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Abstract: This paper is concerned with a predator-prey system with impulses on time scales. Based on the theory
of calculus on time scales and the properties of almost periodic functions as well as Razumikhin type theorem,
sufficient conditions which guarantee the existence of a unique uniformly asymptotic stable almost periodic solu-
tion of the system are obtained, by the relation between the solutions of impulsive system and the corresponding
non-impulsive system. Finally, an example and numerical simulations are presented to illustrate the feasibility and
effectiveness of the results.
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1 Introduction
It is well known that, in the real word, lots of dynam-
ic systems have variable structures subject to some
abrupt changes. Differential equations with impuls-
es provide an adequate mathematical model of many
evolutionary processes that suddenly change their s-
tates at certain moments. The theory of impulsive dif-
ferential equations has become an important aspect of
differential equations.

In the past years, predator-prey system with im-
pulse received more researchers’ special attention;
see, for example [1]-[5] and the references therein.
However, in the natural world, there are many species
whose developing processes are both continuous and
discrete. Hence, using the only differential equation
or difference equation cannot accurately describe the
law of their developments; see, for example, [6, 7].
Therefore, there is a need to establish correspondent
dynamic models on new time scales.

Recently, different types of ecosystems with pe-
riodic coefficients on time scales have been studied
extensively; see, for example, [8]-[13] and the refer-
ences therein. However, upon considering long-term
dynamical behaviors, the periodic parameters often
turn out to experience certain perturbations, that is,
parameters become periodic up to a small error. Thus
one has to consider the ecosystems to be almost pe-
riodic since there is no a priori reason to expect the
existence of periodic solutions. Therefore, if we con-
sider the effects of the environmental factors (e.g. sea-
sonal effects of weather, food supplies, mating habits,

and harvesting), the assumption of almost periodici-
ty is more realistic, more important and more general.
To the best of the authors’ knowledge, there are few
papers on the existence of almost periodic solution of
ecosystems on time scales.

Motivated by the above, in the present paper, we
shall study an almost periodic predator-prey system
with impulses on time scales as follows:

u∆(t) = u(t)[r(t)− a1(t)u(t)
−b1(t)uσ(t)− c1(t)v(t)],

v∆(t) = −η(t)v(t) + g1(t)u(t), t ≠ tk,
u(t+k ) = (1 + h1k)u(tk),
v(t+k ) = (1 + h2k)v(tk), k = 1, 2, · · · ,

(1)

where t ∈ T, T is an almost time scale. All the co-
efficients r(t), a1(t), b1(t), c1(t), η(t), g1(t) are con-
tinuous, almost periodic functions. u(t+k ), u(t

−
k ) rep-

resent the right and left limit of u(t) in the sense of
time scales, respectively, and v(t−k ) = v(tk), u(t−k ) =
u(tk), for all {tk}, where {tk} is a sequence of real
number such that 0 < t1 < t2 < · · · < tk → +∞ as
k → +∞.

The initial condition of system (1) in the form

u(t0) = u0, v(t0) = v0, t0 ∈ T, u0 > 0, v0 > 0. (2)

For convenience, we introduce the notation

fu = sup
t∈T

f(t), f l = inf
t∈T

f(t),

where f is a positive and bounded function. Through-
out this paper, we assume that the coefficients of the
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almost periodic system (1) satisfy

min{rl, al1, bl1, cl1, ηl, gl1} > 0,

max{ru, au1 , bu1 , cu1 , ηu, gu1} < +∞.

and there exist positive constants hli, h
u
i such that

hli ≤ Πt0<tk<t(1 + hik) ≤ hui

with 1 + hik ≥ 0, for t ≥ t0, i = 1, 2.
The aim of this paper is, based on the theory of

calculus on time scales and the properties of almost
periodic functions as well as Razumikhin type theo-
rem, by using the relation between the solutions of im-
pulsive system and the corresponding non-impulsive
system, to obtain sufficient conditions for the exis-
tence of a unique uniformly asymptotic stable almost
periodic solution of the system (1).

The relevant definitions and the properties of al-
most periodic functions, see [14, 15]. In this paper,
for each interval I of T, we denote by IT = I ∩ T.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t}
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

The basic theories of calculus on time scales, one
can see [16].

