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Abstract: Cubic equation of state (EOS) is one of most attracting models in modeling solute solubility in su-
percritical fluid. The traditional implementation in EOS models requires critical parameters and acentric factor
of the solute, however, estimating these physical parameters is not a trivia. As a modification of the tradition-
al EOS method, in this paper, we do not estimate critical properties and acentric factor, but consider the energy
parameter of solute and the binary interaction parameter in the co-volume term as adjustable parameters. These
adjustable parameters are optimized using pattern search (PS) method by minimizing average absolute relative
deviation (AARD) between calculated and experimental solubility data. To illustrate the efficiency of our modified
model, a comparison with traditional EOS model is presented. The result shows that our modified model gives
better performance reflected by lower AARD. Moreover, the optimization method, PS, is compared with the ge-
netic algorithm(GA), and it is found that the former gives better optimizations and more significant reduction of
computing times than the latter. Finally, the rationality of the modified model is further discussed.

Key–Words: Supercritical fluid, Solubility, Equation of state, Critical property, Parameter optimization, Pattern
search method

1 Introduction
A supercritical fluid (SCF) is any substance at a tem-
perature and pressure above its critical point, where
distinct liquid and gas phases do not exist. Super-
critical fluids are suitable as a substitute for organ-
ic solvents in a range of industrial and laboratory
processes. Supercritical fluid extraction (SFE) is the
process of separating one component (the extractan-
t) from another using supercritical fluids as the ex-
tracting solvent. SFE has a great potential in chem-
ical, food, pharmaceutical, waste treatment, polymers
and monomers processing, and biochemical industries
because of using non-toxic and environmentally safe
solvents, e.g., CO2 instead of traditional organic sol-
vents [1].

In order to facilitate the development of efficient
SCF extraction technology, it is requisite to accurate-
ly obtain the solid solubility data in SCFs. However,
the accurate measurement of the solid solubility in a
supercritical fluid is difficult and time-consuming [2].
Thus, many mathematics models have been used to
describe the solid-supercritical fluid equilibria behav-
ior from limited solubility data. One of the most
extensively applied methods is the equation of state
(EOS) model. This method associates an EOS with a

mixing rule based on the thermodynamic equilibrium
conditions. Undoubtedly, the most used EOS is cubic
EOS [3–5], like Peng-Robinson(PR), Soave-Redlich-
Kwong (SRK), together with several mixing and com-
bining rules, like classical van der Waals mixing rules
(vdW). In the work described here, SRK and PR equa-
tions of state are also used to model the solid solubility
in SCF .

In the traditional cubic EOS models, two types
of computations are essential for accurate simulation
results. One hand, in order to calculate the energy pa-
rameter and volume parameter in the cubic EOS, crit-
ical properties (critical temperature and critical pres-
sure) and acentric factor of the solute and supercritical
fluid have to be estimated. It is not difficult to es-
timate these parameters of supercritical fluid, such as
CO2, and the main difficulty is to estimate those phys-
ical properties of solutes. The other hand is that one
or more temperature dependent interaction parameters
which characterize the interaction between supercriti-
cal fluid and the solute must be determined by fitting
experimental solubility data.

Some estimation methods [6–8] have been devel-
oped and proposed for prediction of critical proper-
ties and acentric factor. These methods used for pre-
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diction of critical properties may be purely empirical
with only a weak theoretical basis. Moreover, all of
the widely used estimation for acentric factor require
that the critical temperature and pressure are known,
then the estimation error of the acentric factor may be
magnified since those errors of critical properties are
inevitable.

As above discussed, we can see that the critical
properties and acentric factor obtained by estimation
are sometimes not very reliable, and this would affect
the accuracy of solubility computation. Just because
of the deficiencies of estimation methods for the crit-
ical properties and acentric factor, in this paper, we
try to modify the traditional cubic EOS model. For
us, the ultimate aim of estimating these parameters is
to calculate the energy parameter and volume param-
eter in EOS. We note that the energy parameter is not
only related to critical properties but also a function
with respect to the temperature, and the volume pa-
rameter is only a constant which is proportional to the
ratio of critical temperature to critical pressure. As
an alternative, we do not estimate the critical proper-
ties and acentric factor of the solute but perform the
following changes. First, we consider the energy pa-
rameter of the solute as adjustable parameter which is
temperature dependent. Second, because the volume
parameter of the solute is a constant, a fixed value for
it is given by artificially, and the adjustability of the
co-volume between solute and SCF is reflected by the
binary interaction parameter. To sum up, in our modi-
fied model, the energy parameter of the solute and bi-
nary interaction parameter in co-volume term are han-
dled as adjustable parameters which are determined
by fitting the experimental data. Comparing with the
traditional EOS model, our modified model, due to
not estimating critical properties and acentric factor
of the solute, reduces the workload. The performance
of our model will be investigated and compared with
the traditional model in the following section .

