A New Complete Irresoluteness Function

AYNUR KESKIN KAYMAKCI Selcuk University, Faculty of Sciences Department of Mathematics 42030, Campus, Konya TURKEY akeskin@selcuk.edu.tr

Abstract: In this presentation, first of all we definite a new type of function by using delta-b-open sets. Then, we obtain some characterizations and some properties of this function. Besides, we give their relationships with other types of functions between topological spaces.

Key–Words: δ -b-open sets, b-open sets, δ -semi-open sets, semi open sets, completely δ -b-irresolute functions

1 Introduction

Of course, the notions of *continuous* functions and a type of it's is called *irresolute* functions are important subject in general topology. So, one can find several papers in literature related it's.

On the other hand, *open* sets and it's modifications are studied very authors. One of these sets is *b-open*. It is defined by Andrijević [11] and El-Atik [10] independent of each other. It is well-known that *b-open* set is weaker than *semi-open* set which is a type of *open* set.

Throughout this paper, we will denote topological spaces by (X, τ) and (Y, φ) . For a subset A of a space (X, τ) , the closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively.

A subset A is said to be regular open (resp. regular closed) if Int(Cl(A)) = A (resp. Cl(Int(A)) = A). The family of all regular open and regular closed sets of (X, τ) are denoted by $RO(X, \tau)$ and $RC(X, \tau)$, respectively. A subset A is said to be δ -open if for each $x \in A$ there exists a regular open set U such that $x \in U \subseteq A$. A point $x \in X$ is called a δ -cluster point of A if $A \cap Int(Cl(V)) \neq \emptyset$ for each open set V containing x. The set of all δ -cluster points of A is called the δ -closure of A and is denoted by $Cl_{\delta}(A)$. The set $\{x \in X \mid x \in U \subseteq A \text{ for some regular open$ $set U of X\}$ is called the δ -interior of A and is denoted by $Int_{\delta}(A)$.

A subset A of a space (X, τ) is called *preopen* [16] (resp. *b-open* [11] or γ -open [10], δ -b-open set [8]) if $A \subseteq Int(Cl(A))$ (resp. $A \subseteq Cl(Int(A)) \cup$ $Int(Cl(A)), A \subseteq Cl(Int_{\delta}(A)) \cup Int(Cl(A))$). It is well known that a subset A of a space (X, τ) is called semi open (resp. δ -semi-open) if $A \subseteq Cl(Int(A))$ (resp. $A \subseteq Cl(Int_{\delta}(A))$). Besides, the complement of δ -b-open set is said δ -b-closed. The family of all δ -b-open and δ -b-closed sets of (X, τ) are denoted by $\delta BO(X, \tau)$ and $\delta BC(X, \tau)$, respectively.

2 Completely δ -b-irresolute Functions

In this section, we introduce the notion of completely δ -*b*-*irresolute* functions and obtain some properties of them.

Definition 1 A function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is said to be completely δ -b-irresolute function if the inverse image of each δ -b-open set V in (Y, φ) is regular open set in (X, τ) .

Now, we give a characterization for completely δ -*b*-*irresolute* functions.

Theorem 2 Let $f : (X, \tau) \longrightarrow (Y, \varphi)$ be a function. f is completely δ -b-irresolute function if and only if the inverse image of each δ -b-closed set F in (Y, φ) is regular closed in (X, τ) .

Proof. The proof is obvious by considering the complement of Definition 1. ■

Definition 3 A function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is said to be completely irresolute [1] (resp. completely δ -semi-irresolute [2], completely b-irresolute) if $f^{-1}(V)$ is regular open set in (X, τ) for every semi open (resp. δ -semi-open, b-open) set V in (Y, φ) .