A function p : T → R is called regressive provid-
ed 1 + µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all re-
gressive and rd-continuous functions p : T → R will
be denoted by R = R(T,R). Define the set R+ =
R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized
exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕ q = p+ q + µpq,
⊖p = − p

1+µp ,

p⊖ q = p⊕ (⊖q).

Lemma 1. [16] If p, q : T → R be two regressive
functions, then

(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)

eq(t,s)
= ep⊖q(t, s);

(vi) (ep(t, s))∆ = p(t)ep(t, s).

Lemma 2. [17] Assume that a > 0, b > 0 and −a ∈
R+. Then

y∆(t) ≥ (≤)b− ay(t), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≥ (≤)
b

a
[1+(

ay(t0)

b
−1)e(−a)(t, t0)], t ∈ [t0,∞)T.

Lemma 3. [17] Assume that a > 0, b > 0. Then

y∆(t) ≤ (≥)y(t)(b−ay(σ(t))), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≤ (≥)
b

a
[1+(

b

ay(t0)
−1)e⊖b(t, t0)], t ∈ [t0,∞)T.

Let T be a time scale with at least two positive
points, one of them being always one: 1 ∈ T, there
exists at least one point t ∈ T such that 0 < t ̸= 1.
Define the natural logarithm function on the time scale
T by

LT(t) =

∫ t

1

1

τ
∆τ, t ∈ T ∩ (0,+∞).

Lemma 4. [18] Assume that x : T → R+ is strictly
increasing and T̃ := x(T) is a time scale. If x∆(t)
exists for t ∈ Tk, then

∆

∆t
LT(x(t)) =

x∆(t)

x(t)
.

Lemma 5. [16] Assume that f, g : T → R are differ-
entiable at t ∈ Tk, then fg : T → R is differentiable
at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).
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Let C = C([−τ, 0]T,Rn),H∗ ∈ R+. Denote

CH∗ = {φ,φ ∈ C, ∥φ∥ < H∗},

SH∗ = {x, x ∈ Rn, ∥x∥ < H∗}

and ∥φ∥ = sup
θ∈[−τ,0]T

|φ(θ)|.

Consider the system

x∆ = f(t, x), (3)

where f(t, ϕ) is continuous in (t, ϕ) ∈ R × C and
almost periodic in t uniformly for ϕ ∈ CH∗ ⊂ C.
∀α > 0, ∃L(α) > 0 such that |f(t, ϕ)| ≤ L(α), as
t ∈ T, ϕ ∈ Cα.

In order to investigate the almost periodic solu-
tion of system (3), we introduce the associate product
system of system (3)

x∆ = f(t, x), y∆ = f(t, y). (4)

Lemma 6. [19] Assume that there exists a Lyapunov
function V (t, x, y) defined on [0,+∞)T×SH∗×SH∗ ,
which satisfies the following conditions:

(1) α(|x−y|) ≤ V (t, x, y) ≤ β(|x−y|), where α(s)
and β(s) are continuous, increasing and positive
definite;

(2) |V (t, x1, y1) − V (t, x2, y2)| ≤ ω(|x1 − x2| +
|y1 − y2|), where ω > 0 is a constant;

(3) V ∆
(4)(t, x, y) ≤ −λV (t, x, y), where λ > 0 is a

constant.

Moreover, assumes that (3) has a solution ξ(t) such
that ∥ξ∥ ≤ H < H∗ for t ∈ [t0,+∞)T. Then sys-
tem (3) has a unique almost periodic solution which
is uniformly asymptotic stable.

Let D = {{tk} ∈ T : tk < tk+1, k ∈ Z,
lim

k→±∞
tk = ±∞}, we denote the set of all sequences

that are unbounded and strictly increasing.

Definition 7. [20] The set of sequences {tjk}, t
j
k =

tk+j − tk, k, j ∈ Z, {tk} ∈ D is said to be uniformly
almost periodic if for arbitrary ε > 0 there exists a
relatively dense set of ε-almost periods common for
any sequences.

Definition 8. [20] The piecewise continuous function
φ : T → R with discontinuity of first kind at the point
tk is said to be almost periodic, if the following hold:

(i) The The set of sequences {tjk}, t
j
k = tk+j −

tk, k, j ∈ Z, {tk} ∈ D is uniformly almost pe-
riodic.

