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Abstract: In this paper, analytical results of complex motions of a double belt friction-oscillator are investigated
using the flow switchability theory of the discontinuous dynamical systems. The friction-oscillator is composed
of a mass connected by viscoelastic element and linear spring-loading and interacting with two moving belts by
means of dry friction. Different domains and boundaries for such system are defined according to the friction
discontinuity, which exhibits multiple discontinuous boundaries in the phase space. The necessary and sufficient
conditions of the stick motions, non-stick motions and grazing motions of such system are given in the form
of theorem mathematically. The switching planes and basic mappings will be defined to study grazing motions
and periodic motions. The results of computer simulation of the stick motions and grazing motions for different
parameters are submitted in the present paper. With appropriate mapping structures, the simulation of the stick and
non-stick periodic motions for such an oscillator are also given.

Key–Words: double belt friction-oscillator; discontinuous dynamical system; switchability; stick motion; grazing
motion

1 Introduction
Discontinuous dynamical systems exist everywhere in
engineering [1-13]. In mechanical engineering, most
of the dynamical systems are discontinuous. One used
to adopt continuous models for approximate descrip-
tions of discontinuous dynamical systems. Howev-
er, such continuous modeling cannot provide adequate
predictions of discontinuous dynamical systems, and
also makes the problems solving be more complicated
and inaccurate. To better describe the real world, one
should realize that discontinuous models can provide
adequate and real predications of engineering system-
s. Therefore, a theory applicable to discontinuous dy-
namical systems should be built.

The early study of discontinuous dynamical sys-
tems goes back to Den Hartog [1] in 1931. Den Har-
tog considered a forced oscillator with Coulomb and
viscous damping. In 1960, Levitan [2] investigated
a friction oscillator with the periodically driven base,
and also discussed the stability of the periodic mo-
tion. In 1966, Masri and Caughey [3] discussed a
discontinuous impact damper, and obtained the sta-
bility of the symmetrical period-1 motion of the im-
pact damper. More detailed discussions on the gen-
eral motion of impact dampers were also develope-
d in Masri [4]. In 1976, Utkin [5] first investigated

the controlled dynamical systems in view of discon-
tinuity. This method is called sliding mode control.
Utkin [6] applied the sliding mode control in variable
structure systems, and more detailed theory of this
method was also developed in [7] by Utkin. In 1986,
Shaw [8] investigated the non-stick periodic motion
of a dry-friction oscillator, and discussed the stabili-
ty of this motion through the Poincare mapping. In
1988, Filippov [9] investigated the dynamic behaviors
of a Coulomb friction oscillator and developed differ-
ential equations with discontinuous right-hand sides.
The analytical conditions of sliding motion along the
discontinuous boundary were developed through dif-
ferential inclusion, and the existence and uniqueness
of the solution were also discussed. Leine etal. [10]
investigated the stick-slip vibration induced by an al-
ternate friction models through the shooting method in
1998. In 1999, Galvanetto and Bishop [11] discussed
dynamics of a simple dynamical system subjected to
an elastic restoring force, viscous damping and dry
friction forces and studied the non-standard bifurca-
tions with analytical and numerical tools. Pilipchuk
and Tan [12] studied the friction induced vibration of a
two-degree-of-freedom friction oscillator in 2004. In
2005, Casini and Vestroni [13] investigated dynamic-
s of two double-belt friction oscillators by means of
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analytical and numerical tools.
However, the dynamical behaviors of discontin-

uous dynamical system is stilled difficult to inves-
tigate. Luo [14-19] developed a general theory for
discontinuous dynamical systems and gave its appli-
cations in engineering. The G-functions for discon-
tinuous dynamical systems are the mail tools to in-
vestigate singularity in discontinuous dynamical sys-
tems and introduced by Luo [17] in 2008 and further
developed on time-varying domains by Luo [18] in
2009. Based on the G-functions, the full and half
sink and source, non-passable flows to the separation
boundary in discontinuous dynamical systems were
discussed, and the necessary and sufficient condition-
s of the switching bifurcations between the passable
and non-passable flows were presented. The detailed
discussion can be referred to Luo [19]. Based on this
theory, lots of discontinuous models can be investigat-
ed easily, for example [20− 26].

In this paper, analytical conditions for stick,
non-stick and grazing motions of the double-belt
friction oscillator will be developed using the flow
switchability theory of the discontinuous dynamical
systems. Different domains and boundaries for
such system are defined according to the friction
discontinuity, which exhibits multiple discontinuous
boundaries in the phase space. Based on the above
domains and boundaries, the analytical conditions of
the stick motions and grazing motions are obtained
mathematically. The switching planes and basic
mappings will be defined to study grazing motions
and periodic motions. For a better understanding of
the dynamical behaviors, the numerical simulations
are given to illustrate the analytical results of the
complex motions.

2 Physical Model

Figure 1: Physical model

Consider a periodically forced oscillator, attached

to a fixed wall, as shown in Fig. 1. This friction-
induced oscillator includes a mass m, a spring of stiff-
ness k and a damper of viscous damping coefficient
c. In this configuration, the mass m is continuous-
ly in contact with both belts which are pushed on-
to the mass with a constant forced FN and possess
the same friction characteristics. The periodic driving
force A0 + B0 cos Ωt exerts on the mass, where A0

, B0 and Ω are the constant force, excitation strength
and frequency ratio, respectively.

Since the mass contacts the moving belts with
friction, the mass can move along or rest on the belt
1 or belt 2 surface. Further, a kinetic friction force
shown in Fig. 2 is described as

Ff (ẋ)


= (µ1 + µ2)FN , ẋ ∈ [ v2,+∞),
∈ [(µ1 − µ2)FN , (µ1 + µ2)FN ], ẋ = v2,
= (µ1 − µ2)FN , ẋ ∈ [ v1, v2 ],
∈ [−(µ1 + µ2)FN , (µ1 − µ2)FN ], ẋ = v1,
= −(µ1 + µ2)FN , ẋ ∈ (−∞, v1 ],

(1)
where ẋ := dx/dt,FN and µk(k = 1, 2) are a normal
force to the contact surface and friction coefficients
between the mass m and the belt k (k = 1, 2), respec-
tively. Here we assume that v2 > v1 and µ1 ≥ µ2.

Figure 2: Friction force

The motions of the mass in a double-belt friction
oscillator can be divided into two cases. If the mass
moves along belt 1 and belt 2, the corresponding mo-
tion is called the non-stick motion. If the mass moves
together with belt 1 or belt 2, the corresponding mo-
tion is called the stick motion.

