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Abstract: In the present paper, we consider the problem on a transverse impact of an elastic sphere upon an elastic
Kirchhoff-Love plate in a viscoelastic medium, the viscoelastic features of which are described by the fractional
derivative Kelvin-Voigt model. Within the contact domain the contact force is defined by the Hertzian contact. The
functional equation for determining the contact force is derived and its approximate analytical solution is obtained.
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1 Introduction
Nowadays fractional calculus is widely used in differ-
ent fields of science and technology, including various
dynamic problems of mechanics of solids and struc-
tures [1]. Usually in the papers relating to the dynamic
response of viscoelastic plates the utilization of the
Kelvin-Voigt model with fractional derivatives is car-
ried out [2, 3]. As this takes place, it is supposed that
Poisson’s ratio is time-independent during the process
of deformation and as a preassigned operator it is se-
lected Young’s operator

Ẽ = E0 (1 + τγσD
γ) , (1)

where E0 is relaxed Young’s modulus, τσ is the retar-
dation time, γ (0 < γ ≤ 1) is the fractional parameter,
Dγ is the Riemann-Liouville fractional derivative [1]

Dγx(t) =
d

dt

∫ t

0

x(t′)dt′

Γ(1− γ)(t− t′)γ
, (2)

Γ(1 − γ) is the Gamma function, and x(t) is an arbi-
trary function.

However as experimental data have shown [4, 5],
Poisson’s ratio is always an operator ν̃, and only the
bulk extension-compression operator K̃ may be ex-
pressed as the time-independent value, which for the
most viscoelastic materials weakly varies during de-
formation.

On the other hand, as it is shown in [6], the vis-
coelastic model (1) with a constant bulk extension-
compression operator is completely inapplicable for

description of the dynamic response of viscoelastic
bodies, and the Kelvin-Voigt model itself is only ac-
ceptable for the description of the dynamic behaviour
of elastic bodies in a viscoelastic medium.

By the way, when operator Ẽ is defined by Eq.
(1) and the Poisson’s operator ν̃ is considered as the
time-independent value, then this case coincides with
the case of the dynamic behaviour of elastic bodies
in a viscoelastic medium. The authors of such pa-
pers, consciously or not, replace one problem with an-
other, namely: a problem of the dynamic response of
viscoelastic bodies in a conventional medium with a
problem of dynamic response of elastic bodies in a
viscoelastic medium.

In the present paper, we consider the problem on
a transverse impact of an elastic sphere upon an elastic
Kirchhoff-Love plate in a fractional derivative Kelvin-
Voigt medium. Within the contact domain the contact
force is defined by the Hertzian contact. The func-
tional equation for determining the contact force will
be obtained.

2 Problem Formulation
Let us consider the problem on a transverse impact
of an elastic sphere upon a viscoelastic Kirchhoff-
Love plate, when the viscoelastic features of the target
are described by a fractional derivative Kelvin-Voigt
model. In this case, the equations of motion of a
spherical impactor of radius R and mass m and the
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viscoelastic rectangular plate with the dimensions a
and b and of thickness h have, respectively, the form

mẅ2 = −P (t), (3)

D̃∇2w1(x, y, t) + ρhẅ1(x, y, t) = P (t)

×δ
(
x− a

2

)
δ

(
y − b

2

)
, (4)

where h is the thickness,w1(x, y, t) is the plate deflec-
tion, ρ is its density, P (t) is the contact force, over-
dots denote time-derivatives,∇2 = (∂/∂x+ ∂/∂y)2,
x and y are Cartesian coordinates, δ(x − a

2 ) is the
Dirac delta-function, and D̃ is the viscoelastic oper-
ator, which at time-independent Poisson’s ratio ν =
const could be represented as

D̃ =
Ẽh3

12(1− ν2)
=
E0h

3(1 + τγσDγ)
12(1− ν2)

= D0(1 + τγσD
γ), (5)

what corresponds to the Kelvin-Voigt model with
the fractional derivative, and Dγw1 is the Riemann-
Liouville fractional derivative defined in (2).

Equations (3) and (4) are subjected to the follow-
ing initial conditions:

w1(x, y, 0) = 0, ẇ1(x, y, 0) = 0,
w2(0) = 0, ẇ2(0) = V0, (6)

where V0 is the initial velocity of the impactor at the
moment of impact.