Remark 4 For a function $f : (X, \tau) \longrightarrow (Y, \varphi)$, we have the following diagram by using Definitions 1 and 2.

completely irresolute \longrightarrow completely δ -semi-irresolute

 $\begin{array}{c} completely \ b-irresolute \ \longrightarrow \ completely \ \delta-b-irresolute \ \longrightarrow \ completely \ \delta-b-irresolute \ \end{array}$

However, none of these implications is reversible as shown by in the following examples and [2].

Example 1 Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a\}, \{d\}, \{a, d\}, \{a, c\}, \{a, c, d\}\}$. Let $f : (X, \tau) \longrightarrow (X, \tau)$ be the identity function. Then f is completely δ -b-irresolute but it is not completely b-irresolute.

Example 2 Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{d\}, \{a, b\}, \{a, b, d\}\}$. Let $f : (X, \tau) \longrightarrow (X, \tau)$ be the identity function. Then f is completely irresolute but it is not completely b-irresolute.

Example 3 Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, X, \{a, b\}, \{a, b, c\}\}$. Let $f : (X, \tau) \longrightarrow (X, \tau)$ be the identity function. Then f is completely δ -semiirresolute but it is not completely δ -b-irresolute.

Now, we recall some types of functions to next theorem.

Definition 5 A function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is said to be

(1) *R*-map [3] (resp. completely continuous [4]) if $f^{-1}(V)$ is regular open in (X, τ) for every regular open (resp. open) set V in (Y, φ) .

(2) δ -b-continuous [5] if $f^{-1}(V)$ is δ -b-open in (X, τ) for every open set V in (Y, φ) .

Now, we give the following theorem as not proof for compose functions:

Theorem 6 Let $f : (X, \tau) \longrightarrow (Y, \varphi)$ and $g : (Y, \varphi) \longrightarrow (Z, \psi)$ be functions. The following properties hold:

(1) If f is R-map and g is completely δ -b-irresolute, then gof is completely δ -b-irresolute.

(2) If f is completely δ -b-irresolute and g is δ -b-continuous, then gof is completely continuous.

It is known that the notion of restriction functions is important. So, we give the following lemma and theorem.

Lemma 7 ([6]) Let U be an open subset of a space (X, τ) .

(1) If A is regular open set in (X, τ) , then $A \cap U$ is regular open in the subspace (U, τ_U) .

(2) If $B \subset U$ is regular open in (U, τ_U) , then there is a regular open set A in (X, τ) such that $B = A \cap U$. **Theorem 8** If a function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute and U is open in (X, τ) , then the restriction $f \mid_U : (U, \tau_U) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute.

Proof. Let V be any δ -b-open set in (X, τ) . Since f is completely δ -b-irresolute, $f^{-1}(V)$ is regular open in (X, τ) . By using Lemma 1(1), we have $f^{-1}(V) \cap U$ is regular open in the subspace (U, τ_U) . Since $f^{-1}(V) \cap U = (f \mid_U)^{-1}(V)$, we obtain that $f \mid_U$ is completely δ -b-irresolute.

It is well known that every open set is preopen but the converse is not true in generally. Really, let \mathbb{R} is real number and τ is usual topology on \mathbb{R} . Then, $\mathbb{Q} \subset \mathbb{R}$ is a preopen set but it is not an open set.

Lemma 9 ([15]) Let A be a preopen subset of X. Then, $(A \cap U)$ is a regular open in A for each regular open subset U of X.

If we take preopen set instead of open set in Theorem 3, we obtain the next theorem by using Lemma 2.

Theorem 10 If a function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute and U is preopen in (X, τ) , then the restriction $f \mid_U : (U, \tau_U) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute.

3 Some Non-preservation Properties Via Completely δ -b-irresolute Functions

Lemma 11 In this section, we investigate some separation axioms via completely δ -b-irresolute functions such as b-normal, b-T₂, r-connected, hyperconnected and nearly compact. Then, we give a type of graph function is called r- δ_b -graph and obtain some properties it's. Finally, we consider a relation between product spaces and completely δ -birresolute functions. For γ -sets modification of this notion is defined as follows:

It is known that the notion of normal spaces is one of separation axioms in topological spaces. A space (X, τ) is said to be γ -normal [15] if for every disjoint closed sets A and B of (X, τ) , there exist disjoint sets $U, V \in BO(X)$ such that $A \subset U$ and $B \subset V$. The notion of γ -normal spaces is restated in [8] by using δ -b-open sets.