For the mass moving with the same speed of the
belt 1 surface, the force acting on the mass in the x-
direction is defined as

Fs1 = A0 +B0 cos Ωt−kx−cẋ+µ2FN for ẋ = v1.
(2)

If this force cannot overcome the friction force µ1FN
(i.e., |Fs1| ≤ µ1FN ), the mass does not have any rel-
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ative motion to the belt 1. The equation of the motion
for the mass in such state is described as

ẋ = v1, ẍ = 0. (3)

For the mass moving with the same speed of the belt 2
surface, we can also obtain the equation for the mass
as follows

ẋ = v2, ẍ = 0. (4)

For the non-stick motions of the friction-induced
oscillator, we can obtain the equations of the motions
as follows

mẍ = A0 +B0 cos Ωt− kx− cẋ+ (µ1 + µ2)FN
for ẋ < v1,

mẍ = A0 +B0 cos Ωt− kx− cẋ− (µ1 − µ2)FN
for v1 < ẋ < v2,

mẍ = A0 +B0 cos Ωt− kx− cẋ− (µ1 + µ2)FN
for ẋ > v2.

(5)

3 Domains and Boundaries
From the previous discussion, there are five motion
states including three non-stick motions in the three
regions and two stick motions on the boundaries. The
phase plane can be partitioned into three domains and
two boundaries, as shown in Fig. 3. In each domain,
the motion can be described through a continuous dy-
namical system.

Figure 3: Domains and boundaries

The three domains are expressed by Ωα(α =
1, 2, 3 ):

Ω1 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ ∈ (−∞, v1)
}
,

Ω2 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ ∈ (v1, v2)
}
,

Ω3 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ ∈ (v2,+∞)
}
.

(6)

The corresponding boundaries are defined as:

∂Ω12 =∂Ω21 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ = v1

}
,

∂Ω23 =∂Ω32 =
{

(x, ẋ) |x ∈ (−∞,+∞), ẋ = v2

}
.

(7)

Based on the above domains and boundaries, the
vectors for motions of the mass in the domains can be
introduced as follows

x(λ) = (x(λ), ẋ(λ))
T, F(λ) = (ẋ(λ), F(λ))

T, (8)

where λ = 1, 2, 3 and

F(1)(x(1), t) = − c

m
ẋ(1) −

k

m
x(1) +

B0

m
cos Ωt

+
1

m
[A0 + (µ1 + µ2)FN ],

F(2)(x(2), t) = − c

m
ẋ(2) −

k

m
x(2) +

B0

m
cos Ωt

+
1

m
[A0 − (µ1 − µ2)FN ],

F(3)(x(3), t) = − c

m
ẋ(3) −

k

m
x(3) +

B0

m
cos Ωt

+
1

m
[A0 − (µ1 + µ2)FN ].

(9)

From (5), the equations of the non-stick motions
for the mass are rewritten in the vector form of

ẋ(λ) = F(λ)(x(λ), t) for λ ∈ {1, 2, 3}. (10)

For the stick motion, the equations of the motion
for the mass are rewritten in the vector form of

ẋ(0)
(λ) = F(0)

(λ)(x(λ), t) for λ ∈ {1, 2} (11)

and
F

(0)
(λ) (x(0)

(λ), t) = 0, (12)

where

x(0)
(λ) = (x

(0)
(λ), ẋ

(0)
(λ))

T
, F(0)

(λ) = (vλ, F
(0)
(λ) )

T
.

4 Analytical Conditions
By the theory of the flow switchability to a specific
boundary in discontinuous dynamical system in [17],
the switching conditions of the passability, stick mo-
tions and grazing flows of the double-belt friction os-
cillator will be developed in this section.

For convenience, we first introduce some con-
cepts and several lemmas in flow switching theory.
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Consider a discontinuous dynamical system

ẋ(α) ≡ F(α)(x(α), t,Pα) ∈ Rn (13)

in domain Ωα(α = i, j) which has a flow x(α)
t =

Φ(t0, x
(α)
0 ,Pα, t) with an initial condition (t0, x

(α)
0 ),

and on the boundary

∂Ωij =
{

x | ϕij(x, t, λ) = 0,

ϕij is C r− continuous (r ≥ 1)
}
⊂ Rn−1 ,

(14)

there is a flow x(0)
t = Φ(t0, x

(0)
0 , λ, t) with an initial

condition (t0, x
(0)
0 ). The 0-order G-functions of the

flow x(α)
t to the flow x(0)

t on the boundary in the nor-
mal direction of the boundary ∂Ωij are defined as

G
(α)
∂Ωij

(x(0)
t , t±, x

(α)
t± ,Pα, λ)

≡ G(0,α)
∂Ωij

(x(0)
t , t±, x

(α)
t± ,Pα, λ)

= Dx(0)
t

tnT
∂Ωij
· (x(α)

t± − x(0)
t )

+tnT
∂Ωij
· (ẋ(α)

t± − ẋ(0)
t ).

(15)

The 1-order G-functions for a flow x(α)
t to a boundary

flow x(0)
t in the normal direction of the boundary ∂Ωij

are defined as

G
(1,α)
∂Ωij

(x(0)
t , t

(α)
± , x(α)

t± ,Pα, λ)

= D2

x(0)
t

tnT
∂Ωij
· (x(α)

t± − x(0)
t )

+2Dx(0)
t

t nT
∂Ωij
· (ẋ(α)

t± − ẋ(0)
t )

+tnT
∂Ωij
· (ẍ(α)

t± − ẍ(0)
t ),

(16)

where the total derivative

Dx(0)
t

(·) :=
∂(·)
∂x(0)

t

· ẋ(0)
t +

∂(·)
∂t

,

the normal vector of the boundary surface ∂Ωij at
point x(0)(t) is given by

tnT
∂Ωij

(x(0), t, λ) = 5ϕij (x(0), t , λ)

= (
∂ϕij

∂x
(0)
1

,
∂ϕij

∂x
(0)
2

, · · · , ∂ϕij
∂x

(0)
n

)T
∣∣∣
(t, x(0))

,

(17)

and t± = t± 0.

If the flow x(α)
t contacts with the boundary at the

time tm, that is x(α)
tm = xm = x(0)

tm , and the boundary
∂Ωij is linear, independent of time t, we have

G
(0,α)
∂Ωij

(xm, tm,Pα, λ)

:= G
(0,α)
∂Ωij

(x(0)
tm , tm±, x

(α)
tm± ,Pα, λ)

= tnT
∂Ωij
· ẋ(α)
t

∣∣∣
(xm,tm±)

,

(18)

G
(1,α)
∂Ωij

(xm, tm,Pα, λ)

:= G
(1,α)
∂Ωij

(x(0)
tm , tm±, x

(α)
tm± ,Pα, λ)

= tnT
∂Ωij
· ẍ(α)
t

∣∣∣
(xm,tm±)

.