(ii) For any ε > 0 there exists a real number δ > 0

such that if the points t
′

and t
′′

belong to one and
the same interval of continuity of φ(t) and satisfy
the inequality |t′−t′′ | < δ, then |φ(t′)−φ(t′′)| <
ε.

(iii) For any ε > 0 there exists a relatively dense set
T such that if τ ∈ T , then |φ(t+ τ)−φ(t)| < ε
for all t ∈ T satisfying the condition |t− tk| > ε,
k ∈ Z.

Consider the following system
x∆(t) = x(t)[r(t)− a(t)x(t)

−b(t)xσ(t)− c(t)y(t)],
y∆(t) = −η(t)y(t) + g(t)x(t),

(5)

where

a(t) = a1(t)
∏

t0<tk<t
(1 + h1k),

b(t) = b1(t)
∏

t0<tk<t
(1 + h1k),

c(t) = c1(t)
∏

t0<tk<t
(1 + h2k),

g(t) = g1(t)
∏

t0<tk<t
(1 + h1k)(1 + h2k)

−1.

The initial condition of system (5) in the form

x(t0) = x0, y(t0) = y0, t0 ∈ T, x0 > 0, y0 > 0. (6)

Lemma 9. From systems (1) and (5), we have
(i) if (x(t), y(t)) is a solution of system (5) then

(u(t), v(t)) =( ∏
t0<tk<t

(1 + h1k)x(t),
∏

t0<tk<t

(1 + h2k)y(t)

)
is a solution of system (1);

(ii) if (u(t), v(t)) is a solution of system (1) then

(x(t), y(t)) =( ∏
t0<tk<t

(1 + h1k)
−1u(t),

∏
t0<tk<t

(1 + h2k)
−1v(t)

)
is a solution of system (5).

Proof. (i) Suppose that (x(t), y(t)) is a solution of
(5), then for any t ≠ tk, k = 1, 2, · · · , by substituting

(x(t), y(t)) =( ∏
t0<tk<t

(1 + h1k)
−1u(t),

∏
t0<tk<t

(1 + h2k)
−1v(t)

)
into system (5), one can see that the first two equations
of system (1) hold.
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For t = tk, k = 1, 2, · · · , we have

u(t+k ) = lim
t→t+k

∏
t0<tj<t

(1 + h1j)x(t)

=
∏

t0<tj≤tk

(1 + h1j)x(tk)

= (1 + h1k)
∏

t0<tj<tk

(1 + h1j)x(tk)

= (1 + h1k)u(tk).

Similarly, we can get v(t+k ) = (1 + h2k)v(tk). So,
the last two equations of system (1) hold. Thus,
(u(t), v(t)) is a solution of system (1).

(ii) Suppose that (u(t), v(t)) is a solution of sys-
tem (1). Firstly, we show that (x(t), y(t)) is con-
tinuous. In fact, it is easy to see that (x(t), y(t)) is
continuous on the interval (tk, tk+1]. Now, we shal-
l check the continuity of (x(t), y(t)) at the impulse
points tk, k = 1, 2, · · · . Since

x(t+k ) =
∏

t0<tj≤tk

(1 + h1j)
−1u(t+k )

= (1 + h1k)
−1u(tk) = x(tk),

y(t−k ) =
∏

t0<tj<tk

(1 + h2j)
−1v(t−k ) = y(tk).

Thus, (x(t), y(t)) is continuous on [t0,+∞)T.
For any t ̸= tk, k = 1, 2, · · · , by substituting

(u(t), v(t)) =

(
Πt0<tk<t(1 + h1k)x(t),

Πt0<tk<t(1 + h2k)y(t)

)
into system (1), one can see that system (5) hold.
Therefore, (x(t), y(t)) is a solution of system (5). The
proof is completed. ⊓⊔
Remark 10. System (1) with the initial condition (2)
and system (5) with the initial condition (6) have the
same dynamic behaviors.

3 Main results

Assume that the coefficients of (5) satisfy
(H1) rl > auM1 + cuM2.

Lemma 11. Let (x(t), y(t)) be any positive solution
of system (5) with initial condition (6). If (H1) hold,
then system (5) is permanent, that is, any positive so-
lution (x(t), y(t)) of system (5) satisfies

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤M1, (7)

m2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤M2, (8)

especially if m1 ≤ x0 ≤M1, m2 ≤ y0 ≤M2, then

m1 ≤ x(t) ≤M1, m2 ≤ y(t) ≤M2, t ∈ [t0,+∞)T,

where

M1 =
ru

bl
, M2 =

guM1

ηl
,

m1 =
rl − auM1 − cuM2

bu
, m2 =

glm1

ηu
.