Lemma 12 ([8]) For a space (X, τ) , the following properties are equivalent:

(1) (X, τ) is γ -normal,

(2) Every pair of nonempty disjoint closed sets can be separeted by disjoint δ -b-open sets.

Now, we give the next theorem which is related to completely δ -b-irresolute functions and γ -normal spaces.

Theorem 13 If $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute closed injection and (Y, φ) is γ -normal, then (X, τ) is normal.

Proof. Let F_1 and F_2 be disjoint nonempty closed sets in (X, τ) . Since f is *injective* and closed, $f(F_1)$ and $f(F_2)$ are disjoint closed sets in (Y, φ) . Besides, (Y, φ) is γ -normal, there exist δ -b-open sets V_1 and V_2 in (X, τ) such that $f(F_1) \subset V_1$ and $f(F_2) \subset V_2$ and $V_1 \cap V_2 = \emptyset$ by using Lemma 3. Since f is completely δ -b-irresolute, we have $f^{-1}(V_1), f^{-1}(V_2)$ are regular open sets in (X, τ) . Of course in this case $F_1 \subset f^{-1}(V_1), F_2 \subset f^{-1}(V_2)$ and $f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset$. This shows that (X, τ) is normal.

Of course, another separation axiom is a modification of T_2 -spaces. For *b*-open sets is called b- T_2 by Park [7]. Recall that a topological space (X, τ) is said to be *b*- T_2 [7] if for each distinct points $x, y \in X$, there exist *b*-open sets U_1 and U_2 containing x and y, respectively, such that $U_1 \cap U_2 = \emptyset$.

One can see the following lemma which is related to $b-T_2$ spaces which contain δ -*b*-*open* sets.

Lemma 14 ([8]) For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is b-T₂,

(2) For each distinct points $x, y \in X$, there exist $U_1, U_2 \in \delta BO(X)$ containing x and y, respectively, such that $U_1 \cap U_2 = \emptyset$.

In the view of definition of notion of $b-T_2$ spaces and Lemma 4, we give the following theorem.

Theorem 15 If $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute injection and (Y, φ) is b- T_2 , then (X, τ) is T_2 .

Proof. Let x, y be any distinct points of X. By hypothesis, $f(x) \neq f(y)$. Since (Y, φ) is b- T_2 , there exist δ -b-open sets U_1 and U_2 in (Y, φ) containing f(x) and f(y), respectively, such that $U_1 \cap U_2 = \emptyset$ by Lemma 4. At the same time, since f is completely δ -b-irresolute $f^{-1}(U_1), f^{-1}(U_2) \in RO(X)$ containing x and y, respectively, such that $f^{-1}(U_1) \cap f^{-1}(U_2) = \emptyset$. This shows that (X, τ) is T_2 .

Each of the next two theorem is a property of a function *completely* δ -*b*-*irresolute* such

that range space is b- T_2 .Let (Y, φ) be a b- T_2 . If $f, g : (X, \tau) \longrightarrow (Y, \varphi)$ are completely δ -b-irresolute functions, then the set $A = \{x \in X \mid f(x) = g(x)\}$ is δ -closed in (X, τ) .

Proof. Assume that $x \notin A$. Then, we have $f(x) \neq g(x)$. Since (Y, φ) is b- T_2 , there exists δ -b-open sets V_1 and V_2 in (Y, φ) such that $f(x) \in V_1$ and $g(x) \in V_2$ and $V_1 \cap V_2 = \emptyset$ by Lemma 4. Besides, since f and g are completely δ -b-irresolute functions then $f^{-1}(V_1)$ and $g^{-1}(V_2)$ are regular open sets in (X, τ) . If we take $U = f^{-1}(V_1) \cap g^{-1}(V_2)$, then U is a regular open set containing x and $U \cap A = \emptyset$. Therefore, we have $x \notin Cl_{\delta}(A)$. Consequently, this proof is completed.

