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Abstract: Risk aversion is prevalent behaviors of decision makers when the external environment is uncertain. In
this paper, the dynamic output game strategies in two-tier supply chains under uncertain demand and competitive
environment are discussed, where the supply chains include a risk-averse manufacturer and customers respectively.
Two game models with a mean-variance framework are developed under decentralized and team game respective-
ly. The complex dynamics characteristics and influences of parameters on the dynamics behaviors of two game
strategies are investigated using parameter basin plots, bifurcation diagrams and the largest Lyapunov exponent et
al. The results show that game strategy will affect the stability of the system, and risk reference has little effect on
stability of the system while the weight parameter of the products and uncertain demand have. The instability of
the system causes an unfavorable outcome and the parameter adjustment mechanism can be applied by manufac-
turers to eliminate the chaotic behaviors.
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1 Introduction
At present, market environment is complex, manufac-
turers produce alternative varieties with small batch to
cater for the diversity of consumers’ taste. However,
the manufacturers have incomplete and uncertain in-
formation about customer’s demand and competitors.
It is especially important to study the system stability
in which manufacturers sell their alternative varieties
in the uncertain environment.

Uncertain factors make manufacturers difficult to
make decisions, and many scholars have studied the
effect of uncertain factors on decision making. Li et al
[1] considered a supply chain in which the distributor
faces a known demand and orders from the producer
subject to random production yield. By giving priority
to the logistics service integrator, Liu et al [2] estab-
lished a Stackelberg game model and investigated the
fairest revenue-sharing coefficient when the logistics
service integrator and the functional logistics service
provider implement revenue-sharing contract under s-
tochastic demand condition. Li et al [3] studied an in-
centive model for a firm who consigns the used prod-
uct collection to a collector, while the firm only has
incomplete information on the collector’s cost. Li et
al [4] explored a generalized supply chain model sub-
ject to supply uncertainty and designed coordination
contracts to coordinate the supply chain with random

demand. However, the above papers considered the
uncertain factor from different aspects but did not in-
vestigated the effects of risk-averse behaviors which
caused by the uncertain factor on the stability and the
competition of supply chains.

Output decision is an important issue and its
stability has been studied. Al-Nowaihi and Levine
[5] examined the stability properties of the Cournot
oligopoly model for the continuous adjustment pro-
cess. Furth [6] studied the stability and instability
in an oligopoly market. Under the circumstance of
information asymmetry, Wang and Ma [7] proposed
an output game model among multiple oligopolistic
manufacturers and discussed the impact of system pa-
rameter on the model complexity from a perspective
of complex dynamics. Gian Italo and Fabio [8] de-
veloped a dynamic model considering minimum and
maximum production constraints to explore the effect-
s on the system dynamic. Wang and Ma [9] consid-
ered a Cournot-Bertrand mixed duopoly game mod-
el, and studied the influences of the parameters on
the system performance from the perspective of eco-
nomics. Cnovas and Guillermo [10] explored a re-
stricted Cournot-Puu triopoly and studied its dynam-
ics, found conditions for removing the other firm from
the market and studied the complexity of the map
by means of sample permutation entropy. Ding et
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al [11] studied the dynamics and adaptive control of
a duopoly advertising model based on heterogeneous
expectations, and gave the scope of the convergen-
t condition and control intensity. Ma and Yang [12]
established a decentralized pricing game model and s-
tudied its complex dynamic characteristics of triopoly
under different decision-making rule. Liu et al [13]
and Liu et al [14] proposed an order allocation opti-
mization model for logistics services integrator under
rational expectations and rational pre-estimate.

In recent years, cooperation and multi-team
games had become popular. Ding et al [15] studied a
dynamical system of a two-team Cournot game played
by a team consisting of two firms with bounded ratio-
nality and a team consisting of one firm with naive ex-
pectation. Ahmed et al [16] formulated a multi-team
Bertrand game which based on Puu’s incomplete in-
formation, and studied on quantum team games re-
spectively. Elettreby and Mansour [17] studied and
modified an incomplete information dynamical sys-
tem and applied it to the standard multi-team dynamic
Cournot game. Asker [18] mainly constructed a dy-
namical multi-team Cournot game model in which the
enterprises exploit a renewable resource, and analyzed
the asymptotic stability of the equilibrium solution of
the model. Ding et al [19] studied the dynamics of a
two-team Bertrand game with players having hetero-
geneous expectations. Liu and Simaan [20] studied
the static multi-team games.