Integrating twice Eq. (3) yields

w2(t) = − 1
m

∫ t

0
P (t′)(t− t′)dt′ + V0t. (7)

Expanding displacement w1(x, y, t) for a simply-
supported Kirchhoff-Love plate in terms of eigenfunc-
tions

w1(x, y, t) =
∞∑
n=1

∞∑
m=1

xmn(t) sin
mπx

a
sin

nπy

b
,

(8)
and substituting (8) in (4) with due account for orthog-
onality of sines on the intervals 0 ≤ x ≤ a, 0 ≤ y ≤
b, we have

ẍ1mn(t) + Ω2
mn(1 + τγσD

γ)xmn(t) = Fmn(t)P (t),
(9)

where xmn(t) are generalized displacements, and

Fmn(t) =
1
ρh

sin
nπ

2
sin

mπ

2
,

Ω2
mn =

D0

ρh

[(m
a

)2
+
(n
b

)2
]2

.

Now let us show that Eq. (9) could be obtained as
well, if we consider the case of vibrations of an elastic
plate in a viscoelastic medium. Really, the equation
describing vibrations of the elastic Kirchhoff-Love
plate in the fractional derivative viscoelastic medium
under the action of the contact force applied at the cen-
ter of the plate has the form

D

ρh
∇2w +

µ

ρh
Dγw + ẅ =

1
ρh
P (t)

×δ
(
x− a

2

)
δ

(
y − b

2

)
, (10)

where µ is the coefficient of viscosity, and D =
Eh3/12(1− ν2) is the cylindrical rigidity.

Substituting (8) in (10), and considering the or-
thogonality condition for the eigenfunctions on the
segments 0 ≤ x ≤ a, 0 ≤ y ≤ b, we are led to
the infinite set of uncoupled equations

ẍmn(t) +
µmn
ρh

Dγxmn(t) + Ω2
mnxmn(t)

= Fmn(t)P (t), (m,n = 1, 2, ...) (11)

where µmn is the coefficient of viscosity of the har-
monic with indices m and n.

Considering the Rayleigh hypothesis of propor-
tionality between the elastic and viscous matrices, i.e.,

µmn
ρh

= Ω2
mnτ

γ
σ , (12)

where τγσ is the coefficient of proportionality, Eq. (11)
is transformed in Eq. (9). Thus, our assumption is
valid.

3 Green Function for the Fractional
Derivative Kelvin-Voigt Model

In order to find the solution of Eq. (10), it is necessary
to find the Green function Gmn(t) for each oscillator
from (9)

Gmn(t) = A0mn(t)+Amne
−αmnt sin(ωmnt−ϕmn),

(13)
where the indices mn indicate the ordinal number of
the oscillator, and all values entering in (13) have the
same structure and the same physical meaning as the
corresponding values discussed in [1], i.e. Amn is the
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amplitude, αmn is the damping coefficient, and ωmn
and ϕmn are the frequency and phase, respectively.

Reference to Eq. (13) shows that the Green func-
tion possesses two terms, one of which, A0mn(t),
describes the drift of the equilibrium position and
is represented by the integral involving the distri-
bution function of dynamic and rheological parame-
ters, while the other term is the product of two time-
dependent functions, exponent and sine, and it de-
scribes damped vibrations around the drifting equilib-
rium position.

Now let us write Eq. (9) in terms of the Green
function Gmn(t)

G̈mn(t) + Ω2
mnτ

γ
σD

γGmn(t) + Ω2
mnGmn(t)

= Fmnδ(t) (m, n = 1, 2, ...). (14)

Applying the Laplace transform to Eq. (14) yields

Ḡmn =
Fmn

p2 + κmnpγ + Ω2
mn

, (15)

where an overbar denotes the Laplace transform of the
corresponding function, p is the transform parameter,
and κmn = Ω2

mnτ
γ
σ .

If we omit the numbers mn in (15), then it will
coincide with formula (2.2.1) in Sect. 2.2 [7] devoted
to the vibrations of the fractional derivative Kelvin-
Voigt oscillator. All further formulas of this Section,
(2.2.2)–(2.2.6), refer to the analysis of the roots of the
characteristic equation

p2 + κmnp
γ + Ω2

mn = 0, (16)

which at each pair of m and n possesses two complex
conjugate roots (pmn)1,2 = rmne

±iψmn = −αmn ±
iωmn (see the root locus at m = 1, n = 1 in Fig. 19
of [7]), and the inversion of the expression (15) on the
first sheet of the Riemannian surface. If we insert the
indices m and n in these formulas, then we obtain the
desired relationship (13), where the function A0mn(t)
describes the drift of the equilibrium position

A0mn(t) =
∫ ∞

0
τ−1Bmn(τ, κmn)e−t/τdτ, (17)

the function Bmn(τ, κmn)