Proof. Assume that (x(t), y(t)) be any positive solu-
tion of system (5) with initial condition (6). From the
first equation of system (5), we have

x∆(t) ≤ x(t)(ru − blx(σ(t))). (9)

By Lemma 3, we can get

lim sup
t→+∞

x(t) ≤ ru

bl
:=M1.

Then, for arbitrary small positive constant ε > 0, there
exists a T1 > 0 such that

x(t) < M1 + ε, ∀t ∈ [T1,+∞]T.

From the second equation of system (5), when t ∈
[T1,+∞)T,

y∆(t) < −ηly(t) + gu(M1 + ε).

Let ε→ 0, then

y∆(t) ≤ −ηly(t) + guM1. (10)

By Lemma 2, we can get

lim sup
t→+∞

y(t) =
guM1

ηl
:=M2.

Then, for arbitrary small positive constant ε > 0, there
exists a T2 > T1 such that

y(t) < M2 + ε, ∀t ∈ [T2,+∞]T.

On the other hand, from the first equation of sys-
tem (5), when t ∈ [T2,+∞)T,

x∆(t) > x(t)[rl − au(M1 + ε)− bux(σ(t))

−cu(M2 + ε)].

Let ε→ 0, then

x∆(t) ≥ x(t)[rl − auM1 − bux(σ(t))− cuM2]. (11)
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By Lemma 3, we can get

lim inf
t→+∞

x(t) =
rl − auM1 − cuM2

bu
:= m1.

Then, for arbitrary small positive constant ε > 0, there
exists a T3 > T2 such that

x(t) > m1 − ε, ∀t ∈ [T3,+∞]T.

From the second equation of system (5), when t ∈
[T3,+∞)T,

y∆(t) > −ηuy(t) + gl(m1 − ε).

Let ε→ 0, then

y∆(t) ≥ −ηuy(t) + glm1. (12)

By Lemma 2, we can get

lim inf
t→+∞

y(t) =
glm1

ηu
:= m2.

Then, for arbitrary small positive constant ε > 0, there
exists a T4 > T3 such that

y(t) > m2 − ε, ∀t ∈ [T4,+∞]T.

In special case, if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤
M2, by Lemma 2 and Lemma 3, it follows from (9)-
(12) that

m1 ≤ x(t) ≤M1, m2 ≤ y(t) ≤M2, t ∈ [t0,+∞)T,

This completes the proof. ⊓⊔
Let S(T) be the set of all solutions (x(t), y(t))

of system (5) satisfying m1 ≤ x(t) ≤ M1, m2 ≤
y(t) ≤M2 for all t ∈ T.

Lemma 12. S(T) ̸= ∅.

Proof. By Lemma 11, we see that for any t0 ∈ T
with m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, system (5)
has a solution (x(t), y(t)) satisfying m1 ≤ x(t) ≤
M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T. Since r(t),
a(t), b(t), c(t), η(t), g(t), σ(t) are almost periodic,
there exists a sequence {tn}, tn → +∞ as n → +∞
such that r(t + tn) → r(t), a(t + tn) → a(t), b(t +
tn) → b(t), c(t+ tn) → c(t), η(t+ tn) → η(t), g(t+
tn) → g(t), σ(t+ tn) → σ(t) as n→ +∞ uniformly
on T.

We claim that {x(t+tn)} and {y(t+tn)} are uni-
formly bounded and equi-continuous on any bounded
interval in T.