The above papers studied the output and its stabil-
ity conditions of decision makers, static and dynam-
ic multi-team under different decision rule, but they
did not consider the effects of the risk preference of
the decision makers on the system stability and the
choice of game strategy under a competitive environ-
ment. Risk preference is the attitude and tendency of
investment entities in the face of the uncertainty. The
consideration of risk in decision making has gained
increasing interest in supply chain studies [21-24]. D-
ifferent methods have been used to study risk aver-
sion. For example, adopting the conditional-value-
at-risk (CVaR) decision criterion, Caliskan-Demirag
et al.[25] analyzed the manufacturer’s rebate amoun-
t decisions including the retailer’s joint inventory and
pricing decisions. Chiu and Choi [26] studied the clas-
sical newsvendor problem with Value-at-Risk (VaR)
consideration and price-dependent demands. Eskan-
darzadeh and Eshghi [27] considered a sequential de-
cision problem with risk which can be reasonably
modeled by decision tree, and a new prescriptive ap-
proach was introduced for coping with risk using C-
VaR.

Some other papers developed the risk aversion
model in a mean-variance framework. Xu et al [28]
investigated a dual-channel supply chain coordinating

contract with a mean-variance framework when sup-
ply chain agents are risk aversion, and found that the
price set by a risk-averse dual-channel supply chain is
lower than the one set by a risk-neutral dual-channel
supply chain. Li et al [29] investigated the Stackel-
berg equilibrium contract strategies of two competing
supply chains with one risk-averse supplier and one
risk-neutral retailer using mean-variance utility func-
tion.

In this paper, using mean-variance utility function
and the limited rational expectations, we will study
the dynamic influences of parameters on the optimal
behaviors of competing supply chains under different
game strategies.

In our models, for keeping the analytical model
tractable, we assume that the inverse demand func-
tions are linear with regard to self-and cross-demand
sensitivities [30]. Yue et al [31] and Mukhopadhyay
et al [32] also used the linear inverse demand func-
tions for complementary products in their studies. In
this paper, with a mean-variance framework and lim-
ited rational expectations, two dynamic Cournot game
models using linear inverse demand functions will be
constructed under decentralized and team decision re-
spectively. By theoretical analysis and numerical sim-
ulation, the obtained results have an important theo-
retical and applied significance, which ca help man-
ufacturers to formulate output strategies avoiding the
market chaos and the system profit loss, and also is
helpful for the government formulate relevant policies
to manage the relevant resource market.

The paper is organized as follows. Section 2
presents the two dynamic game models. The exis-
tence, local stability, and bifurcation of the equilibri-
um points of the two models are also analyzed respec-
tively in section 3-4. Numerical simulations are used
to show the complex characteristics of the system via
Lyapunov exponents, the system sensitive dependence
on initial conditions and the chaotic attractor. In Sec-
tion 5, the chaos control of dynamic team game model
is considered with the parameters adjustment method.
Finally, some conclusions are made.

2 The two dynamic Cournot game
models with bounded rational ex-
pectations

In this paper, we investigate the stability and compe-
tition of the three supply chains which include a risk-
averse manufacturer (Mi, i = 1, 2, 3)and customers
respectively, the three risk-averse manufacturers serve
three kinds of alternative products (xi, i = 1, 2, 3),
and the customer demand has uncertainty. The out-
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puts and prices of the three products are represented
as qi, pi, i = 1, 2, 3 respectively.

According to the literature [30-32], the inverse
demand functions of three products are given by the
following equations:

p1(t) = ω − q1(t)− a1q2(t)− b1q3(t),
p2(t) = ω − q2(t)− a2q1(t)− b2q3(t),
p3(t) = ω − q3(t)− a3q2(t)− b3q1(t),

(1)

where the parameter ai, bi, i = 1, 2 denotes the de-
gree of product differentiation. ω is potential intrinsic
demand of three products, in order to capture the un-
certainty demand from economic and business chang-
ing, we assume that ω is a random variable as follows
ω = ϖ + ε, where ϖ is the mean of the potential
intrinsic demand and ε follows a normal distribution
such that E(ε) = 0, V ar(ε) = σ2 which had been
used extensively in the literature, the manufacturers
know the distribution of the demand and organize the
product’s sale accordingly.