The optimization of two adjustable parameters in-
volved in modified model is performed by minimizing
the objective function, average absolute relative devi-
ation (AARD) between experimental and calculated
solubility. Since it is difficult to obtain explicit expres-
sions for gradient of the objective function AARD,
those optimization methods based on gradients are
ill-suited, and naturally derivative-free optimization
methods would be preferred where only the values of
the objective function are used instead. Up to now,
derivative-free optimization methods mainly include
direct search methods and evolutionary algorithms.
Direct search methods [9, 10], like pattern search al-
gorithm, simplex method, and so on, are deterministic
methods. Evolutionary algorithms [11–14], such as
cuckoo search algorithm (CA), particle swarm opti-

mization (PSO) and the most widely used genetic al-
gorithm (GA), are stochastic method arising from the
simulation of natural evolution. To date, some liter-
atures about parameter determination in supercritical
fluid solubility model are available and the parameter
optimization methods used are mainly genetic algo-
rithm [15, 16], particle swarm optimization [17, 18],
and in addition, in our previous work [20], pattern
search (PS) method has firstly been successfully used
to optimize two interaction parameters of traditional
EOS model. This paper, PS method is still used to
determinate adjustable parameters of modified EOS
model. Moreover, the performance comparison be-
tween PS and GA is also involved in this paper.

The rest of this paper is organized as follows.
The solubility model of traditional cubic EOS and the
modified model were firstly introduced in detail. After
formulation of the model, in section 3, the numerical
algorithms of parameters optimization and solubility
calculation are proposed . Next, numerical results of
adjustable parameters determination and AARD are
given and the performance comparisons between our
modified model and the traditional model as well as
different optimization methods are both displayed. In
section 5, some further discussions are made, mainly
including the rationality of the modified model and the
effect of the solute co-volume parameter given artifi-
cially on the computation performance. Finally, sec-
tion 6 concludes this paper with some comments.

2 Problem formulation
2.1 Traditional solubility model of cubic e-

quations of state

The EOS approach is often used in modeling SCF
phase equilibria. The molar solubility of the solid so-
lute in the supercritical fluid, y2, is given by the fol-
lowing expression [21]:

y2 =
P sub
2 Φsub

2

PΦSCF
2

exp

(
vs2(P − P sub

2 )

RT

)
(1)

where P sub
2 is the sublimation vapor pressure of the

pure solid solute at system temperature T , P is the
system pressure and R is the universal gas constant.
Φsub
2 is the fugacity coefficient of the solute at satura-

tion and is assumed to be unity because the solute is
assumed to be nonvolatile. The molar volume of the
solute, vs2, is a constant. The quantity ΦSCF

2 refers
to the fugacity coefficient of the solute in supercrit-
ical fluid phase at the prevailing temperature T and
pressure P which can be evaluated via an equation of
state.
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The cubic Peng-Robinson equation of state (PR
EOS) and Soave-Redlich-Kwong equation of state (S-
RK EOS) have been found success in modeling high-
pressure phase equilibria, and will be used in this
work. These two EOSs are as the following expres-
sion:
PR EOS:

P =
RT

v − b
− a

v(v + b) + b(v − b)

a = 0.45724
R2T 2

c

Pc

[
1 + k(1−

√
T

Tc
)

]2

k = 0.37464 + 1.5422ω − 0.26992ω2

b = 0.0778
RTc

Pc

(2)

and SRK EOS:

P =
RT

v − b
− a

v(v + b)

a = 0.42747
R2T 2

c

Pc

[
1 + k(1−

√
T

Tc
)

]2

k = 0.48 + 1.574ω − 0.176ω2

b = 0.08664
RTc

Pc

(3)

where a and b are energy and volume parameters re-
spectively, Tc is the critical temperature, Pc is the crit-
ical pressure, ω is called as acentric factor.

In order to extend the use of a pure-fluid EOS to
mixtures, mixing and combining rules are necessary.
The most commonly used mixing rule is the so-called
van der Waals mixing rules:

am =
∑
i

∑
j

yiyjaij , bm =
∑
i

∑
j

yiyjbij (4)

Where yi is the molefraction of the ith molecule in
the mixture, obviously,

∑
i yi = 1. The cross terms

aij (energy) and bij (co-volume) are given in the fol-
lowing classical combining rules:

aij =
√
aiiajj(1−kij), bij =

bii + bjj
2

(1−lij) (5)

where for a binary solid+CO2 system (i, j = 1, 2),
k12 and l12 are adjustable interaction parameters de-
pendent temperature, a11, b11 and a22, b22 are those
characteristic parameters of pure supercritical CO2

and solute respectively , which can be evaluated by
the cubic EOS (2) or(3) .

