h(1 + 2t)) + 7 cos(h(t−
1)) − 9 cos(h(t + 1)) + cos(h(t − 3)) + cos(h(3 +
t)) − 8h sin(th) + 2 cos(h(−2 + t)) − 2 cos(h(2 +
t))−3 cos(2h(t−1))−cos(2h(t+1))−4h sin(h(t+
1))−12h sin(h(t−1))+4h sin(2th)+8h sin(h(−1+
2t)) + 4 cos(2h)− 2 cos(3h) + 2 cos(h))/(sin(4h) +
2 sin(2h)−6 sin(3h)+10 sin(h)+4h cos(2h)−12h+
8 cos(h)h).

It can be shown, that
ωT
j,0(xj + th)=(2t+ 1)(−1 + t)2 +O(h2),

ωT
j+1,0(xj + th)=−t2(−14t− 9 + 15t2)/8 +O(h2),

ωT
j,1(xj + th)=t(5t+ 4)(−1 + t)2h/4 +O(h3),

ωT
j+1,1(xj + th)=t2(5t+ 3)(−1 + t)h/8 +O(h3),

ω<0>T
k (xj + th) = 15/(h16t2(−1 + t)2) +O(h).

Table 1 shows the errors RI = max
x∈[a,b]

|ũ − u|,

RT = max
x∈[a,b]

|ũT − u| when [a, b] = [−1, 1], h = 0.1.

Calculations were done in Maple, Digits=25.
Table 1.

u(x) RI RT

x4 0.0 0.8695e− 6
1/(1 + 25x2) 0.1417e− 2 0.140e− 2
sin(5x)− cos(5x) 0.2913e− 4 0.2352e− 4

So, approximation with trigonometric splines
gives smaller approximation errors in the approxima-
tion of trigonometric functions, than approximation
with polynomial splines.

Theorem 4. The error of the approximation by the
splines (18) is as follows:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥[xj−1,xj+1],
(20)

where x ∈ [xj , xj+1], K > 0.
Proof. The function u(x) on [xj , xj+1] can be

written in the form (see [15]): u(x) = 2
3

∫ x
xj
(4u′(τ)+

5u′′′(τ)+uV (τ)) sin4(x/2−τ/2)dτ+c1+c2 sin(x)+
c3 cos(x) + c4 sin(2x) + c5 cos(2x), where ci, i = 1,
2, 3, 4, 5 are arbitrary constants. Using the method
from [15] we obtain (20).

Remark. Substituting u′(xj), u′(xj+1) from for-
mula (18) with expression 5, we obtain the following
error of approximation:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥[xj−2,xj+3],
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where x ∈ [xj , xj+1], K > 0.

7 Comparing with the Hermit inter-
polation

Here we shall compare the polynomial approximation
that has been constructed above and the Hermite ap-
proximation:

ũH(x) = u(xj−1)ωj−1,0(x) + u(xj)ωj,0(x)

+u(xj+1)ωj+1,0(x) + u′(xj)ωj,1(x)+

u′(xj+1)ωj+1,1(x), x ∈ [xj , xj+1].

The basic splines ωj−1,0(x), ωj,0(x), ωj+1,0(x),
ωj,1(x), ωj+1,1(x) we obtain from the system:

ũH(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (21)

Suppose that suppωk,0 = [xk−1, xk+2], suppωk,1 =
[xk−1, xk+1]. It is easy to see that ωk,0, ωs,1,∈
C1(R1), k = j − 1, j, j + 1, s = j, j + 1.

We have for x = xj + th, t ∈ [0, 1], the next
formulae:

ωj,0(xj + th)=(−1 + t)2(t+ 1)2, (22)

ωj+1,0(xj + th)=− (1/4)t2(t+ 1)(5t− 7), (23)

ωj,1(xj + th)=th(t+ 1)(−1 + t)2, (24)

ωj+1,1(xj + th)=(1/2)ht2(−1 + t)(t+ 1), (25)

ωj−1,0(xj + th)=(1/4)t2(−1 + t)2. (26)