Facing the uncertain demand, the three manufac-
turers have different financial risk for their products.
Therefore, we will consider the effects of the risk at-
titude of the manufacturer on output decision. The
preference theory provides the framework for incor-
porating the manufacturer’ financial risk propensity
into their decision process, the valuation measuremen-
t we use is known as the certainty equivalent in the
preference theory as the certainty equivalent, which is
defined as certain value for an uncertain event which
the manufacturer is just willing to accept.

One form of the utility function in both theoreti-
cal and applied work in areas of decision theory and
finance is the exponential utility function which is

U(πi) = −e−
−πi
ti , i = 1, 2, 3, where ti is the risk tol-

erance levels of the three manufacturers and e is the
exponential constant. πi is the profit of the firm and
follows a normal distribution, the mean is E(πi) and
the variance is V ar(πi). The certain equivalent of πi
is expressed by the following equation:

EUi = E(πi)−
V ar(πi)

2ti
), i = 1, 2, 3, (2)

according to equation (2), we can obtain the expected
value of each product at period t:

EU1(t) = (ϖ − q1(t)− a1q2(t)− b1q3(t))q1(t)

− (q1(t))2σ2
1

2t1
,

EU2(t) = (ϖ − q2(t)− a2q1(t)− b2q3(t))q2(t)

− (q2(t))2σ2
2

2t2
,

EU3(t) = (ϖ − q3(t)− a3q2(t)− b3q1(t))q3(t)

− (q3(t))2σ2
3

2t3
.

(3)

However, the manufacturers’ decision is a long-
term and complex process under the complex external
environment. Sometimes the objective of manufactur-
ers is the maximum profit or the higher stability, and
in order to the long-term development the manufactur-
ers may cooperate with competitors to form the team.
In this paper, we will analyze and compare the influ-
ences of variables and parameters on the stability of
the system under two decision strategies: decentral-
ized decision and team decision.

2.1 Decentralized decision

In this game strategy, the three manufacturers make
decisions maximize their profits respectively. In fac-
t, restricted by the decision ability, when making
the output decision, manufacturers cannot complete-
ly grasp the information of the customer’ demand and
other manufacturers, and show characteristics of the
bounded rationality. The three manufacturers make
decisions on the basis of their expected marginal prof-
its. The optimal marginal profits of the three manu-
facturers can be obtained by the first-order conditions
of formula (3). The result is as follows:

∂EU1
(t)

∂q1(t)
= ϖ− 2q1(t)− a1q2(t)− b1q3(t)−

q1(t)σ2
1

t1
,

∂EU2
(t)

∂q2(t)
= ϖ− 2q2(t)− a2q1(t)− b2q3(t)−

q2(t)σ2
2

t2
,

∂EU3
(t)

∂q3(t)
= ϖ− 2q3(t)− a3q2(t)− b3q1(t)−

q3(t)σ2
3

t3
.

(4)
If the marginal profit is positive (negative), the

manufacturer increases (decreases) its output in the
next period. Supposing the manufacturer makes de-
cisions of period t + 1 based on the variables of pe-
riod t, the dynamical output game model with limited
rational expectations can be described as follows:

q1(t+ 1) = q1(t) + k1q1(t)
∂EU1

(t)

∂q1(t)
,

q2(t+ 1) = q2(t) + k2q2(t)
∂EU2

(t)

∂q2(t)
,

q3(t+ 1) = q3(t) + k3q3(t)
∂EU3

(t)

∂q3(t)
,

(5)

where ki, i = 1, 2, 3 represent the manufacturer’s ad-
justment speed and ki > 0 respectively.

2.2 Team decision

Reality suggests that it is cooperation within the team
and competition between the teams. The construction
of multi-team games is done as follows. Let

∏
iX be

the payoff of the player i = (1, 2, · · · , nX) in the
team X = (1, 2, · · · , N) if he played alone, where
nX is the number of players in the team X and N
is the number of teams. Then by using the weight-
ed sum of objective functions method [33], the team’s
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payoff matrix
∏
X is given by:

∏
X =

∑
iγiX

∏
iX ,

i = 1, 2, · · · , nX , X = 1, 2, · · · , N , where γiX are
the weights of the players i in the team X which sat-
isfies: 0 ≤ γiX ≤ 1 and

∑
i γiX = 1. For the case

of continuous games, the NNS is obtained by solv-
ing the equations: ∂

∏
X

∂UiX
= 0, i = 1, 2, · · · , nX , X =

1, 2, · · · , N , where uiX is the control parameter of the
playeri in the team X , which may be the quantities
qiX produced (in case of Cournot game) or the prices
piX of their products (in the case of Bertrand game),
etc.