Based on the EOS, it is easy chemically to obtain
the fugacity coefficient ΦSCF

2 , which can be calculat-
ed as the following (6) and (7)for PR and SRK EOS

respectively:

lnΦSCF
2 =

b22
bm

(
Pv

RT
− 1

)
− ln

P (v − bm)

RT

− am

2
√
2bmRT

(
2y1a12 + 2y2a22

am
− b22

bm

)
ln

v + (1 +
√
2)bm

v + (1−
√
2)bm

(6)
and

lnΦSCF
2 =

b22
bm

(
Pv

RT
− 1

)
− ln

P (v − bm)

RT

− am

bmRT

(
2y1a12 + 2y2a22

am
− b22

bm

)
ln

v + bm
v

(7)

In order to correlate the solubility of the solute in
SCF using the traditional EOS models, there are two
types work to be done. One hand, critical temperature,
critical pressure and acentric factor must be estimated
for the computation of energy and volume parameters
in EOS. On the other hand, adjustable interaction pa-
rameters for binary system, k12, l12, need to be fitted
with experimental data by minimizing the objective
function, average absolute relative deviation (AARD)
between experimental and calculated solubility, given
as:

AARD(%) =
100

n

n∑
i=1

∣∣∣∣∣ycal2,i − yexp2,i

yexp2,i

∣∣∣∣∣ (8)

where n is the number of experimental data points at
each temperature, and ycal2,i and yexp2,i are ith calculated
and experimental values of the solid solubility respec-
tively.

2.2 Modified solubility model of cubic equa-
tions of state

From the cubic EOS (2) and (3), it is easily found
that the energy parameter a and volume parameter b
of pure component are associated with critical tem-
perature Tc , critical pressure Pc , acentric factor ω ,
and then, in order to calculate a and b of pure com-
ponent, two critical parameters and acentric factor are
necessary data. For CO2, these parameters are easy to
get, however, there are some difficulties more or less
for the solute involved in this study. Then, changing a
train of thought is may be a feasible way.

Note that the energy parameter a is a function
with respect to the temperature T , and volume param-
eter b is only a constant, which is proportional to the
ratio of critical temperature Tc to critical pressure Pc.
Different from the traditional EOS model, we perfor-
m the following modifications. We do not estimate the
critical properties and acentric factor of the solute but
consider the energy parameter of the solute a22 along
with the binary interaction adjustable parameter l12 in
the co-volume term as two adjustable parameters. As
for the b22, since it is a constant, we artificially give
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a fixed value, and the adjustability of the co-volume
term is reflected by l12. In addition, the binary in-
teraction parameter in the energy term k12 is set to
be zero since the adjustability of the energy term can
be reflected by a22. To sum up, the interaction term
a12, b12 for binary system is given :

a12 =
√
a11a22, b12 =

b11 + b22
2

(1− l12) (9)

Two adjustable parameters, a22 and l12 , are optimized
by minimizing AARD in (8).

In what follows, for the simplicity, symbols, TM
and MM, are used to denote the traditional EOS mod-
el and modified one respectively. To illustrate the dif-
ferences betweens these two models, the comparison
about them is displayed in Table 1. We can see that
MM avoids to estimate the difficult-to-obtain critical
properties and acentric factor. Moreover, the number
of optimized parameters in MM is same as that in TM.
So the MM needs fewer computations.

Table 1: Comparison between the traditional EOS
model (TM) and the modified EOS model (MM).

Characteristic TM MM
Estimate Tc need to not need to
Pc, ω or not

Optimized
k12, l12 a22, l12parameters

a22
computed by as an optimized
Tc, Pc, ω parameter

b22
computed by given as a
Tc, Pc, ω fixed value

a12
√
a11a22(1− k12)

√
a11a22

b12
b11+b22

2
(1− l12)

b11+b22
2

(1− l12)

3 Estimation of unknown parame-
ters and numerical computation of
solubility

3.1 The pattern search method
The optimization method used to determinate ad-
justable parameters a22, l12 in modified EOS model is
pattern search method (PS). The PS method was first-
ly proposed by R. Hooke and T.A. Jeeves in 1961 [22]
and it has survived until now because it is concep-
tually simple, easy to implement and computation-
ally efficient in solving many optimization problem-
s [20,23,24]. It do not need the derivatives of objective

functions. Alternatively, only the function values are
compared to choose the new iterate. It thus belongs
to the so-called derivative-free, direct search method,
and is superior to other direct search methods such as
Powell method and Simplex method in both robust-
ness and number of function evaluations [10].