In fact, for any bounded interval [α, β]T ⊂ T,
when n is large enough, α + tn > t0, then t + tn >
t0, ∀t ∈ [α, β]T. So, m1 ≤ x(t + tn) ≤ M1, m2 ≤

y(t+tn) ≤M2 for any t ∈ [α, β]T, that is, {x(t+tn)}
and {y(t+ tn)} are uniformly bounded. On the other
hand, ∀t1, t2 ∈ [α, β]T, from the mean value theorem
of differential calculus on time scales, we have

|x(t1 + tn)− x(t2 + tn)|
≤ M1[r

u + (au + bu)M1 + cuM2]

×|t1 − t2|, (13)

|y(t1 + tn)− y(t2 + tn)|
≤ (ηuM2 + guM1)|t1 − t2|. (14)

The inequalities (13) and (14) show that {x(t + tn)}
and {y(t + tn)} are equi-continuous on [α, β]T. By
the arbitrary of [α, β]T, the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subse-
quence of {tn}, we still denote it as {tn}, such that

x(t+ tn) → p(t), y(t+ tn) → q(t),

as n → +∞ uniformly in t on any bounded interval
in T. For any θ ∈ T, we can assume that tn + θ ≥ t0
for all n, and let t ≥ 0, integrate both equations of
system (5) from tn + θ to t+ tn + θ, we have

x(t+ tn + θ)− x(tn + θ)

=

∫ t+tn+θ

tn+θ
x(s)[r(s)− a(s)x(s)− b(s)x(σ(s))

−c(s)y(s)]∆s

=

∫ t+θ

θ
x(s+ tn)[r(s+ tn)

−a(s+ tn)x(s+ tn)− b(s+ tn)x(σ(s+ tn))

−c(s+ tn)y(s+ tn)]∆s,

and

y(t+ tn + θ)− y(tn + θ)

=

∫ t+tn+θ

tn+θ
[−η(s)y(s) + g(s)x(s)]∆s

=

∫ t+θ

θ
[−η(s+ tn)y(s+ tn)

+g(s+ tn)x(s+ tn)]∆s.

Using the Lebesgue’s dominated convergence theo-
rem, we have

p(t+ θ)− p(θ) =

∫ t+θ

θ
x(s)[r(s)− a(s)x(s)

−b(s)x(σ(s))− c(s)y(s)]∆s,

q(t+ θ)− q(θ) =

∫ t+θ

θ
[−η(s)y(s)

+g(s)x(s)]∆s.
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This means that (p(t), q(t)) is a solution of system (5),
and by the arbitrary of θ, (p(t), q(t)) is a solution of
system (5) on T. It is clear that

m1 ≤ p(t) ≤M1, m2 ≤ q(t) ≤M2, ∀t ∈ T.

This completes the proof. ⊓⊔

Theorem 13. In addition to the condition (H1), as-
sume further that the coefficients of system (5) satisfy
the following conditions:

(H2) a
l − gu > 0;

(H3) η
l − cu > 0.

Then system (5) has a unique positive almost periodic
solution which is uniformly asymptotic stable.

Proof. Consider the associated product system of (5),

x∆1 (t) = x1(t)[r(t)− a(t)x1(t)
−b(t)x1(σ(t))− c(t)y1(t)],

y∆1 (t) = −η(t)y1(t) + g(t)x1(t),
x∆2 (t) = x2(t)[r(t)− a(t)x2(t)

−b(t)x2(σ(t))− c(t)y2(t)],
y∆2 (t) = −η(t)y2(t) + g(t)x2(t).

(15)

Let z(t) = (z1(t), z2(t)) be a positive solution of
product system (15), where

z1(t) = (x1(t), y1(t)), z2(t) = (x2(t), y2(t)).

It follows from (7)-(8) that for sufficient small positive
constant ε0 (0 < ε0 < min{m1,m2}), there exists a
T > 0 such that

m1 − ε0 < xi(t) < M1 + ε0,

m2 − ε0 < yi(t) < M2 + ε0, (16)

where t ∈ [T,+∞)T, i = 1, 2.
Since xi(t), i = 1, 2 are positive, bounded and

differentiable functions on T, then there exists a posi-
tive, bounded and differentiable function m(t), t ∈ T,
such that xi(t)(1+m(t)), i = 1, 2 are strictly increas-
ing on T. By Lemmas 4 and 5, we have

∆

∆t
LT(xi(t)[1 +m(t)])

=
x∆i (t)[1 +m(t)] + xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]

=
x∆i (t)

xi(t)
+
xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]
, i = 1, 2.

Here, we can choose a functionm(t) such that |m∆(t)|
1+m(t)

is bounded on T, that is, there exist two positive con-
stants ζ > 0 and ξ > 0 such that 0 < ζ < |m∆(t)|

1+m(t) < ξ,
∀t ∈ T.