(19)

Here tm+ and tm− are the time before approaching
and after departing the corresponding boundary, re-
spectively.

Lemma 1 [17] For a discontinuous dynamical sys-
tem ẋ(α) = F(α)(x(α), t,Pα) ∈ Rn, x(tm) = xm ∈
∂Ωij at time tm. For an arbitrarily small ε > 0, there
is a time interval [ tm−ε, tm ). Suppose x(i)(tm−) =

xm = x(j)(tm−). Both flows x(i)(t) and x(j)(t)
are Cr[ tm−ε,tm )-continuous (r ≥ 1) for time t, and

‖dr+1x(α)/dtr+1‖ < ∞ (α ∈ {i, j}). The necessary
and sufficient conditions for a sliding motion on ∂Ωαβ

are

G
(0,α)
∂Ωij

(xm, tm−,Pα, λ) < 0

G
(0,β)
∂Ωij

(xm, tm−,Pβ, λ) > 0

 for n∂Ωαβ → Ωα,

(20)
where α, β ∈ {i, j} and α 6= β.

Lemma 2 [17] For a discontinuous dynamical sys-
tem ẋ(α) = F(α)(x(α), t,Pα) ∈ Rn, x(tm) = xm ∈
∂Ωij at time tm. For an arbitrarily small ε > 0, there
are two time intervals [ tm−ε, tm ) and ( tm, tm+ε ].
Suppose x(i)(tm−) = xm = x(j)(tm+). Both flows
x(i)(t) and x(j)(t) are Cr[ tm−ε,tm ) and Cr( tm, tm+ε ]-
continuous (r ≥ 1) for time t, respectively, and
‖dr+1x(α)/dtr+1‖ < ∞ (α ∈ {i, j}). The flow
x(i)(t) and x(j)(t) to the boundary ∂Ωij is semi-
passable from domain Ωi to Ωj iff

either

G
(0,i)
∂Ωij

(xm, tm−,Pi, λ) > 0

G
(0,j)
∂Ωij

(xm, tm+,Pj , λ) > 0

for n∂Ωαβ→ Ωj ,

(21)
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or

G
(0,i)
∂Ωij

(xm, tm−,Pi, λ) < 0

G
(0,j)
∂Ωij

(xm, tm+,Pj , λ) < 0

for n∂Ωαβ→ Ωi.

(22)

Lemma 3 [17] For a discontinuous dynamical sys-
tem ẋ(α) = F(α)(x(α), t,Pα) ∈ Rn, x(tm) = xm ∈
∂Ωij at time tm. For an arbitrarily small ε > 0, there
is a time interval [ tm−ε, tm+ε ]. Suppose x(α)(tm±) =

xm. The flow x(α)(t) is Cr[ tm−ε,tm+ε ]-continuous

(rα ≥ 2) for time t, and ‖dr+1x(α)/dtr+1‖ <

∞ (α ∈ {i, j}). A flow x(α)(t) in Ωα is tangential
to the boundary ∂Ωij iff

G
(0,α)
∂Ωij

(xm, tm,Pα, λ) = 0 for α ∈ {i , j}; (23)

either G
(1,α)
∂Ωij

(xm, tm,Pα, λ) < 0 for n∂Ωαβ→Ωβ,

or G
(1,α)
∂Ωij

(xm, tm,Pα, λ) > 0 for n∂Ωαβ→Ωα,


(24)

where α, β ∈ {i, j} and α 6= β.
More detailed theory on the flow switchability

such as high-order G-functions, the definitions or the-
orems about various flow passability in discontinuous
dynamical systems can be referred to [17] and [19].

From the aforementioned definitions and lemmas,
we give the analytical conditions for the flow switch-
ing in the double-belt friction oscillator.

For the double-belt friction oscillator in Section 2,
the normal vectors of the boundaries ∂Ω12 and ∂Ω23

are given as

n∂Ω12 = n∂Ω21 = (0, 1)T, n∂Ω23 = n∂Ω32 = (0, 1)T.
(25)

The G-functions for such friction oscillator are sim-
plified as G(0,α)

∂Ωij
(x(α), tm±) or G

(1,α)
∂Ωij

(x(α), tm±).

Theorem 4 For the double-belt friction oscillator de-
scribed in Section 2, we have the following results:

(i) The stick motion on xm ∈ ∂Ω12 at time tm
appears iff the following conditions can be obtained:

F(1)(xm, tm−) > 0 and F(2)(xm, tm−) < 0. (26)

(ii) The stick motion on xm ∈ ∂Ω23 at time tm
appears iff the following conditions can be obtained:

F(2)(xm, tm−) > 0 and F(3)(xm, tm−) < 0. (27)

Proof: From the aforementioned definitions, the 0-
order G-functions for the stick boundaries ∂Ω12 and
∂Ω23 in the double-belt friction oscillator are

G
(0,1)
∂Ω12

(xm, tm±) = nT
∂Ω12
· F(1)(xm, tm±),

G
(0,2)
∂Ω12

(xm, tm±) = nT
∂Ω12
· F(2)(xm, tm±),

(28)

and

G
(0,2)
∂Ω23

(xm, tm±) = nT
∂Ω23
· F(2)(xm, tm±),

G
(0,3)
∂Ω23

(xm, tm±) = nT
∂Ω23
· F(3)(xm, tm±).

(29)

From (25), the Eqs. (28) and (29) can be computed as:

G
(0,1)
∂Ω12

(xm, tm−) = F(1)(xm, tm−),

G
(0,2)
∂Ω12

(xm, tm−) = F(2)(xm, tm−),

(30)

and

G
(0,2)
∂Ω23

(xm, tm−) = F(2)(xm, tm−),

G
(0,3)
∂Ω23

(xm, tm−) = F(3)(xm, tm−).

(31)

By Lemma 1, the stick motion on xm ∈ ∂Ω12 at time
tm appears iff

G
(0,1)
∂Ω12

(x(m), tm−) > 0 and G
(0,2)
∂Ω12

(x(m), tm−) < 0,
(32)

i.e.