The idea of construction team is an importan-
t contribution to the game theory, which is relevant
to the real cases, and can be applied to many realistic
systems (economic, biological, evolutionary system-
s). Considering of the idea of team, the total expected
value of three manufacturers in a team at time t is as
follows:

EUT
(t)

= γ[EU1(t)] + η[EU1(t)] + (1− γ − η)[EU3(t)]

=γ[(ϖ−q1(t)− a1q2(t)−b1q3(t))q1(t)−
(q1(t))2σ2

1
2t1

]

+η[(ϖ−q2(t)− a2q1(t)−b2q3(t))q2(t)−
(q2(t))2σ2

2
2t2

]

+(1− γ − η)[(ϖ − q3(t)− a3q2(t)− b3q1(t))q3(t)

− (q3(t))2σ2
3

2t3
],

(6)
where γ and η are the weight parameter of the product
in the team which satisfy: 0 ≤ γ ≤ 1, 0 ≤ η ≤ 1 and
0 ≤ γ+η ≤ 1, Since the game among three manufac-
turers is a continuous and long-term repeated dynam-
ical process, using the standard approach of bounded
rational strategy, the dynamic team game model can
be generalized:

q1(t+ 1) = q1(t) + β1q1(t)
∂EUT

(t)

∂q1(t)
,

q2(t+ 1) = q2(t) + β2q2(t)
∂EUT

(t)

∂q2(t)
,

q3(t+ 1) = q3(t) + β3q3(t)
∂EUT

(t)

∂q3(t)
,

(7)

where βi, i = 1, 2, 3 is the output adjustment speed
parameter.

3 The complex dynamic characteris-
tics of the system (5)

3.1 Equilibrium points and local stability

By Eq. (4), we can get the fixed points of the sys-
tem (5) and only more interest to the Nash equi-
librium point from the view of economics, ED∗ =
(qD∗

1 , qD∗
2 , qD∗

3 ), the superscripts i∗, (i = D,T ) rep-

resents decentralized and team decision respectively.

q1(t) + β1q1(t)
∂EUT

(t)

∂q1(t)
= 0,

q2(t) + β2q2(t)
∂EUT

(t)

∂q2(t)
= 0,

q3(t) + β3q3(t)
∂EUT

(t)

∂q3(t)
= 0.

(8)

The local stability of equilibrium points can be
determined by the nature of the eigenvalues of Jaco-
bian matrix evaluated at the corresponding equilibri-
um points. To study the stability of the fixed points,
the Jacobian matrix of the system (5) corresponding to
the state variables (q1, q2, q3) is calculated as follows:

J(q1, q2, q3) =

 u∗ −k1a1q1 −k1b1q1
−k2a2q2 u∗∗ −k2b2q2
−k3b3q3 −k3a3q3 u∗∗∗

)

 ,

(9)
where

u∗ = 1 + k1q1(−2− σ2
1
t1
)

+k1(ϖ − 2q1(t)− a1q2(t)− b1q3(t)−
q1(t)σ2

1
t1

),

u∗∗ = 1 + k2q2(t)(−2− σ2
2
t2
)

+k2(ϖ − 2q2(t)− a2q2(t)− b2q3(t)−
q2(t)σ2

2
t2

),

u∗∗∗ = 1 + k3q3(t)(−2− σ2
3
t3
)

+k3(ϖ − 2q3(t)− a3q2(t)− b3q1(t)−
q3(t)σ2

3
t3

).