Theorem 16 If $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute injection and (Y, φ) is b-T₂, then $E = \{(x, y) \mid f(x) = f(y)\}$ is δ -closed in $X \times X$.

Proof. This proof is obtained similar to Theorem 7. ■

The other separation axiom is *connected* spaces. Of course, this notion is applied to *b*-open (resp. δ -*b*-open, regular open) sets, respectively, as follows:

Definition 17 A topological space (X, τ) is said to be γ -connected [10] (resp. δ -b-connected [8], rconnected [9]) if it cannot be expressed as the union of two non-empty disjoint b-open (resp. δ -b-open, regular open) sets.

Lemma 18 ([8]) For a topological space (X, τ) , the following properties are equivalent:

(1) (X, τ) is γ -connected,

(2) X cannot be expressed as the union of two nonempty disjoint δ -b-open sets.

It is obvious that Lemma 5 states a topological space is γ -connected if and only if it is δ -bconnected. Now, we have the following theorem.

Theorem 19 If $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute surjection and (X, τ) is r-connected, then (Y, φ) is γ -connected.

Proof. Assume that (Y, φ) is not γ -connected. There exist nonempty δ -b-open sets U_1 and U_2 in (Y, φ) such that $Y = U_1 \cup U_2$ and $U_1 \cap U_2 = \emptyset$ by using Lemma 5. Since f is completely δ -b-irresolute, $f^{-1}(U_1)$ and $f^{-1}(U_2)$ are nonempty regular open sets in (X, τ) such that $X = f^{-1}(U_1) \cup f^{-1}(U_2)$ and $f^{-1}(U_1) \cap f^{-1}(U_2) = \emptyset$. Thus, (X, τ) is not r-connected. But, this is contradiction with hypothesis. Consequently, (Y, φ) is γ -connected.

In 1970, the notion of *hyperconnected spaces* which is stronger than *connected spaces* is defined

by Steen and Seebach [12] as the following: "A topological space (X, τ) is said to be *hyperconnected* [12] if every *open* subset in (X, τ) is *dense*."

Now we give the following theorem. It is important, because it denotes that the notion of *hyperconnected spaces* isn't preservate under *completely* δ -*b*-*irresolute* functions.

Theorem 20 Let $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute function. If (X, τ) is hyperconnected space, then (Y, φ) is γ -connected.

Proof. Suppose that V is proper δ -b-clopen, i.e. both δ -b-open and δ -b-closed, subspace of (Y, φ) . Since f is completely δ -b-irresolute function, $U = f^{-1}(V)$ is both regular open and regular closed. This contradicts to (X, τ) is hyperconnected. So, (Y, φ) is γ -connected.

In the end of this section, we consider some of the notions of compactness related to this subject.

Recall that a topological space (X, τ) is said to be *nearly compact* [13] (resp. δ -*b*-*compact* [5]) if every *regular open* (resp. δ -*b*-*open*) cover of (X, τ) has a finite subcover.

Theorem 21 If $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute surjection and (X, τ) is nearly compact, then (Y, φ) is δ -b-compact.

Proof. Let $\{V_{\alpha} : \alpha \in \Delta\}$ be a δ -bopen cover of (Y, φ) . Since f is completely δ -b-irresolute $\{f^{-1}(V_{\alpha}) : \alpha \in \Delta\}$ is a regular open cover of (X, τ) . By hypothesis, since (X, τ) is nearly compact there exists a finite subset Δ_0 of Δ such that $X = \{f^{-1}(V_{\alpha}) : \alpha \in \Delta_0\}$. Since fis surjection, we obtain that $Y = \{V_{\alpha} : \alpha \in \Delta_0\}$. This shows that (Y, φ) is δ -b-compact.