In brief, the PS method consists of a series of ex-
ploratory moves and pattern moves. The iteration pro-
cess is as following, and auxiliary illustration can be
achieved by Figure 1. For the sake of clarity, F (x)is
utilized to denote the objective function, x ∈ IR2 is an
2-dimensional real vector that needs to be optimized.
For the problem on hand, x = (a22, l12), F (x) denote
AARD in expression (8). The optimization starts from
the exploration move at initial point x0 given by the
user. At kth iteration, the exploration move, from xk

point to new points represented by x+ = xk ±∆i
ke

i,
is successively tested along the coordinate direction,
where ∆i

k is the step size of ith direction and ei is s-
tandard 2-dimensional unit basis vectors (i = 1, 2).
Let ∆k = (∆1

k,∆
2
k) denote a step size vector. After

the calculations for 2 directions are all done, if there
is no such point x+ that satisfy F (x+) < F (xk) ,
the first exploration move is then unsuccessful and a
second exploratory move is repeated at xk but with re-
duced step size ∆k+1 = θ∆k, θ < 1 is a contraction
factor, and let xk+1 = xk. On the other hand, when
the point x+ that of F (x+) < F (xk) is found, the ex-
ploratory move is successful, and then let xk+1 = x+

and ∆k+1 = ∆k, meanwhile the pattern move starts
for the sake of speeding up the search.

A pattern move consists of a move step from
xk+1 to xk+1 + δ(xk+1 − xk) , where δ is the pat-
tern step size and 0 < δ < 2, namely, the direction
of move is along the direction of vector xk+1 − xk,
as shown in Figure 1. Then the PS method contin-
ues to perform a new exploratory move at the point
xk+1+ δ(xk+1−xk). If the exploratory move is suc-
cessful, and then the point xk+1 + δ(xk+1 − xk) is
accepted as the new iteration point xk+2 . On the con-
trary, if exploratory move fails, the pattern move is
omitted and return to xk+1 for proceeding explorato-
ry move to find the xk+2.

When ∆i
k < ε(i = 1, 2), the PS stops, meanwhile

xk is accepted as the optimization result of parameter-
s, where ε is the given step tolerance. In this paper, a
generalization of original PS method has been used,
the generalization mainly includes two aspects. One
hand is that the step size ∆k, the steps ∆1

k,∆
2
k are not

necessarily equal to each other as original PS. On the
other hand, the pattern step size, δ, varies from 0 to 2,
however, it is set to be 1 in original PS.
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Figure 1: Diagram of exploratory and pattern moves
in the pattern search method.

3.2 Solubility computation

From the equation (1) and (6) or (7), it is easy to find
that the equation of solubility is nonlinear. In order to
illustrate simply, the solubility equation of the solute
for the modified EOS model can be rewritten as:

y2 = f(y2, v, a22, l12, b22) (10)

The overall computation flow of the modified
EOS model is given in the following:

Step 1. For each temperature T , input n experi-
mental datas of (Pi, y

exp
2,i ),(i = 1, 2, · · · , n), and some

physical parameters: vs2, P
sub

2 , and give the value of
b22 artificially.

Step 2. Give Tc, Pc, ω of CO2 and then the char-
acteristic parameters of pure CO2, a11, b11, can be
computed by the expression a, b respectively in(2) or
(3).

Step 3. Give the initial values of optimization pa-
rameters a22, l12, the initial step size vector ∆0, con-
traction factor θ, tolerance ε.

Step 4. Compute a12, b12 using (9), and then
am, bm is valuated through mixing rules (4).

Step 5. Substitute am, bm into the EOS (2) or (3)
and thus v can be solved out.

Step 6. Compute numerically the solubility
ycal2,i , (i = 1, 2, · · · , n) in equation (10) by means of
iterative algorithm.

Step 7. The objective function AARD is given
out by (8).

Step 8. Check whether step size of PS is less than
the tolerance ε or not. If it is true, the program is
stopped, and output AARD, a11, l12. Otherwise, turn
to the next step.

Step 9. Renew a22, l12 and step size using the PS
method discussed in section 3.1, and return to Step 4.

From above, we can see the computational solu-
bility, ycal2,i , should be evaluated. The equation (10)
is nonlinear , and iterative algorithms are suitable to
compute the solubility . Here, for the simplicity, we
omit the subscripts, and ycal is used to represent the
computational solubility of the solute. The iteration
process is performed as follows.

Step 1. Give the initial value of solubility y(0), for
example, the experimental solubility date can be used
as y(0) , the tolerance ϵ = 1× 10−7, and the iteration
steps is limited to 200.