With respect to Nash equilibrium point, it is more d-
ifficult to explicitly calculate the expression of eigen-
values, but it still possible to evaluate its stability by
using the Jury conditions [34]. According to the ac-
tual market situation, we get the parameter values as
follows: ϖ = 100,a1 = 0.4, a2 = 0.4, a3 = 0.4,
b1 = 0.4, b2 = 0.4, b3 = 0.4, σ1 = 8, σ2 = 8,
σ3 = 8, t1 = 50, t2 = 60, t3 = 70. So the Nash equi-
librium point of the system (5) is ED∗=(23.98, 25.9,
27.47), the characteristic polynomial of Jacobian ma-
trix of ED∗ is

f(λ) = λ3 −Aλ2 −Bλ− C, (10)

where

A = 3− 78.65k1 − 79.42k2 − 80.05k3;
B = −3 + 157.31k1 + 158.84k2 − 6147.39k1k2
+160.2k3 − 6190.751k3 − 6243.74k2k3;
C = 1− 78.65k1 − 79.42k2 + 6147.39k1k2
−80.05k3 + 6190.75k1k3 + 6243.74k2k3
−476952k1k2k3.

The necessary and sufficient conditions for the lo-
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cally stability of ED∗ are as follows:

f(1) = 1−A−B − C > 0,
f(−1) = −1−A+B − C < 0,
|(C2 −A2)2 − (AC −B)2|
> |(BC −A)(C2 −AC +B − 1)|,
|C2 − 1| > |AC −B|,
|C| < 1.

(11)

Condition (12) gives the necessary and sufficien-
t conditions for the stable region of ED∗ in system
(5). In stable region, whatever the initial outputs of
the three manufacturers, the final outputs of the three
products will stay stable at the Nash equilibrium af-
ter a limited number game. What is noticeable is that
the three manufacturers may accelerate output adjust-
ment speeds in order to maximum profit, once one of
the output adjustment speeds out of stable region for
whatever purpose, the stability of system at the Nash
equilibrium will be broken and the bifurcations, even
chaos phenomena, will appear.

Figure 1 gives the stability and instability region
of the system (5) in (k1, k2,3 k) and k1, k3 planes, we
can see that: (a) when k1 < 0.024, k2 < 0.0238 and
k3 < 0.0236 , the system (5) will stable in the Nash
equilibrium point, otherwise the system (5) will lose
stability; (b) the larger the risk preference, the worse
the stability of the system (5) is.

3.2 The effects of uncertain demand and risk
preference on the stability of the system
(5)

In this section, we will investigate the influences of the
uncertain demand and risk preference on the system
stability through 2-D parameter basin which is more
powerful to describe the complexity of dynamic sys-
tem [35].

Figure 2 gives the parameter basins in (k1, k2) and
(k1, k3) planes for σ1 = 8, 10 respectively, in which d-
ifferent colors represent different states of system (5).
The red represents stable state, blue for cycles of peri-
od 2, pink for period 4, light blue for period 8, yellow
for chaos. In figure 2, we can see clearly the vari-
ation trend of stable region: the increase of σ1 only
affects the system behavior in the direction of k1 and
not in the direction of k2 and k3, that is, the behav-
iors of M1 will be affected while the behaviors of M2

and M3 will not with the change of variance of x1.
Figure 3 gives the parameter basins for t1 = 80, 150
respectively. We can see that the stability of system
(5) changes little with the change of risk preference.
So, the risk preference is insufficient to arouse chaos.
The yellow regions in period 2, period 4 and period 8
in figures 2 and 3 do not represent the system (5) in a
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Figure 1: The 3D and 2D stable region of the Nash
equilibrium point of the system (5)

chaos state, which can be proved by the 1-D bifurca-
tion diagrams in next section.

3.3 The effects of output adjustment param-
eter on the system (5)

In figure 2(a), when the adjustment parameters
(k1, k2) pass from red area through blue, pink, light
blue and yellow in turn, the system (5) enters into
chaos from slip bifurcation. Figure 4 shows the bi-
furcation and the maximum Lyapunov exponents for
k2 = 0.02, k3 = 0.02. If the adjustment parameters
are big enough, we can see that cycles and chaos occur
which can prove the yellow regions in period 2, period
4 and period 8 in figures 2 and 3 do not represent the
system (5) in chaos state. Strange attractors are shown
in figure 5 with different viewing angles. Figures 6-7
show evolution processes of the system (5), which is
according to the figures 2(b) and 3(a).
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Figure 4: The bifurcation diagram and Lyapunov ex-
ponent diagram for k2 = 0.02, k3 = 0.02

The bifurcation diagram with the change of other
adjustment parameters has similar characteristics that
have been mentioned above. Here, no discussions are
made.