Table 2 shows the errors RI = max
x∈[a,b]

|ũ −

u|, where ũ(x) is defined by (16), and RII =
max
x∈[a,b]

|ũH − u|, when [a, b] = [−1, 1], h = 0.1. Cal-

culations were done in Maple, Digits=15.
Table 2.

u(x) RI RII

x4 0.0 0.0
1/(1 + 25x2) 0.1417e− 2 0.1531e− 2
sin(5x)− cos(5x) 0.2913e− 4 0.3466e− 4

8 Comparing with the Lagrange in-
terpolation

Here we compare the polynomial approximation that
has been constructed above and the polynomial La-
grange approximation:

ũL(x) = u(xj−2)W
L
j−2 + u(xj−1)W

L
j−1 + u(xj)W

L
j

+u(xj+1)W
L
j+1 + u(xj+2)W

L
j+2, x ∈ [xj , xj+1].

Table 3 shows the errors RI = max
x∈[a,b]

|ũ −

u|, where ũ(x) is defined by (16), and RIII =
max
x∈[a,b]

|ũL−u| when [a, b] = [−1, 1], h = 0.1. Calcu-

lations were done in Maple, Digits=15.
Here we compare trigonometrical approximation

(18) that has been constructed above and the trigono-
metrical approximation of Lagrange type:

ũT (x) = u(xj−2)W
T
j−2 + u(xj−1)W

T
j−1 + u(xj)W

T
j

+u(xj+1)W
T
j+1 + u(xj+2)W

T
j+2, x ∈ [xj , xj+1].

Table 3 shows the errors RT = max
x∈[a,b]

|ũ −

u|, where ũ(x) is defined by (18), and RIV =
max
x∈[a,b]

|ũT − u| when [a, b] = [−1, 1], h = 0.1. Cal-

culations were done in Maple, Digits=15.
Table 3.

u(x) RIT RIV

x4 0.0 0.1601e− 4
1/(1 + 25x2) 0.1417e− 2 0.1228e− 1
sin(5x)− cos(5x) 0.2913e− 4 0.4092e− 3

Tables 2,3 show that approximation by splines
which uses the values of integrals over subintervals
or uses quadrature formulae gives smaller errors of
approximation than without this information, for ex-
ample Lagrange or Hermite splines.

9 About approximations with two
variables

Suppose that n,m are natural numbers, while a, b, c,
d are real numbers, hx = (b−a)/n, hy = (d− c)/m.
Let us build the grid of interpolation nodes xj = a +
jhx, j = 0, 1, . . . , n, yk = c+ khy, k = 0, 1, . . . ,m.
On every line parallel to axis y, we can construct the
approximation in the form:

ũ(y) = u(yk)ωk,0(y) + u(yk+1)ωk+1,0(y)+

u′(yk)ωk,1(y) + u′(yk+1)ωk+1,1(y)+

+Vk ω
<0>
k (y), y ∈ [yk, yk+1]. (27)

Now the formulae for ωk,0(y), ωk+1,0(y), ωk,1(y),
ωk+1,1(y), ω<0>

k (y) are similar to the previous ones.
If (x, y) ∈ Ωj,k then we get the next expression

using the tensor product:

ũ(x, y) =

1∑
i=0

1∑
p=0

u(xj+i, yk+p)ωj+i,0(x)ωk+p,0(y)+
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+

1∑
i=0

1∑
p=0

u′y(xj+i, yk+p)ωj+i,0(x)ωk+p,1(y)+

+
1∑

i=0

Vj+i,k(x)ωj+i,0(x)ω
<0>
k (y)+

+

1∑
i=0

Vj,k+iω
<0>
j (x)ωk+i,0(y)+

+

1∑
i=0

Sj,k+iω
<0>
j (x)ωk+i,1(y)+

Wj,kω
<0>
k (y)ω<0>

j (x)+

+

1∑
i=0

u′x(xj , yk+i)dtωj,0(x)ωk+i,0(y)+

+

1∑
i=0

u′′xy(xj , yk+i)dtωj,0(x)ωk+i,1(y)+

+

1∑
i=0

Pj+i,kωj+i,1(x)ω
<0>
k (y), (28)

where

Vj+i,k =
(yk+1 − yk−1)