Step 2. Let y2 = y(0) , and substitute y2 in-
to the right hand of (10), then we yield the value of
f(y2, v, a22, l12, b22) .

Step 3. Calculate the difference |y2 −
f(y2, v, a22, l12, b22)|. If the difference is less than
ϵ or the iterations exceeds the limit, the process is
stopped and let ycal= f(y2, v, a22, l12, b22). Other-
wise, turn to Step 4.

Step 4. Renew y2 by f(y2, v, a22, l12, b22) , sub-
stitute renewed y2 into the right side of (10), and
renewed f(y2, v, a22, l12, b22) is thus obtained, then
switch to Step 3.

4 Numerical results
4.1 Numerical results of modified model

In this study, 50 different solubility data sets of 10 bi-
nary systems at five temperatures have been used to
the solubility model. Original 438 experimental data
points of 10 binary systems are collected from litera-
tures [25–27]. The temperature range of these exper-
imental data are 308-348K under pressure of 121.6-
355 bar, where for each temperature, several experi-
mental solubility data are provided for different pres-
sures. The physical properties required in the com-
putation of studied ten systems, sublimation pressure
P sub
2 and molar volume of the solute vs2 are shown in

Table 2, the estimate methods for these two physical
properties can be referred to [28,29], this is not our fo-
cus and is omitted. Moreover, critical properties and
acentric factor of supercritical solvent CO2 are respec-
tively: Tc=304.2K, Pc=73.82bar, ω=0.225.

For the volume parameter of the solute, b22, a
fixed value is given artificially in the beginning of
computation. According to the expression of b in the
EOS (2) or (3) and the empirical value of critical prop-
erty, we can calculate that the magnitude order of b22
is about 10−4. So, in the following calculations, for
the simplicity, we set b22 to be 5 × 10−4 for all sys-
tems, and in what follows the affections of different
b22 will be discussed. The adjustability of co-volume
term is reflected by the interaction parameter l12.

In Table 3, adjusted parameters, a22, l12, and
AARD values obtained by using the modified EOS
models for 10 supercritical CO2-drug systems are pro-
vided. The calculation results are in satisfactory a-
greement with experimental data, reflected by AARD
values. In the ten compounds, the best performance
is of Lovastatin, the average AARD for five temper-
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Table 2: Physical properties of all compounds used.

Compound vs2(cm
3/mol) P sub

2 (Pa)
308K 318K 328K 338K 348K

Atorvastatin 426.54 1.863×10−4 7.574×10−4 2.803×10−3 9.526×10−3 2.995×10−3

Atropine 233.89 1.344×10−1 4.231×10−1 1.232 3.339 8.485
Bisacodyl 282.79 1.443×10−2 4.960×10−2 1.569×10−1 4.598×10−1 1.258
Carbamazepine 180.48 9.262×10−2 2.896×10−1 8.377×10−1 2.258 5.707
Codeine 224.68 4.257×10−2 1.393×10−1 4.207×10−1 1.181 3.099
Diazepam 210.53 1.197×10−1 3.777×10−1 1.102 2.993 7.619
Fluvastatin 317.90 1.044×10−3 3.938×10−3 1.358×10−2 4.320×10−2 1.276×10−1

Lovastatin 346.38 2.743×10−3 1.002×10−2 3.356×10−2 1.038×10−1 2.986×10−1

Rosuvastatin 360.90 9.982×10−4 3.812×10−3 1.330×10−2 4.277×10−2 1.277×10−1

Simvastatin 361.32 4.920×10−3 1.769×10−2 5.837×10−2 1.780×10−1 5.053×10−1

atures is 2.67% and 2.56%, from PR EOS and S-
RK EOS, respectively. Overall, for the 50 solubil-
ity isotherms of ten compounds, except that AARD
values of atorvastatin and simvastatin at 328, 338 and
348 K isotherms are above 20%, the others are most-
ly less than 10.0%, these results are perfectly accept-
able for SCF extraction process. In additon, in other
literatures [19, 20], similar results that AARD value
was high at higher temperatures are also found. M.
R. Housaindokht and M. R. Bozorgmehr [19] used se-
mi empirical Mendez-Santiago-Teja equation to mod-
el solubility in SCF , they found that AARD value was
high at higher temperatures, and concluded that the
deviation of calculated results at higher temperature
may be related to the inaccuracy of experimental data,
we agree with this point of view.

To further illustrate the efficiency of our model,
the calculated solubilities corresponding to all 438 ex-
perimental data are achieved. The perfect fit, i.e., cal-
culated solubility values equal to experimental data, is
also shown in Figure 2 by the dashed line. Obviously,
the calculated solubility values are agreeing with the
experimental data rather well for most of data points,
indicating the satisfactory performance of the modi-
fied EOS model and PS optimization method.