F(1)(xm, tm−) > 0 and F(2)(xm, tm−) < 0. (33)

Therefore, (i) holds. Similarly, (ii) holds. 2

Theorem 5 For the double-belt friction oscillator de-
scribed in Section 2, we have the following results:

(i) The non-stick motion (or called passable mo-
tion to boundary) on xm ∈ ∂Ω12 at time tm appears
iff the following condition can be obtained:

F(1)(xm, tm±)× F(2)(xm, tm∓) > 0. (34)

(ii) The non-stick motion on xm ∈ ∂Ω23 at time
tm appears iff the following condition can be ob-
tained:

F(2)(xm, tm±)× F(3)(xm, tm∓) > 0. (35)

WSEAS TRANSACTIONS on MATHEMATICS Ge Chen, Jinjun Fan

E-ISSN: 2224-2880 361 Volume 15, 2016



Proof: By Lemma 2, passable motion on the boundary
xm ∈ ∂Ω12 at time tm appears iff

G
(0,1)
∂Ω12

(xm, tm±)×G(0,2)
∂Ω12

(xm, tm∓) > 0. (36)

By (25), we obtain

G
(0,1)
∂Ω12

(xm, tm±) = F(1)(xm, tm±),

G
(0,2)
∂Ω12

(xm, tm∓) = F(2)(xm, tm∓).

(37)

Then (36) and (37) implies that (i) holds. The proof
for (ii) is similar. 2

Theorem 6 For the double-belt friction oscillator de-
scribed in Section 2, we have the following results:

(i) The grazing motion on xm ∈ ∂Ω12 at time tm
appears iff the following conditions can be obtained:

F(α)(xm, tm±) = 0 for α ∈ {1, 2}, (38)

if α = 1,

∇F(α)(xm, tm±)·F(α)(xm, tm±)+
∂F(α)(xm, tm±)

∂tm
<0,

(39)
if α = 2,

∇F(α)(xm, tm±)·F(α)(xm, tm±)+
∂F(α)(xm, tm±)

∂tm
>0.

(40)

(ii) The grazing motion on xm ∈ ∂Ω23 at time tm
appears iff the following conditions can be obtained:

F(α)(xm, tm±) = 0 for α ∈ {2, 3}, (41)

if α = 2,

∇F(α)(xm, tm±)·F(α)(xm, tm±)+
∂F(α)(xm, tm±)

∂tm
<0,

(42)
if α = 3,

∇F(α)(xm, tm±)·F(α)(xm, tm±)+
∂F(α)(xm, tm±)

∂tm
>0.

(43)

Proof: By Lemma 3, the sufficient and necessary con-
ditions for the grazing flows on the boundary ∂Ω12 are

G
(0,α)
∂Ω12

(xm, tm±) = 0 for α ∈ {1, 2}, (44)

G
(1,1)
∂Ω12

(xm, tm±) < 0, G
(1,2)
∂Ω12

(xm, tm±) > 0. (45)

From (25), (28) and (29), we have

G
(0,α)
∂Ω12

(xm, tm±) = nT
∂Ω12
· F(α)(xm, tm±)

= F(α)(xm, tm±) for α ∈ {1, 2}.
(46)

From (19), we obtain

G
(1,1)
∂Ω12

(xm, tm±) = nT
∂Ω12
·Dx(0)

tm

F(1)(xm, tm±)

= (0, 1) ·Dx(0)
tm

(
ẋ(1), F(1)(xm, t)

)T
∣∣∣∣
(xm,tm±)

=∇F(1)(xm, tm±) · F(1)(xm, tm±)+
∂F(1)(xm, tm±)

∂tm
.

(47)

Similarly,

G
(1,2)
∂Ω12

(xm, tm±)

=∇F(2)(xm, tm±) · F(2)(xm, tm±)+
∂F(2)(xm, tm±)

∂tm
.

(48)

From (46),(47) and (48), (i) holds. In a similar man-
ner, (ii) holds. 2

5 Switching Planes and Mappings
The switching planes are introduced as (λ = 1, 2):

Σ0
(λ) = {(xi, ẋi,Ωti)|ẋi = vλ},

Σ1
(λ) = {(xi, ẋi,Ωti)|ẋi = v−λ },

Σ2
(λ) = {(xi, ẋi,Ωti)|ẋi = v+

λ },
(49)

where v−λ = limδ→0(vλ − δ) and v+
λ = limδ→0(vλ +

δ) for arbitrary small δ > 0. Therefore, eight basic
mappings will be defined as:

P1 : Σ0
(1) → Σ0

(1), P2 : Σ1
(1) → Σ1

(1),

P3 : Σ2
(1) → Σ2

(1), P4 : Σ0
(2) → Σ0

(2),

P5 : Σ1
(2) → Σ1

(2), P6 : Σ2
(2) → Σ2

(2),

P7 : Σ1
(2) → Σ2

(1), P8 : Σ2
(1) → Σ1

(2).

(50)

In phase plane, the trajectories of mappings
Pλ (λ ∈ {2, 3, 5, 6, 7, 8}) in Ωα (α ∈ {1, 2, 3}) s-
tarting and ending at the velocity boundaries and stick
mappings Pλ(λ = 1, 4) are illustrated in Fig. 4.
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Figure 4: Basic mappings

From foregoing (49) and (50), we obtain

P1 : (xi, v1,Ωti)→ (xi+1, v1,Ωti+1),

P2 : (xi, v
−
1 ,Ωti)→ (xi+1, v

−
1 ,Ωti+1),

P3 : (xi, v
+
1 ,Ωti)→ (xi+1, v

+
1 ,Ωti+1),

P4 : (xi, v2,Ωti)→ (xi+1, v2,Ωti+1),

P5 : (xi, v
−
2 ,Ωti)→ (xi+1, v

−
2 ,Ωti+1),

P6 : (xi, v
+
2 ,Ωti)→ (xi+1, v

+
2 ,Ωti+1),

P7 : (xi, v
−
2 ,Ωti)→ (xi+1, v

+
1 ,Ωti+1),

P8 : (xi, v
+
1 ,Ωti)→ (xi+1, v

−
2 ,Ωti+1).