From the comparison with figures 4, 6 and 7, we
can obtain that the outputs of manufacturers can be
affected by the change of uncertain demand and risk
reference. When σ1 increases, M1 decreases its out-
put while theM2 andM3 increase their outputs, which
may reduce the occurrence of bullwhip effect of x1
while increase occurrence of bullwhip effect of x2, x3.
When t1 increases, M1 increases its output while the
M2 and M3 decrease their outputs, which may in-
crease the occurrence of bullwhip effect of x1 while
reduce occurrence of bullwhip effect of x2 and x3. So
the three manufacturers should control demand uncer-
tainty and risk reference so as to make the system in
stable state and reduce the occurrence of bullwhip ef-
fect as much as possible.

4 The complex dynamic character of
the system (7)

4.1 Equilibrium points and local stability

In the same way, we can calculate the only Nash equi-
librium point of the system (7) and simulate the stable
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Figure 5: The phase plots of system (5) for k1 =
0.032, k2 = 0.02 and k3 = 0.02
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Figure 6: The bifurcation diagram and Lyapunov dia-
gram for k2 = 0.02, k3 = 0.02 and σ1 = 10

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
5

10

15

20

25

30

35

40

X: 0.0168
Y: 28.23

k
1

q

X: 0.0164
Y: 25.41

X: 0.0056
Y: 26.95

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

X: 0.02
Y: 0

k
1

Ly
ap

un
ov

Figure 7: The bifurcation diagram and Lyapunov dia-
gram for k2 = 0.02, k3 = 0.02 and t1 = 80

region of the system (7) in the Nash equilibrium point
which is shown in figures 8 and 9. Comparing fig-
ures 8 and 9 with figure 1, we can see the stability of
the system (7) is better than the one of the system (5).
That means more competition among the three manu-
facturers in team decision.

We can see that when the weight factor of produc-
t increases, the stable region of its output adjustment
will decrease, others will increase. So the three man-
ufacturers should adjust the weight factor of products
to make the system (7) stable as soon as possible ac-
cording to the parameters’ values.

In team decision, with the change of demand vari-
ance and risk preference, the evolution characteristics
of the system (7) is similar with the one of the sys-
tem (5) that have been mentioned above. Here, no
discussions are made. We will analyze the influence
of weight parameter and adjustment parameter on the
stability of the system (7) in the next section.

4.2 The influence of weight parameter on the
stability of the system (7)

For the research of weight factor of product on the
system stability, the figures 10-12 give 2D parameter
attract basin in (γ, η) planes with different adjustment
parameters. We can find some new results:

(1) With the increase of adjustment parameter, the
red (stable region), the blue (period-2 region) and the
total evolution region of the system (7) become small-
er, which means the manufacturer should choose the
product weight more cautious to avoid chaotic risk
and maximize the its profit.

(2) The product weight that the manufacturer may
choose becomes smaller with the increase of adjust-
ment parameter. That means the manufacturer is easy
to be out of the market if the manufacturer adjusts its
output faster. For stronger competition of economies,
the adjustment parameter the manufacturer chooses is
of great influence on the stability of the system (7).

(3) The yellow regions in period 1, period 2, peri-
od 4 and period 8 in figures 10-12 do not represent the
system (7) is in a chaos state, which can be proved in
next section.

4.3 The effects of weight parameter of the
product on the system (5)

In figures 10-12, when three adjustment parameter
values determined, the behaviors of the system (7)
first pass from yellow area through light blue, pink,
blue, and red in turn, after that go in the opposite di-
rection. Figure 13 shows the output bifurcation and
the corresponding Lyapunov exponent diagram which
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Figure 8: The 3D stable region of the system (7),
left(γ = 0.2, η = 0.3), right (γ = 0.4, η = 0.3)

is agreement with evolution process of the system
(7) in the figure 11 for η = 0.3, β1 = 0.07, β2 =
0.04, β3 = 0.04. We can see that when 0.145 ≤ γ ≤
0.34, the outputs of the three products is in stable s-
tate. Figure 14 shows the output bifurcation and the
corresponding Lyapunov exponent diagram which is
agreement with evolution process of the system (7) in
the figure 12 for γ = 0.3, β1 = 0.04, β2 = 0.07, β3 =
0.04. We can see that when 0.25 ≤ η ≤ 0.35, the out-
puts of the three products is stable. Figures 13 and 14
confirm the yellow regions in period 1, period 2, peri-
od 4 and period 8 in figures 10-12 do not represent the
system (7) in chaos state.