A main purpose of modelling the solubility by
mathematical model is to predict the solubility under
other temperatures or pressures where there are not
experimental data. Given a isotherm and the corre-
sponding set of optimized parameters, a22 and l12, the
solubilities for different pressures can be obtained fol-
lowing the computation process of ycal in section 3.2.
Lovastatin as an example, Figure 3 gives the experi-
mental solubility data (denoted by discrete points) at
five temperatures and fitted curve (represented by full
line) for different pressures range of 115-360 bar us-
ing the modified PR EOS model. From the figure, it
is obvious the fitting is very well and we would think
the prediction is also accurate.
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WSEAS TRANSACTIONS on MATHEMATICS Jinghuan Li, Li Xu, Zhen Huang

E-ISSN: 2224-2880 491 Volume 15, 2016



Table 3: Optimized parameters and AARD results of our modified solubility model.

Compound EOS Parameters Temperature T(K)
308 318 328 338 348

Atorvastatin PR a22 17.1892 14.9282 11.8267 8.8070 7.8028
l12 -1.2113 -0.9810 -0.5998 -0.1735 -0.0373
AARD% 4.47 10.23 21.77 36.93 35.35

SRK a22 16.0529 14.1983 11.2383 9.1228 8.0000
l12 -1.2833 -1.0649 -0.6477 -0.3130 -0.1424
AARD% 3.74 9.24 20.97 34.51 33.43

Atropine PR a22 7.4890 7.3076 6.6641 6.2649 6.0176
l12 -0.4871 -0.3985 -0.3484 -0.2889 -0.2475
AARD% 9.95 8.84 9.45 8.23 7.57

SRK a22 6.9593 6.9271 6.3499 6.0937 6.0000
l12 -0.5333 -0.4552 -0.4073 -0.3654 -0.3497
AARD% 9.64 9.01 10.72 8.55 7.88

Bisacodyl PR a22 9.6291 8.0494 6.3438 4.3583 3.2320
l12 -0.6164 -0.4408 -0.1980 0.1613 0.4064
AARD% 4.15 3.42 8.49 8.85 14.41

SRK a22 9.0722 7.7692 6.0931 4.4349 3.2475
l12 -0.6791 -0.5241 -0.2508 0.0794 0.3649
AARD% 3.52 2.79 8.48 8.69 13.96

Carbamazepine PR a22 7.1700 6.2407 4.8969 3.1302 2.0000
l12 -0.3174 -0.1844 0.0269 0.4354 0.7448
AARD% 1.18 4.65 3.15 7.35 17.57

SRK a22 6.2166 5.8979 4.7729 3.1168 2.4993
l12 -0.2655 -0.2200 -0.0253 0.4038 0.5698
AARD% 1.44 4.70 3.40 7.21 17.45

Codeine PR a22 8.9089 8.0000 8.4799 6.2417 5.8344
l12 -0.4602 -0.3843 -0.4917 -0.2244 -0.0936
AARD% 5.71 8.34 4.36 11.32 7.08

SRK a22 8.5174 7.5498 8.1608 6.1694 5.6967
l12 -0.5275 -0.4282 -0.5685 -0.3187 -0.1498
AARD% 5.85 7.68 4.74 11.49 7.22

Diazepam PR a22 8.6104 7.5210 6.9807 6.0574 5.7370
l12 -0.4976 -0.3762 -0.3422 -0.2204 -0.2162
AARD% 4.40 5.92 9.41 10.29 11.92

SRK a22 8.0702 7.1423 6.6885 5.8594 5.7757
l12 -0.5452 -0.4314 -0.4060 -0.2838 -0.3277
AARD% 4.63 6.43 9.93 10.79 12.77

Fluvastatin PR a22 13.8640 12.4021 10.2098 8.7292 7.7405
l12 -0.9599 -0.8079 -0.5394 -0.3442 -0.1988
AARD% 1.79 2.22 3.16 3.83 5.83

SRK a22 12.9081 11.8066 10.0076 8.7628 7.6113
l12 -1.0162 -0.8875 -0.6404 -0.4589 -0.2648
AARD% 2.37 1.83 2.29 3.55 6.07

Lovastatin PR a22 14.9813 14.9321 13.4086 11.8019 10.5066
l12 -1.2963 -1.3608 -1.2696 -1.1549 -1.0661
AARD% 5.19 0.62 1.69 1.93 3.90

SRK a22 13.7944 13.8174 12.5285 11.3282 10.1143
l12 -1.3696 -1.4451 -1.3649 -1.2883 -1.1964
AARD% 5.49 0.77 0.56 1.36 4.61