(51)

With (11) and (12), the governing equations for
Pλ(λ = 1, 4) can be described as
xi+1 = v1(ti+1 − ti) + xi,

A0+B0 cos Ωti+1−kxi+1−cv1+µ2FN =µ1FN ,
(52)

xi+1 = v2(ti+1 − ti) + xi,

A0+B0 cos Ωti+1−kxi+1−cv2−µ1FN =µ2FN ,
(53)

respectively.
For the double-belt friction oscillator, the do-

mains Ωα (α ∈ {1, 2, 3}) are unboubded. From
the basic theorems of discontinuous dynamical sys-
tem, only three possible bounded motions exist in the
three domains. In domain Ωα (α ∈ {1, 2, 3}), the
displacement expressions and velocity expressions of
the mass can be solved from (9) and (10). Using the
displacement expressions and velocity expressions of
the mass in domain Ωα (α ∈ {1, 2, 3}), the governing
equations of mapping Pλ (λ ∈ {2, 3, 5, 6, 7, 8}) are
obtained. With (51), the governing equations of each
mapping Pλ (λ ∈ {2, 3, 5, 6, 7, 8}) can be expressed

as
f

(λ)
1 (xi,Ωti, xi+1,Ωti+1) = 0,

f
(λ)
2 (xi,Ωti, xi+1,Ωti+1) = 0.

(54)

The grazing motion occurs when a flow in a do-
main is tangential to the boundary and then returns
back to this domain. The analytical conditions for the
grazing motion in the double-belt friction oscillator
were described as Lemma 3 and Theorem 6. If the
grazing motion occurs at (xm, tm) ∈ ∂Ωαβ (α, β ∈
{1, 2} or {2, 3}, α 6= β), more detailed theorem on
the grazing motions will be developed.

For the double belt friction oscillator described in
Section 2, there are four cases of grazing motions on
the boundaries: the flow in domain Ω1 tangential to
the boundary ∂Ω12, the flow in domain Ω2 tangential
to the boundary ∂Ω21, the flow in domain Ω2 tangen-
tial to the boundary ∂Ω23, and the flow in domain Ω3

tangential to the boundary ∂Ω32, corresponding to the
mapping P2, P3, P5 and P6, respectively. With (54),
we can obtain the following theorem.

Theorem 7 For the double-belt friction oscillator de-
scribed in Section 2, there are four kinds of grazing
motions:

(i) Suppose the flow in domain Ω1 reaches
xm ∈ ∂Ω12 at time tm, the grazing motion on the
boundary ∂Ω12 appears (i.e. the mapping P2 is
tangential to the boundary ∂Ω12) iff

mod(Ωtm, 2π)∈ [ 0, π + |Θcr
2 | )∪( 2π − |Θcr

2 |, 2π ]

for 0 < γ2 <
B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 3
2π ) ∪ ( 3

2π, 2π ]

for 0 < γ2 = B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for 0 < B0
m Ω < γ2;

mod(Ωtm, 2π)∈( 0, π )
for γ2 = 0;

mod(Ωtm, 2π)∈( Θcr
2 , π −Θcr

2 ) ⊂ ( 0, π )

for γ2 < 0 and B0
m Ω > |γ2|;

mod(Ωtm, 2π)∈{Ø}
for γ2 < 0 and B0

m Ω < |γ2|,


(55)

where
Θcr

2 = arcsin(−γ2m

B0Ω
),

and

γ2 =
c

m
ẍ(1)(tm) +

k

m
ẋ(1)(tm).

(ii) Suppose the flow in domain Ω2 reaches
xm ∈ ∂Ω21 at time tm, the grazing motion on the
boundary ∂Ω21 appears (i.e. the mapping P3 is
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tangential to the boundary ∂Ω21) iff

mod(Ωtm, 2π)∈(π + |Θcr
3 |, 2π − |Θcr

3 | )⊂(π, 2π)

for 0 < γ3 <
B0
m Ω;

mod(Ωtm, 2π)∈{Ø}
for 0 < B0

m Ω ≤ γ3;
mod(Ωtm, 2π)∈(π, 2π )

for γ3 = 0;
mod(Ωtm, 2π)∈ [ 0,Θcr

3 ) ∪ (π −Θcr
3 , 2π ]

for γ3 < 0 and B0
m Ω > |γ3|;

mod(Ωtm, 2π)∈ [ 0, π2 ) ∪ ( π2 , 2π ]

for γ3 < 0 and B0
m Ω = |γ3|;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for γ3 < 0 and B0
m Ω < |γ3|,


(56)

where

Θcr
3 = arcsin(−γ3m

B0Ω
),

and

γ3 =
c

m
ẍ(2)(tm) +

k

m
ẋ(2)(tm).

(iii) Suppose the flow in domain Ω2 reaches
xm ∈ ∂Ω23 at time tm, the grazing motion on the
boundary ∂Ω23 appears (i.e. the mapping P5 is
tangential to the boundary ∂Ω23) iff

mod(Ωtm, 2π)∈ [ 0, π + |Θcr
5 | )∪( 2π − |Θcr

5 |, 2π ]

for 0 < γ5 <
B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 3
2π ) ∪ ( 3

2π, 2π ]

for 0 < γ5 = B0
m Ω;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for 0 < B0
m Ω < γ5;

mod(Ωtm, 2π)∈( 0, π )
for γ5 = 0;

mod(Ωtm, 2π)∈( Θcr
5 , π −Θcr

5 ) ⊂ ( 0, π )

for γ5 < 0 and B0
m Ω > |γ5|;

mod(Ωtm, 2π)∈{Ø}
for γ5 < 0 and B0

m Ω < |γ5|,


(57)

where

Θcr
5 = arcsin(−γ5m

B0Ω
),

and

γ5 =
c

m
ẍ(2)(tm) +

k

m
ẋ(2)(tm).

(iv) Suppose the flow in domain Ω3 reaches
xm ∈ ∂Ω32 at time tm, the grazing motion on the
boundary ∂Ω32 appears (i.e. the mapping P6 is
tangential to the boundary ∂Ω32) iff

mod(Ωtm, 2π)∈(π + |Θcr
6 |, 2π − |Θcr

6 | )⊂(π, 2π)

for 0 < γ6 <
B0
m Ω;

mod(Ωtm, 2π)∈{Ø}
for 0 < B0

m Ω ≤ γ6;
mod(Ωtm, 2π)∈(π, 2π )

for γ6 = 0;
mod(Ωtm, 2π)∈ [ 0,Θcr

6 ) ∪ (π −Θcr
6 , 2π ]

for γ6 < 0 and B0
m Ω > |γ6|;

mod(Ωtm, 2π)∈ [ 0, π2 ) ∪ ( π2 , 2π ]

for γ6 < 0 and B0
m Ω = |γ6|;

mod(Ωtm, 2π)∈ [ 0, 2π ]

for γ6 < 0 and B0
m Ω < |γ6|,


(58)

where
Θcr

6 = arcsin(−γ6m

B0Ω
),

and

γ6 =
c

m
ẍ(3)(tm) +

k

m
ẋ(3)(tm).