Bmn(τ, κmn) =
sinπγ
π

Fmnτ [θmn(τ)]−1

×
{
[θmn(τ)]−1κ−1

mnτ
γ−2+θmn(τ)κmnτ2−γ+2 cosπγ

}
gives us the distribution of the creep (retardation) pa-
rameters of the dynamic system,

θmn(τ) = τ2Ω2
mn + 1,

and the amplitude Amn and phase ϕmn of vibrations
are defined, respectively, as

Amn = 2Fmn
[
4r2mn + γ2κ2

mnr
2(γ−1)
mn

+4γκmnrγmn cos(2− γ)ψmn]−1/2 ,

tanϕmn=−2rmn cosψmn+γκmnr
γ−1
mn cos(1−γ)ψmn

2rmn sinψmn−γκmnrγ−1mn sin(1−γ)ψmn

4 Determination of the contact force
Knowing the Green functions, the solution of Eq. (2)
takes the form

w1(x, y, t) =
∞∑
m=1

∞∑
n=1

sin
(mπ
a

x
)

sin
(nπ
b
y
)

×
∫ t

0
Gmn(t− t′)P (t′)dt′. (18)

Let us introduce the value characterizing the rela-
tive approach of the sphere and plate, i.e., penetration
of the elastic plate by the elastic sphere, is

y(t) = w2(t)− w1

(
a

2
,
b

2
, t

)
, (19)

which is connected with the contact force by the
Hertzian law

P (t) = ky3/2, (20)

where
k =

4
3

√
RE′ (21)

is the rigidity coefficient involving the geometry and
elastic features of the impactor and the target,

1
E′

=
1− ν2

1

E1
+

1− ν2
2

E2
, (22)

ν1, ν2 and E1, E2 are Poisson’s coefficients and
Young’s moduli, respectively, for the elastic target and
impactor, indices 1 and 2 refer, respectively, to the tar-
get and impactor.

Now substituting (19) in the Hertzian contact law
(20) with due account for Eqs. (7) and (9) , we are led
to the functional integral equation for determining the
contact force

k′P (t)2/3 = V0t−
1
m

∫ t

0
P (t′)(t− t′)dt′

−
∞∑
m=1

∞∑
n=1

sin
(mπ

2

)
sin
(nπ

2

)
×
∫ t

0
Gmn(t− t′)P (t′)dt′, (23)
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or the functional equation for defining the function
y(t)

y(t) = V0t−
k

m

∫ t

0
y3/2(t′)(t− t′)dt′

−k
∞∑
m=1

∞∑
n=1

sin
(mπ

2

)
sin
(nπ

2

)
×
∫ t

0
Gmn(t− t′)y3/2(t′)dt′, (24)

where k′ = k−3/2.
Since the impact process is of short duration and

the Green function Gmn(t), which vanishes to zero at
t = 0 according to the limiting theorem

lim
p→0

Ḡmn(p)p = G(0) = 0, (25)

could be represented in the form

Gmn(t) ≈ tAmnωmn cosϕmn, (26)

then considering (25) and (26) Eqs (23) and (24) are
reduced to

k′P (t)2/3 = V0t− k
[ 1
m

+
∞∑
m=1

∞∑
n=1

Amnωmn

× cosϕmn sin
(mπ

2

)
sin
(nπ

2

)]
×
∫ t

0
P (t′)(t− t′)dt′, (27)

y(t) = V0t− k
[ 1
m

+
∞∑
m=1

∞∑
n=1

Amnωmn cosϕmn

× sin
(mπ

2

)
sin
(nπ

2

)] ∫ t

0
y3/2(t′)(t− t′)dt′. (28)

Equations (27) and (28) could be solved numerically.
But the short duration of the impact interaction pro-
cess allows us to find an approximate analytical solu-
tion. Thus, as a first approximation for the function
y(t), the expression

y = V0t (29)

could be utilized. Now substituting (29) in the right-
hand side of (28) yields

y(t) = V0t−
4
35

∆γmnV
3/2
0 t7/2, (30)

where ∆γmn = k
[

1
m+
∑∞

m=1

∑∞
n=1Amnωmn cosϕmn

× sin mπ
2 sin nπ

2

]
.

5 Conclusion
In the present paper, the problem on transverse im-
pact of an elastic spherical impactor upon an elas-
tic Kirchhoff-Love plate in a viscoelastic medium has
been formulated for the case, when the damping fea-
tures of the surrounding medium are modelled by the
fractional derivative Kelvin-Voigt model. The Green
function for the target was constructed, what allows
us to obtain the integral equation for the contact force
and local indentation. An approximate analytical so-
lution has been found.
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