Rosuvastatin PR a22 16.0261 13.1454 10.8764 8.7843 7.1740
l12 -1.2646 -0.9933 -0.7633 -0.5189 -0.3035
AARD% 2.08 6.58 13.73 14.62 15.80

SRK a22 14.9392 12.4787 10.4126 8.6068 7.7461
l12 -1.3467 -1.0881 -0.8510 -0.6194 -0.5188
AARD% 2.05 6.07 12.44 12.92 13.73

Simvastatin PR a22 12.2398 10.3158 7.4305 4.0000 2.0000
l12 -0.9348 -0.7525 -0.3782 0.2430 0.7093
AARD% 4.58 10.10 22.03 33.70 26.76

SRK a22 11.4094 9.7213 7.1555 4.0000 1.9762
l12 -1.0023 -0.8224 -0.4489 0.1880 0.7131
AARD% 3.94 9.25 20.91 32.56 26.42
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4.2 Model comparison

In recent years, to promote the performance of EOS,
some literatures have contributed to modify the tra-
ditional EOS or mixing rules [2, 30–32], to the best
of our knowledge, both critical properties and acen-
tric factor needed to be estimated in these studies. In
our previous work [20], solid solubility in supercrit-
ical CO2 for the same ten compounds as this paper
were modelled using TM. Comparing the model of
literature [20] with this paper, the difference is also
that critical properties and acentric factor were esti-
mated in our existing reference, however, this need
not to be done in present modified model. To compare
the performance of TM and MM, Table 4 provides the
AARD results averaged over five temperatures for all
ten solutes. It is obviously that the vast majority data
of AARD of the MM are lower than that of TM for
comparison, except for Diazepam in both EOS and A-
tropine, Carbamazepine in PR EOS. The total average
AARD for all ten compounds of MM is 9.65 and that
of TM is 10.09. The better performance of modified
EOS model may be contributed the novel idea, i.e.,
not estimating critical properties and acentric factor,
which eliminate the error of estimating them.

Table 4: Comparison of AARD (%) values averaged
by five temperatures between modified model (MM)
and traditional model (TM).

Compound EOS AARD(%)
MM TM

Atorvastatin PR 21.75 24.93
SRK 20.38 23.35

Atropine PR 8.84 8.96
SRK 9.16 9.50

Bisacodyl PR 7.86 8.53
SRK 7.49 7.99

Carbamazepine PR 6.78 6.88
SRK 6.84 6.84

Codeine PR 7.36 7.44
SRK 7.40 7.49

Diazepam PR 8.39 8.31
SRK 8.91 8.85

Fluvastatin PR 3.37 3.71
SRK 3.22 3.42

Lovastatin PR 2.67 2.73
SRK 2.56 2.64

Rosuvastatin PR 10.56 10.88
SRK 9.44 9.73

Simvastatin PR 19.43 20.18
SRK 18.62 19.39

4.3 Optimization method comparison

Genetic algorithm (GA) is a stochastic optimization
technique inspired by Darwins theory of hereditary

evolution, this method has been widely applied to
many engineering optimizations [34, 35]. At the be-
ginning of the computation a number of individual-
s represented by chromosomes are randomly given,
forming a set known as the initial population. In this
study, the population size of 20 was taken. Following
the evaluation of objective function, a new generation
is generated by applying a set of genetic operators to
the original population. The basic genetic operations
are selection, crossover and mutation. The process of
selection, crossover and mutation continues until ei-
ther the generation exceeds a number limit or the ob-
jective function AARD does not improve in 50 gen-
erations. The maximum generation limit used is 200
for lower temperatures of 308 and 318K, and 500 for
other higher temperatures.

A comparison between PS and GA is shown in
Table 5, the performance is reflected by the overall
AARD and CPU time averaged by five temperatures.
From the AARD, we can find that the PS method has
performed marginally better than the GA one. Further,
if comparing the run time, PS is outstandingly better
in time-saving than the GA method. As we can see,
the CPU time used for running the PS algorithm is
much less than or close to 1s for all tested systems
whereas for GA the CPU time used is ranging from 6
to 17s. The reason for it may be due to that the GA is
run with a population of starting points rather than a
single initial point like the PS, subsequently requiring
more computing time.