4 Some properties of graphic functions

In this section, firstly we obtain relation between a function and it's graph function to be completely δ -b-irresolute. Secondly, we define the notion of r- δ_b -graph. Then, we investigate some properties of it.

Recall that for a function $f : (X, \tau) \longrightarrow (Y, \varphi)$, the subset $\{(x, f(x)) : x \in X\}$ of $X \times Y$ is called the graph of f and is denoted by G_f .

Theorem 22 A function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute if the graph function $G_f :$ $X \longrightarrow X \times Y$ is completely δ -b-irresolute. **Proof.** Let $x \in X$ and V be a δ -b-open set containing f(x). Then, $X \times V$ is a δ -b-open set of $X \times Y$ containing $G_f(x)$. So, $G_f^{-1}(X \times V) = f^{-1}(V)$ is a regular open set containing x. This shows that f is completely δ -b-irresolute.

Let $\{X_{\alpha} : \alpha \in \Delta\}$ and $\{Y_{\alpha} : \alpha \in \Delta\}$ be two families of topological spaces with the same index set Δ . The product space of $\{X_{\alpha} : \alpha \in \Delta\}$ is denoted by $(\Pi X_{\alpha})_{\alpha \in \Delta}$. Let $f_{\alpha} : X_{\alpha} \longrightarrow Y_{\alpha}$ be a function for each $\alpha \in \Delta$. The product function $f : (\Pi X_{\alpha})_{\alpha \in \Delta} \longrightarrow (\Pi Y_{\alpha})_{\alpha \in \Delta}$ is denoted by $f((x_{\alpha})) = (f(x_{\alpha}))$ for each $(x_{\alpha}) \in (\Pi X_{\alpha})_{\alpha \in \Delta}$. Now we consider the following theorem

Now, we consider the following theorem.

Theorem 23 If a function f: $(\Pi X_{\alpha})_{\alpha \in \Delta} \longrightarrow (\Pi Y_{\alpha})_{\alpha \in \Delta}$ is completely δ -b-irresolute, then $f_{\alpha} : X_{\alpha} \longrightarrow Y_{\alpha}$ is completely δ -b-irresolute for each $\alpha \in \Delta$.

Proof. Let γ be an arbitrary fixed index and V_{γ} any δ -*b*-open set of Y_{γ} . Then, $(\Pi Y_{\beta} \times V_{\gamma})$ is δ -*b*-open in $(\Pi Y_{\alpha})_{\alpha \in \Delta}$, where $\beta \in \Delta$ and $\beta \neq \gamma$, and hence $f^{-1}(\Pi Y_{\beta} \times V_{\gamma}) = (\Pi Y_{\beta} \times f_{\gamma}^{-1}(V_{\gamma}))$ is regular open in $(\Pi X_{\alpha})_{\alpha \in \Delta}$. So, $f_{\gamma}^{-1}(V_{\gamma})$ is regular open in X_{γ} and hence f_{γ} is completely δ -*b*-irresolute.

Definition 24 A graph function G_f of a function $f : (X, \tau) \longrightarrow (Y, \varphi)$ is called $r \cdot \delta_b$ -graph if for each $(x, y) \in (X \times Y) \setminus G(f)$, there exist regular open set U in (X, τ) containing x and a δ -b-open V in (Y, φ) containing y such that $(U \times V) \cap G(f) = \emptyset$.

We give the following lemma as a characterization of $r \cdot \delta_b$ -graph.

Lemma 25 Let $f : (X, \tau) \longrightarrow (Y, \varphi)$ be a function and G(f) be a graph of f. Then, we have the following property:

"G(f) is $r-\delta_b$ -graph if and only if for each $(x,y) \in (X \times Y) \setminus G(f)$, there exist regular open set U in (X,τ) containing x and a δ -b-open set V in (Y,φ) containing y such that $f(U) \cap V = \emptyset$."