30
(7u(xj+i, yk−1)+

7u(xj+i, yk+1) + 16u(xj+i, yk))−

(yk+1 − yk−1)
2

60
(u′y(xj+i, yk+1)− u′y(xj+i, yk−1)),

Vj,k+i =
(xj+1 − xj−1)

30
(7u(xj−1, yk+i)+

7u(xj+1, yk+i) + 16u(xj , yk+i))−

(xj+1 − xj−1)
2

60
(u′x(xj+1, yk+i)− u′x(xj−1, yk+i)),

Sj,k+i =
(xj+1 − xj−1)

30
(7u′y(xj−1, yk+i)+

7u′y(xj+1, yk+i) + 16uy(xj , yk+i))−

(xj+1 − xj−1)
2

60
(u′′xy(xj+1, yk+i)−u′′xy(xj−1, yk+i)),

Pj+i,k =
(yk+1 − yk−1)

30
(7u′x(xj+i, yk−1)+

7u′x(xj+i, yk+1) + 16u′x(xj+i, yk))−

(yk+1 − yk−1)
2

60
(u′′yx(xj+i, yk+1)−u′′yx(xj+i, yk−1)),

Wjk =
(yk+1 − yk−1)

30
(7G(xj , yk−1)+

7G(xj , yk+1) + 16G(xj , yk))−

(yk+1 − yk−1)
2

60
(G′y(xj , yk+1)−G′y(xj , yk−1)),

G(xj , y) =
(xj+1 − xj−1)

30
(7u(xj−1, y)+

7u(xj+1, y) + 16u(xj , y))−

(xj+1 − xj−1)
2

60
(u′x(xj+1, y)− u′x(xj−1, y)).

Figures 4 and 5 show approximations and the errors
of approximations ũ(x, y) − u(x, y) by (28), (8)–
(12), (22)–(26) of functions u1(x, y) = sin(3x −
3y) cos(3x− 3y), u2(x, y) = (x− y)2(x+ y)2, when
[a, b] = [−1, 1], [c, d] = [−1, 1], hx = hy = h = 0.2.
Calculations were done in Maple, Digits=15.
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Figure 4: Plots of the functions: ũ(x, y) = sin(3x −
3y) cos(3x − 3y) (left) and ũ(x, y) − u(x, y) (right)

when h = 0.2, [−1, 1]× [−1, 1]
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Figure 5: Plots of the functions: ũ(x, y) = (x −
y)2(x + y)2 (left) and ũ(x, y) − u(x, y) (right) when

h = 0.2, [−1, 1]× [−1, 1]

10 Conclusion

Basic splines can be applied for solving various math-
ematical problems. We can obtain the formulae of our
polynomial basic splines in the following way. In the
interval [xj−1, xj ] we obtain basic splines from the
system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5,

where ũ(x) = u(xj−1)ωj−1,0(x) + u(xj)ωj,0(x) +
u′(xj−1)ωj−1,1(x) + u′(xj)ωj,1(x)+Vj−1 ω

<0>
j−1 (x).
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If we take the basic splines with the same numbers
from [xj−1, xj ] and [xj , xj+1] then we have:

ωj,0(xj+th)=


−15

8 t
4 − 23

4 t
3 − 39

8 t
2 + 1, t ∈ [−1, 0],

2t3 − 3t2 + 1, t ∈ [0, 1],

0, t /∈ [−1, 1],

ωj,1(xj+th)=


5h
8 t4 + 9h

4 t3 + 21h
8 t2 + th,

t ∈ [−1, 0],
5h
4 t4 − 3h

2 t3 − 3h
4 t2 + th, t ∈ [0, 1],

0, t /∈ [−1, 1],

ω<0>
j (xj + th)=

{
15
16h t

2(t− 1)2, t ∈ [0, 1]

0, t /∈ [0, 1].

Figure 6 shows the plots of the basic splines ωj,0, ωj,1.
The plot of the basic spline ω<0>

j is shown in Figure 3.
The construction of the nonpolynomial splines

with the same properties and their application for the
solving of different problems will be regarded in fur-
ther papers.
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Figure 6: Plots of the basic functions: ωj,0(jh + th)
(left), and ωj,1(jh+ th), when h = 1 (right)
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