Proof: (i) For the double-belt friction oscillator de-
scribed in Section 2, by Theorem 6, the grazing mo-
tion conditions for the flow x(1)(t) in domain Ω1 on
the boundary ∂Ω12 at time tm are given as

F(1)(xm, tm±) = 0, (59)

∇F(1)(xm, tm±)·F(1)(xm, tm±)+
∂F(1)(xm, tm±)

∂tm
<0.

(60)
With (9), the Eqs. (59) and (60) can be computed as

− c

m
ẋ(1)(tm)− k

m
x(1)(tm) +

B0

m
cos Ωtm

+
1

m
[A0 + (µ1 + µ2)FN ] = 0,

(61)

− c

m
ẍ(1)(tm)− k

m
ẋ(1)(tm)− B0Ω

m
sin Ωtm < 0.

(62)
The grazing conditions are computed through (54),
(61) and (62). Three equations and an inequality have
four unknowns, then one unknown must be given.

From (62), the critical value for mod(Ωtm, 2π) is
introduced through

Θcr
2 = arcsin(−γ2m

B0Ω
),

where γ2 = c
m ẍ(1)(tm) + k

m ẋ(1)(tm), and the super-
script ”cr” represents a critical value relative to graz-
ing.
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If 0 < γ2 < B0
m Ω, then −1 < − γ2m

B0Ω < 0, we
have

mod(Ωtm, 2π) ∈ [ 0, π + |Θcr
2 | ) ∪ ( 2π − |Θcr

2 |, 2π ].

If 0 < γ2 = B0
m Ω, then − γ2m

B0Ω = −1, we have

mod(Ωtm, 2π) ∈ [ 0,
3

2
π ) ∪ (

3

2
π, 2π ].

If 0 < B0
m Ω < γ2, then − γ2m

B0Ω < −1, we have

mod(Ωtm, 2π) ∈ [ 0, 2π ].

If γ2 = 0, then − γ2m
B0Ω = 0, we have

mod(Ωtm, 2π) ∈ ( 0, π ).

If γ2 < 0 and B0
m Ω > |γ2|, then 0 < − γ2m

B0Ω < 1,
we have

mod(Ωtm, 2π) ∈ ( Θcr
2 , π −Θcr

2 ) ⊂ ( 0, π ).

If γ2 < 0 and B0
m Ω < |γ2|, then − γ2m

B0Ω > 1, we
have

mod(Ωtm, 2π) ∈ {Ø}.

Therefore (i) holds;
(ii) Similarly, for the double-belt friction oscilla-

tor described in Section 2, by Theorem 6, the grazing
motion conditions for the flow x(2)(t) in domain Ω2

on the boundary ∂Ω21 at time tm are given as

F(2)(xm, tm±) = 0, (63)

∇F(2)(xm, tm±)·F(2)(xm, tm±)+
∂F(2)(xm, tm±)

∂tm
>0.

(64)
With (9), the Eqs. (63) and (64) can be computed as

− c

m
ẋ(2)(tm)− k

m
x(2)(tm) +

B0

m
cos Ωtm

+
1

m
[A0 − (µ1 − µ2)FN ] = 0,

(65)

− c

m
ẍ(2)(tm)− k

m
ẋ(2)(tm)− B0Ω

m
sin Ωtm > 0.

(66)
The grazing conditions are computed through (54),
(65) and (66). Three equations and an inequality have
four unknowns, then one unknown must be given.

From (66), the critical value for mod(Ωtm, 2π) is
introduced through

Θcr
3 = arcsin(−γ3m

B0Ω
),

where γ3 = c
m ẍ(2)(tm) + k

m ẋ(2)(tm), and the super-
script ”cr” represents a critical value relative to graz-
ing.

If 0 < γ3 < B0
m Ω, then −1 < − γ3m

B0Ω < 0, we
have

mod(Ωtm, 2π) ∈ (π+ |Θcr
3 |, 2π−|Θcr

3 | ) ⊂ (π, 2π).

If 0 < B0
m Ω ≤ γ3, then − γ3m

B0Ω ≤ −1, we have

mod(Ωtm, 2π) ∈ {Ø}.

If γ3 = 0, then − γ3m
B0Ω = 0, we have

mod(Ωtm, 2π) ∈ (π, 2π ).

If γ3 < 0 and B0
m Ω > |γ3|, then 0 < − γ3m

B0Ω < 1,
we have

mod(Ωtm, 2π) ∈ [ 0,Θcr
3 ) ∪ (π −Θcr

3 , 2π ].

If γ3 < 0 and B0
m Ω = |γ3|, then − γ3m

B0Ω = 1, we
have

mod(Ωtm, 2π) ∈ [ 0,
π

2
) ∪ (

π

2
, 2π ].

If γ3 < 0 and B0
m Ω < |γ3|, then − γ3m

B0Ω > 1, we
have

mod(Ωtm, 2π) ∈ [ 0, 2π ].

Therefore (ii) holds.
Similarly we can prove that (iii) and (iv) hold. 2

6 Numerical Simulations
To verify the analytical conditions of the stick motions
and grazing motions obtained in Section 4 and Section
5, the motions of the mass in the double-belt friction
oscillator will be demonstrated through the time his-
tories of displacement and velocity, the corresponding
trajectory of the mass in phase space. In this section,
the force product will be presented to illustrate the s-
tarting and vanishing points of stick motions. The dis-
placements or the velocities of the belt 1 and belt 2 are
presented by black curves, and the displacement or the
velocity of the mass, the corresponding trajectories of
the motions of the mass in phase space are presented
by red curves. The onset points of stick or period-
ic motions are marked by blue-solid circular symbols,
the vanishing points of stick or periodic motions are
marked by green-solid circular symbols, the switch-
ing points are depicted by red-solid circular symbols.