From the analysis above, we can see that the
weight parameter γ, η not only affect the stability of
the system (7), but also changes the value of the Nash
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Figure 9: The stable region of the system (7) in
(β1, β3) plane, left (γ = 0.2, η = 0.3, β2 = 0.04),
right(γ = 0.4, η = 0.3, β2 = 0.04)

equilibrium of the system (7). When the manufacturer
determines its weight value, the other manufacturers
must choose weight values in a certain range so as to
make the system (7) stable. When determined the val-
ue of adjustment speed, the three manufacturers must
allocate appropriate weight values for the three prod-
ucts in order to obtain the maximum profit.

5 Chaos control
Our study find that once the behaviors of manufac-
turers is in chaos, the total profit of the manufac-
turers is less than the one in the equilibrium state.
So the chaos state is not expected to appear. How-
ever, the current situation is that the manufacturers
often maximize their profits by any kind of mean-
s in the process of marketization considering. So
the market will be out of order and finally fall in-
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Figure 13: The bifurcation diagram of output and the
corresponding Lyapunov exponent for η = 0.3, β1 =
0.07, β2 = 0.04, β3 = 0.04

to chaos. It is particularly important for manufac-
turers that some control measures should be adopted
in a timely manner, in order to make the system re-
turn to the stable equilibrium. Therefore, we use the
parameter adjustment method to control the effect of
parameter on the system (7). Assume the system (7)
is qi(t + 1) = fi(q1(t), q3(t), q3(t)), i = 1, 2, 3, the
model under control is as follows:

q1(t+m) = (1− µ)fm1 (q1(t), q3(t), q3(t)) + µq1(t),
q2(t+m) = (1− µ)fm2 (q1(t), q3(t), q3(t)) + µq2(t),
q3(t+m) = (1− µ)fm3 (q1(t), q3(t), q3(t)) + µq3(t).

(12)
Here, µ is an adjustment parameter, when µ = 0,

the controlled system (7) degrades into original the
system (7), they have the same period orbits. Figure
15 shows that the chaos can be delayed and even elim-
inated with the proper µ. Figure 16 shows that with
the control parameter µ increasing, the controlled sys-
tem (12) is gradually controlled from the chaotic state,
4-period bifurcation, 2-period bifurcation to stable s-
tate. When µ > 0.28, the controlled system stabi-
lizes at the Nash equilibrium point. In a real market,
when manufacturers pursuit its maximum profit, we
can consider as the output adjustment regulation for
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Figure 14: The bifurcation diagram of output and the
corresponding Lyapunov exponent for γ = 0.3, β1 =
0.04, β2 = 0.07, β3 = 0.04

the manufacturer to avoid market chaos. We can al-
so consider µ as the learning ability or adaptability of
the market. Simulation results show that the bigger
the µ, the larger the stability area of the system is, the
faster the speed of reaching the equilibrium point is.
So using the parameter µ, the system is under control,
chaos is delayed or eliminated completely.

6 Conclusions
In this paper, we propose dynamic game models of
the supply chains in decentralized and team decision
which include a risk-averse manufacturer and cus-
tomers respectively, where the customer demand for
each product is uncertainty. The stability of the t-
wo dynamic game models were investigated using pa-
rameter basin, bifurcation diagram, and attractors with
different parameter situation. The simulation shows
that: (1) The risk preference has little effect on the
stability of the system but affected the outputs of the
three manufacturers, uncertain demand of the prod-
uct can affect the behaviors of its manufacturer, but
has not effects on the others, the influence on the out-
put will expand or shrink the products’ outputs which
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Figure 15: The output bifurcation for β2 = 0.07, β3 =
0.04

maybe cause the occurrence of the bullwhip effect; (2)
The stability under team decision is better than the one
of decentralized decision when the weight parameters
make a certain value, the weight parameters also af-
fect the stable region of the system and the Nash e-
quilibrium value; (3) The manufacturers can control
or delay the occurrence of chaos using the parameter-
s adjustment method; (4) The predict method can be
used to accurately forecast the customer demand so
as to reduce the influence of uncertain demand on the
complex behaviors of the manufacturers.

In this paper, there exist the yellow region in 2-D
parameter basins in 2-period, 4-period, 8-period, why
the chaos area appears will be the focus of our future
research.
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