Set

V (t, z1(t), z2(t))

= |e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|).

where δ ≥ 0 is a constant (if µ(t) = 0, then δ = 0;
if µ(t) > 0, then δ > 0). It follows from the mean
value theorem of differential calculus on time scales
for t ∈ [T,+∞)T,

1

M1 + ε0
|x1(t)− x2(t)|

≤ |LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|

≤ 1

m1 − ε0
|x1(t)− x2(t)|, (17)

then

min{ 1

M1 + ε0
, 1}|e−δ(t, T )|(|x1(t)− x2(t)|

+|y1(t)− y2(t)|)
≤ V (t, z1(t), z2(t))

≤ max{ 1

m1 − ε0
, 1}|e−δ(t, T )|(|x1(t)− x2(t)|

+|y1(t)− y2(t)|),

that is

min{ 1

M1 + ε0
, 1}|e−δ(t, T )|(|z1(t)− z2(t)|)

≤ V (t, z1(t), z2(t))

≤ max{ 1

m1 − ε0
, 1}|e−δ(t, T )|(|z1(t)− z2(t)|).

Therefore, condition (1) in Lemma 6 is satisfied.
Since

|V (t, z1(t), z2(t))− V (t, z̃1(t), z̃2(t))|
= |e−δ(t, T )|

∣∣|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|
−|LT(x̃1(t)(1 +m(t)))

−LT(x̃2(t)(1 +m(t)))| − |ỹ1(t)− ỹ2(t)|
∣∣

≤ |LT(x1(t)(1 +m(t)))

−LT(x̃1(t)(1 +m(t)))|+ |y1(t)− ỹ1(t)|
+|LT(x2(t)(1 +m(t)))

−LT(x̃2(t)(1 +m(t)))|+ |y2(t)− ỹ2(t)|

≤ max{ 1

m1 − ε0
, 1}(|x1(t)− x̃1(t)|

+|y1(t)− ỹ1(t)|
+|x2(t)− x̃2(t)|+ |y2(t)− ỹ2(t)|)

= max{ 1

m1 − ε0
, 1}(|z1(t)− z̃1(t)|

+|z2(t)− z̃2(t)|).
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Therefore, condition (2) in Lemma 6 holds.
Next, we shall prove condition (3) in Lemma 6

holds. For convenience, We divide the proof into two
cases. Let γ = min{(m1 − ε0)(a

l − gu), ηl − cu}.
Case I. If µ(t) > 0, set δ > max{(bu +

ξ
m1

)M1, γ} and 1− µ(t)δ < 0. Calculating the upper
right derivatives of V (t) along the solution of system
(5), it follows from (16), (17), (H2) and (H3) that for
t ∈ [T,+∞)T,

D+V ∆(t, z1(t), z2(t))

= |e−δ(t, T )|sgn(x1(t)− x2(t))

[
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

+
m∆(t)

1 +m(t)

(
x1(σ(t))

x1(t)
− x2(σ(t))

x2(t)

)]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

= |e−δ(t, T )|sgn(x1(t)− x2(t))

[
− a(t)(x1(t)

−x2(t))− b(t)(x1(σ(t))− x2(σ(t)))

−c(t)(y1(t)− y2(t))]

+
m∆(t)

1 +m(t)

x1(σ(t))x2(t)− x1(t)x2(σ(t))

x1(t)x2(t)

]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))

×[−η(t)(y1(t)− y2(t)) + g(t)(x1(t)− x2(t))]

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|
= |e−δ(t, T )|sgn(x1(t)− x2(t))

×
[
− a(t)(x1(t)− x2(t))

−b(t)(x1(σ(t))− x2(σ(t)))

−c(t)(y1(t)− y2(t))]

+
m∆(t)

1 +m(t)

x1(σ(t))(x2(t)− x1(t))

x1(t)x2(t)

]
+

m∆(t)

1 +m(t)

x1(σ(t))− x2(σ(t))

x2(t)

]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))

×[−η(t)(y1(t)− y2(t)) + g(t)(x1(t)− x2(t))]

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|
[
a(t)− g(t)

+
|m∆(t)|
1 +m(t)

x1(σ(t))

x1(t)x2(t)

]
|x1(t)− x2(t)|

−|e−δ(t, T )|
[

δ

M1 + ε0
− b(t)

− |m∆(t)|
1 +m(t)

1

x2(t)