Consider the system parameters as A0 =
−15, B0 = 10,Ω = 1, c = 1, k = 1,m = 1, g =
9.81, v1 = 1, v2 = 5, µ1 = 0.8, µ2 = 0.6, FN =
9.81 to demonstrate a stick motion of the mass on
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(a) (b)

(c) (d)

Figure 5: Numerical simulation of a stick motion on the boundary ∂Ω12: (a) displacement-time history, (b)
velocity-time history, (c) phase trajectory, (d) force-time history. (A0 = −15, B0 = 10,Ω = 1, c = 1, k =
1,m = 1, g = 9.81, v1 = 1, v2 = 5, µ1 = 0.8, µ2 = 0.6, FN = 9.81, t0 = 0, x0 = 0, ẋ0 = 0).

the boundary ∂Ω12. The initial conditions are t0 =
0, x0 = 0, ẋ0 = 0. For a better understanding of
mechanism of stick motions, the time-history respons-
es for displacement, velocity, the corresponding tra-
jectory and force response will be illustrated. The
time histories of displacement and velocity are shown
in Fig. 5(a) and (b), respectively. With the initial con-
ditions t0 = 0, x0 = 0, ẋ0 = 0, the stick motion of the
belt 1 appears after a period of time. The blue-solid
circular symbol represents the onset point of the stick
motion. It can be seen that the velocity of the mass
is equal to the speed of the belt 1, and then the mass
and the belt 1 move together for some time. During
this time, the mass and the belt 1 have the same dis-
placement increase. The green-solid circular symbol
represents the vanishing point of the stick motion. Af-
ter vanishing of stick motion on the boundary ∂Ω12,
the mass moves under the influence of friction force.

In Fig. 5(c), the corresponding trajectory of the stick
motion on the boundary ∂Ω12 is plotted. Further, the
force-time histories are also presented in Fig. 5(d).
The blue curve stands for F(1) and the green curve
stands for F(2). Between the blue-solid circular sym-
bol and the green-solid circular symbol, it is observed
that F(1) > 0 and F(2) < 0. This satisfy the analytical
conditions of the stick motion on the boundary ∂Ω12

described in Theorem 4. After vanishing of the stick
motion, F(1) × F(2) > 0.

Consider a stick motion on the boundary ∂Ω23

with the system parameters A0 = 5, B0 = 10,Ω =
0.1, c = 1, k = 1,m = 1, g = 9.81, v1 = 1, v2 =
5, µ1 = 0.8, µ2 = 0.6, FN = 9.81. The time-history
responses for displacement, velocity, the correspond-
ing trajectory and force response of such a stick mo-
tion are illustrated in Fig. 6. The initial conditions
t0 = 0, x0 = 0, ẋ0 = 5 are selected to make the stick
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(a) (b)

(c) (d)

Figure 6: Numerical simulation of a stick motion on the boundary ∂Ω23 : (a) displacement-time history, (b)
velocity-time history, (c) phase trajectory, (d) force-time history. (A0 = 5, B0 = 10,Ω = 0.1, c = 1, k = 1,m =
1, g = 9.81, v1 = 1, v2 = 5, µ1 = 0.8, µ2 = 0.6, FN = 9.81, t0 = 0, x0 = 0, ẋ0 = 5).

motion on the boundary ∂Ω23 appear in such initial
conditions. The blue-solid circular symbol and the
green-solid circular symbol represent the onset and
vanishing points of the stick motion, respectively. In
Fig. 6(a) and (b), the curves between the blue-solid
circular symbol and the green-solid circular symbol
are the intersection between the black curve and the
red one. In this period, the mass and the belt 2 moves
together and have the same velocity and displacemen-
t. The corresponding trajectory of the stick motion
on the boundary ∂Ω23 is presented in Fig. 6(c). Af-
ter the vanishing of the stick motion, the trajectory of
the mass in the phase plane exists in domain Ω2 for
some time. The force-time histories are also plotted
in In Fig. 6(d). The blue curve stands for F(2) and
the green curve stands for F(3). It is observed that the
stick motion on the boundary ∂Ω23 satisfy F(2) > 0
and F(3) < 0. At the green-solid circular symbol,

F(2) = 0 and F(3) < 0. Then the stick motion vanish-
es.

The system parameters A0 = 5, B0 = 10,Ω =
1, c = 2, k = 2,m = 1, g = 9.81, v1 = 5, v2 =
10, µ1 = 0.7, µ2 = 0.2, FN = 9.81 are chosen
to illustrate a grazing motion of mapping P2 in do-
main Ω1. The initial conditions are t0 = 2.5, x0 =
−3.1049, ẋ0 = 1.3369. In Fig. 7(b) and (c), the
time history responses for velocity of such a grazing
motion are presented. In Fig. 7(b), it is clear that
the velocity of the mass is equal to the belt 1 at the
red point only. It means that the motion is tangen-
tial to the velocity boundary ∂Ω12 and then leaves this
boundary again, so the red point is grazing point. The
blue point stands for the start point of a simple peri-
odic motion. At the green point, the first period fin-
ishes and the next period begins. The periodicity of
this simple periodic motion can be seen clearly in Fig.
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(a) (b)

(c) (d)

Figure 7: Numerical simulation of a grazing motion of mapping P2 in domain Ω1 : (a) displacement-time history,
(b) velocity-time history, (c) velocity-time history for multiple period, (d) phase trajectory. (A0 = 5, B0 =
10,Ω = 1, c = 2, k = 2,m = 1, g = 9.81, v1 = 5, v2 = 10, µ1 = 0.7, µ2 = 0.2, FN = 9.81, t0 = 2.5, x0 =
−3.1049, ẋ0 = 1.3369).

7(c). The time history response for displacement of
such a grazing motion is plotted in Fig. 7(a). Three
black curves in Fig. 7(a) represent the displacemen-
t of special points on the belt 1, such as the grazing
point, the start and end points of the first period. It
can be observed that the red point is the intersection
between the black curve and the red one, so at the red
point, the mass and the grazing point have the same
displacement and velocity. However, at the blue and
green points, the mass and the blue or green point only
have the same displacement, the velocities of them are
not equal, so the blue and green points are not graz-
ing point. In phase plane, the trajectory of the grazing
motion is tangential to the velocity boundary ∂Ω12 in
domain Ω1, as shown in Fig. 7(d). In phase plane, the
blue point and the green point are the same point.

The system parameters A0 = 10, B0 = 16,Ω =
2, c = 4, k = 8,m = 2, g = 9.81, v1 = −4, v2 =
4, µ1 = 0.8, µ2 = 0.5, FN = 19.62 and the initial
conditions t0 = 2.5, x0 = 5.8980, ẋ0 = 2.2580 are
given to demonstrate the grazing motion of mapping
P3 in domain Ω2 in Fig. 8. The history of velocity of
the grazing motion is shown in Fig. 8(b). It can be
seen that the velocity of the mass is equal to the belt
1 at the red point and then leaves this velocity bound-
ary again. It means that the motion is tangential to
the velocity boundary ∂Ω21, so the red point is graz-
ing point. After the grazing motion, the velocity of
the mass reaches the velocity boundary again at the
blue point. More detailed illustration is shown in Fig.
8(c). At the points between the blue point and the
green point, the force response satisfy F(1) > 0 and
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(a) (b)

(c) (d)

Figure 8: Numerical simulation of a grazing motion of mapping P3 in domain Ω2 : (a) displacement-time history,
(b) velocity-time history, (c) velocity-time history, (d) phase trajectory. (A0 = 10, B0 = 16,Ω = 2, c = 4, k =
8,m = 2, g = 9.81, v1 = −4, v2 = 4, µ1 = 0.8, µ2 = 0.5, FN = 19.62, t0 = 2.5, x0 = 5.8980, ẋ0 = 2.2580).