Theorem 26 If If $f : (X, \tau) \longrightarrow (Y, \varphi)$ is completely δ -b-irresolute and (Y, φ) is b- T_2 , then G(f) is r- δ_b -graph in $(X \times Y)$.

Proof. Let $(x, y) \in (X \times Y) \setminus G(f)$ and (Y, φ) is b- T_2 . Then, $f(x) \neq y$. Since (Y, φ) is b- T_2 , there exist δ -*b*-open sets V_1 and V_2 containing f(x) and y, respectively, such that $V_1 \cap V_2 = \emptyset$ by using Lemma 4. Since f is completely δ -*b*-irresolute, $f^{-1}(V_1) = U$ is a regular open set containing x. Therefore, $f(U) \cap V_2 = \emptyset$ and G(f) is r- δ_b -graph in $(X \times Y)$.

Theorem 27 Let a function $f : (X, \tau) \longrightarrow (Y, \varphi)$ has the $r \cdot \delta_b$ -graph. If f is injective, then (X, τ) is T_1 .

Proof. Let x and y be any two distinct points of (X, τ) . Then, we have $(x, f(y)) \in (X \times Y) \setminus G(f)$. Then, there exist a *regular open* set U in (X, τ) containing x and a δ -b-open set V in (Y, φ) containing f(y) such that $f(U) \cap V = \emptyset$ by using Lemma 6. Hence, we obtain $U \cap f^{-1}(V) = \emptyset$ and $y \notin U$. This implies that (X, τ) is T_1 .

References

- [1] G. B. Navalagi, On completely α -irresolute functions, Topology Atlas Preprint#460.
- [2] E. Ekici and S. Jafari, On a weaker form of complete irresoluteness, Boll. Soc. Paran. Mat., (3s)v. 26 1-2(2008): 81-87.
- [3] D. Carnahan, Some properties related to compactness in topological spaces, Ph. D. Thesis, Univ. of Arkansas, 1973.
- [4] S. P. Arya and R.Gupta, On Strongly continuous mappings, Kyungpook Math. J., 14(1974), 131-143.
- [5] A. Keskin Kaymakci, Weakly δ -*b*-continuous functions, Gen. Math. Notes, 27(1)(2015), 24-39.
- [6] P. E. Long and L. L. Herrington, Basic properties of regular closed functions, Rend. Circ. Mat. Palermo, 27(1978), 20-28.
- [7] J. H. Park, Strongly θ -*b*-continuous functions, Acta Math. Hungar., 110(4)(2006), 347-359.
- [8] A. Keskin Kaymakci, On δ -*b*-open sets, submitted.
- [9] G. Navalagi and A. M. Abdul-Jabbar, Some remarks on completely α-irresolute functions, Internat. Jour. Math. Sci., Vol. 5 No.1 (2006), 1-8.
- [10] A. A-El-Atik, A study on some types of mappings on topological spaces, M. Sc. Thesis, Tanta University, Egypt, 1997.
- [11] D. Andrijević, On *b-open* sets, Mat. Vesnik, 48(1996), 59-64.
- [12] L. A. Steen and J. A. Seebach, Jr., Counterexamples in Topology, Holt, Reinhart and Winston, Inc. New York, 1970.

- [13] M. K. Singal, A. R. Singal and A. Mathur, On nearly compact spaces, Boll. UMI, (4)2(1969), 702-710.
- [14] E. Ekici, On γ -normal spaces, Bull. Math. Soc. Sci. Math. Roumanie, Tome 50(98) No.3(2007), 259-272.
- [15] Allam A. A., Zahran A.M., Hasanein I. A., On almost continuous, δ -continuous and set connected mappings, Ind. J. Pure Appl. Math., 18(11)(1987), 991-996.
- [16] A. S.Mashhour, M. E. Abdel El-Monsef, S. N. El-Deeb, On precontinuous and weak precontinuous functions, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.