Table 5: Comparison of AARD (%) values averaged
by five temperatures and CPU time between pattern
search method (PS) and genetic algorithm (GA) for
modified PS EOS model

Compound AARD(%) CPU time(s)
PS GA PS GA

Atorvastatin 21.75 23.36 0.52 15.87
Atropine 8.84 8.97 0.39 9.26
Bisacodyl 7.86 8.45 0.51 16.42
Carbamazepine 6.78 7.03 0.48 10.79
Codeine 7.36 7.56 0.61 13.76
Diazepam 8.39 8.78 0.43 9.88
Fluvastatin 3.37 3.59 0.57 10.64
Lovastatin 2.67 2.92 0.45 14.72
Rosuvastatin 10.56 11.17 0.67 11.23
Simvastatin 19.43 20.24 0.85 12.64

5 The discussion of modified model

5.1 The changing trend of a22
In our present work, a22 is considered as an adjustable
parameter, its value is obtained by fitting the experi-
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mental and calculated solubility data. From the fitted
data of a22 in the Table 3, we can find that the values
of a22 decrease with increase of temperature T . Of
course, there are a little bit of data that does not strict-
ly follow above rule, including from 318K to 328K
of Codeine for both EOS and from 308K to 318K of
Lovastatin for SRK EOS only, which may be caused
by the inaccuracy of experimental data or the error of
numerical computation, after all, errors are inevitable
for all numerical methods. In spite of this, we think it
would not become the obstacle of a22 overall variation
trend with temperature.

Whether the fitted trend of a22 by modified model
is consistent with the traditional EOS theory or not is
a problem in front of us. Theoretically speaking, a22
is a function of temperature T , which can be found
easily from the equation of state. PR as example still,
let us consider the expression of a in traditional EOS
(2). Differenting the expression of a with respect to
the temperature T , it yields,

∂a

∂T
= 0.45724

R2T
3
2
c

Pc
[
k2√
Tc

− k(1 + k)√
T

] (11)

In fact, generally acentric factor, ω, is in the range
of [0,1], thus, judging from the expression of k in (2) ,
k > 0 is concluded. In addition, for our compounds s-
tudied in this paper, the range of experimental temper-
ature T is from 308K to 348K, it is far below the crit-
ical temperature Tc , whose estimated data can be re-
ferred to the literature [15]. Therefore, k2√

Tc
< k(1+k)√

T

is true, and then ∂a
∂T < 0 is concluded. From above de-

duction, it is shown that the energy parameter of solute
in EOS is decreasing with the increasing temperature
T , thus the fitted result is consistent with theoretical
variation tendency. In another words, the fitted results
of a22 are logical.

5.2 Affection of solute volume parameter
In the previous correlation process of solubility, the
value of b22 is given artificially, it was set to be
5× 10−4 for all systems. What will happen if the val-
ue of b22 changes is in our concern. In order to verify
this, we newly let b22 = 1×10−4, 4×10−4, 8×10−4,
respectively. The parameters optimization results and
AARD derived from different b22 are listed respec-
tively in Table 6 for comparison. To simplify, only the
results of PR EOS is provided. SPK EOS has similar
correlated results and the details are omitted.

From Table 6, it shows that the values of l12 ob-
tained from different b22 are significantly deviation.
Through further analysis, we can find l12 is increasing
following the increase of b22. Because of the fact that

b12 = b11+b22
2 (1 − l12) and the changes between b22

and (1 − l12) are in the opposite directions, the vari-
ance of b12 is offset a bit, it is natural to guess that
the optimization results of l12 would not significantly
influence that of a22 and AARD. This is verified as
shown Table 6, it is obvious that the variation of a22
and AARD are flat. Judged by the similar results of
AARD obtained from different b22, we can conclude
that the performance is almost unaffected by differ-
ent b22 as long as it varies in a relatively reasonable
scope. To conclusion, it is not a very difficult thing
to give out a reliable value of b22 in the beginning of
computation.

6 Conclusions
In this paper, PR and SRK EOS are used to correlate
solid solubility in supercritical CO2. Different from
traditional way, this paper, without estimating critical
properties and acentric factor of the solute, correlat-
ed ten solid+SCF solubility data by considering the
solute energy parameter and the binary interaction pa-
rameter in the co-volume term as adjustable parame-
ters, which were optimized by minimizing the AARD.
The correlation results show that this method has per-
formed very well for ten materials examined as re-
flected by lower AARD values. Comparing with the
traditional EOS model, this modified model avoids the
use of difficult-to-obtain critical properties and acen-
tric factor and achieves a better performance.

The solute energy parameter values optimized by
PS method are decreasing with the increasing temper-
ature, this trend is consistent with EOS theory. As
for co-volume parameter of the solute, b22, because
of the absence of the critical property, a fixed value is
given artificially in the beginning of correlation. The
affection on correlation performance was discussed
through different man-made fixed values. The results
show that the variation of AARDs from different b22 is
very flat, namely, the performance is almost unaffect-
ed when b22 varies in a relatively reasonable scope. In
a word, it is not a difficult thing to give out artificially
a reliable b22 value in the beginning of computation.
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