]
|x1(σ(t))− x2(σ(t))|

−|e−δ(t, T )|(η(t)− c(t))|y1(t)− y2(t)|
−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|(al − gu)|x1(t)− x2(t)|
−|e−δ(t, T )|(ηl − cu)|y1(t)− y2(t)|

≤ −|e−δ(t, T )|((m1 − ε0)(a
l − gu)

×|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|)

≤ −γ|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
= −γV (t, z1(t), z2(t)). (18)

Case II. If µ(t) = 0, set δ = 0, then σ(t) = t,
e−δ(t, T ) = 1. Calculating the upper right derivatives
of V (t) along the solution of system (5), it follows
from (16), (17), (H2) and (H3) that for t ∈ [T,+∞)T,

D+V ∆(t, z1(t), z2(t))

= sgn(x1(t)− x2(t))

(
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

)
+sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

= sgn(x1(t)− x2(t))[−(a(t)

+b(t))(x1(t)− x2(t))− c(t)(y1(t)− y2(t))]

+sgn(y1(t)− y2(t))[−η(t)(y1(t)− y2(t))

+g(t)(x1(t)− x2(t))]

≤ −(a(t) + b(t)− g(t))|x1(t)− x2(t)|
−(η(t)− c(t))|y1(t)− y2(t)|

≤ −((m1 − ε0)(a
l + bl − gu)

×|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|)

≤ −γ̂(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
≤ −γV (t, z1(t), z2(t)), (19)

where γ̂ = min{(m1 − ε0)(a
l + bl − gu), ηl − cu}.

Together with (18) and (19), one can see that con-
dition (3) in Lemma 6 is satisfied.

From the above discussion, we can see that al-
l conditions in Lemma 6 hold. Together with Lemma
11 and Lemma 12, system (5) has a unique positive al-
most periodic solution which is uniformly asymptotic
stable. This completes the proof. ⊓⊔
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Theorem 14. Under the conditions (H1)-(H3), it fol-
lows from Remark 10 that system (1) with the initial
condition (2) has a unique positive almost periodic
solution which is uniformly asymptotic stable.

4 Example and simulations

Consider the following system on time scales

u∆(t) = u(t)[0.8 + 0.2 sin
√
2t

−(0.045 + 0.005 sin t)u(t)
−u(σ(t))− 0.2v(t)],

v∆(t) = −(0.4 + 0.1 cos
√
3t)v(t)

+(0.015 + 0.005 sin
√
2t)u(t),

t ≠ tk,
u(t+k ) = 0.5u(tk),
v(t+k ) = 0.5v(tk), k = 1, 2, · · · , 20.

(20)

By a direct calculation, we can get

ru = 1, rl = 0.6, au = 0.0452, al = 0.0362,

bu = bl = 0.9046, cu = cl = 0.1809,

ηu = 0.5, ηl = 0.3, gu = 0.02, gl = 0.01,

M1 = 1.2055,M2 = 0.0737,

m1 = 0.4355,m2 = 0.0107,

then,

rl − (auM1 + cuM2) = 0.9367 > 0,

al − gu = 0.0162 > 0,

ηl − cu = 0.1192 > 0,

that is, the conditions (H1) − (H3) hold. According
to Theorem 14, system (20) has a unique positive al-
most periodic solution which is uniformly asymptotic
stable.

Dynamic simulations of system (20) with T = R
and T = Z, see Figures 1 and 2, respectively.

5 Conclusion

This paper is concerned with a predator-prey system
with impulses on time scales. By the relation between
the solutions of impulsive system and the correspond-
ing non-impulsive system, based on the theory of cal-
culus on time scales and the properties of almost pe-
riodic functions as well as Razumikhin type theorem,
sufficient conditions which guarantee the existence of
a unique uniformly asymptotic stable almost periodic
solution of the system are obtained.

The results obtained in this paper can be applied
to the analysis of the periodic (and almost periodic)
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Figure 1: T = R. Dynamics behavior of system (20)
with initial condition (x(0), y(0)) = (0.5, 0.08).
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Figure 2: T = Z. Dynamics behavior of system (20)
with initial condition (x(1), y(1)) = (0.5, 0.05).
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dynamical regimes into the dynamical systems with
strange attractors [21], and to non-autonomous solu-
tions’ analysis of non-autonomous gyrostats’ systems
[22]. Also, one may consider many other systems, see
[23]-[30].
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