F(2) < 0. Then the stick motion appears in such con-
ditions, and the mass moves together with the belt 1.
The blue and the green points stand for the onset and
the vanishing points of the stick motion, respective-
ly. After the vanishing of stick motion on the belt 1,
the velocity of the mass leaves this velocity boundary
again. In Fig. 8(a), two black curves represent the his-
tory of displacement of the grazing point(or called the
red point) and the onset point of stick motion(or called
the blue point). The intersection of the red curve and
black curves is the red point and the curve between
the blue and the green point, stand for the grazing mo-
tion and the stick motion, respectively. The trajectory
of the grazing motion in domain Ω2 is shown in Fig.
8(d). It can be observed that the trajectory of the graz-
ing motion in domain Ω2 is tangential to the velocity
boundary ∂Ω21, and the trajectory of the stick motion
is a part of the velocity boundary ∂Ω21.

From the basic mappings in Section 5, non-stick
and stick periodic motions of the double-belt friction
oscillator can be obtained. The following Fig. 9 and
Fig. 10 illustrate the non-stick and stick periodic mo-
tions, respectively. Also, the time-history responses
of displacement, velocity and the corresponding tra-
jectory will be illustrated. Besides, for a better un-
derstanding of the mechanisms of non-stick and stick
periodic motions, the force responses relative to time,
displacement and velocity will be presented, too.

The system parameters A0 = −2, B0 = 9,Ω =
4, c = 0.2, k = 3,m = 0.1, g = 9.81, v1 =
1, v2 = 25, µ1 = 0.3, µ2 = 0.2, FN = 10 are
used to illustrate a non-stick periodic motion of map-
ping P32 = P3 ◦ P2. With the initial conditions
t0 = 0.1324, x0 = 4.5447, ẋ0 = 1, numerical sim-
ulations can be obtained, as shown in Fig. 9. The
time-history responses of displacement, velocity and
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Numerical simulation of a non-stick periodic motion relative to mapping P32 = P3 ◦ P2 : (a)
displacement-time history, (b) velocity-time history, (c) phase trajectory, (d) force-time history, (e) force-
displacement history, (f) force-velocity history (A0 = −2, B0 = 9,Ω = 4, c = 0.2, k = 3,m = 0.1, g =
9.81, v1 = 1, v2 = 25, µ1 = 0.3, µ2 = 0.2, FN = 10, t0 = 0.1324, x0 = 4.5447, ẋ0 = 1).
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(a) (b)

(c) (d)

(e) (f)

Figure 10: Numerical simulation of a stick periodic motion relative to mapping P4645 = P4 ◦ P6 ◦ P4 ◦ P5

: (a) displacement-time history, (b) velocity-time history, (c) phase trajectory, (d) force-time history, (e) force-
displacement history, (f) force-velocity history (A0 = 5, B0 = 9,Ω = 1.75, c = 0.2, k = 3,m = 0.1, g =
9.81, v1 = −12, v2 = 1, µ1 = 0.5, µ2 = 0.3, FN = 10, t0 = 0.4588, x0 = 3.0837, ẋ0 = 1).
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force response for the non-stick periodic motion are
plotted in Fig. 9(a), (b) and (d). The blue curve s-
tands for F(1) and the green curve stands for F(2).
The switching points are marked by red-solid circu-
lar symbols. From Fig. 9(d), it can be observed that
F(1)×F(2) > 0 on the red points at the same time. By
Theorem 5, the motion will pass through the veloci-
ty boundary. Further, the corresponding trajectory in
phase plane is presented in Fig. 9(c). Obviously, there
is no stick motion exists in Fig. 9(c). The mapping
switching from Pα to Pβ (α, β ∈ {2, 3} andα 6= β)
is continuous. The relation between the displacemen-
t and force in Fig. 9(e) and the relation between the
velocity and force in Fig. 9(f) verifies the criteria in
Theorem 5 at the velocity boundary.

The system parameters A0 = 5, B0 = 9,Ω =
1.75, c = 0.2, k = 3,m = 0.1, g = 9.81, v1 =
−12, v2 = 1, µ1 = 0.5, µ2 = 0.3, FN = 10 are given
to illustrate a stick periodic motion for mapping struc-
tures P4645. The initial conditions t0 = 0.4588, x0 =
3.0837, ẋ0 = 1 are selected to make the stick motion
on the boundary ∂Ω23 appear in such initial condition-
s. The time-history responses of displacement, veloc-
ity and the corresponding trajectory in phase plane are
shown in Fig. 10(a), (b) and (c). The blue-solid circu-
lar symbol and the green-solid circular symbol repre-
sent the onset and vanishing points of the stick motion,
respectively. It is clearly seen that two stick parts( i.e.
P4) exist in this periodic motion. The time-history
responses of forces for the stick periodic motion are
plotted in Fig. 10(d), the blue curve stands for F(2)

and the green curve stands for F(3). Obviously, on the
blue points at the same time we have F(2)×F(3) < 0,
then the stick motion on the boundary ∂Ω23 appears.
However, at the green points at the same time we have
F(2) × F(3) = 0. It means the vanishing of the stick
motion and the beginning of non-stick motion. In Fig.
10(e) and (f), the relations between the force and dis-
placement or velocity are presented. These can help
us to understand the mechanisms of stick periodic mo-
tion relative to displacement and velocity.

7 Conclusion
This paper was concerned with the dynamics of a dou-
ble belt friction oscillator which was subjected to peri-
odic excitation, linear spring-loading, damping force
and two friction forces using the flow switchability
theory of the discontinuous dynamical systems. D-
ifferent domains and boundaries for such system were
defined according to the friction discontinuity, which
exhibited multiple discontinuous boundaries in the
phase space. Based on the above domains and bound-
aries, the analytical conditions of the stick motions,

grazing motions and periodic motions were obtained
mathematically. The numerical simulations were giv-
en to illustrate the analytical results of these motions.
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