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Abstract: In this paper, a novel hepatitis B virus infection model with time delay and CTL immune responses is
proposed. The threshold parameters are derived and existence of equilibria is discussed. Then, the uniform bound-
edness and nonnegativeness of solutions are obtained. By analyzing the transcendental characteristic equations,
asymptotic stabilities of nonnegative equilibria are investigated. In particular, the occurrence of Hopf bifurcation
phenomena is considered by regarding time delay as a bifurcation parameter. Finally, some numerical simulations
are given to confirm the theoretical findings.
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1 Introduction
Hepatitis B virus (HBV) infection is the most com-
mon chronic viral infection in the world. An estimat-
ed 2 billion people have been infected, and more than
350 million are chronic carriers of the virus [1]. HBV
is transmitted through contact with infected blood or
semen. In the 2010 Global Burden of Disease Study,
HBV infection ranked in the top health priorities in
the world, and was the tenth leading cause of death
[2]. These data have led WHO to include viral hepati-
tis in its major public health priorities.

However, the mathematical models may help to
understand the HBV infection process and study the
anti–HBV infection treatment [3]. Based on the pio-
neering model of virus dynamics proposed by Nowak
and Bangham to study HIV infection [4, 5, 6], a
large number of mathematical models have been in-
troduced. These models can also be adapted to HBV
and HCV infection.

The basic model describing the interaction be-
tween the susceptible host cells (hepatocytes, x), in-
fected host cells (y), and free virus particles (v), is
formulated by the following ordinary differential e-
quations: 

dx
dt = s− dx− βxv,
dy
dt = βxv − ay,
dv
dt = ky − uv,

(1)

where hepatocytes are produced at a rate s, die at a
rate dx, and become infected at a rate βxv; infected

hepatocytes are produced at a rate βxv and die at a
rate ay; free viruses are produced from infected cells
at a rate ky and are removed at a rate uv. It is as-
sumed that parameters s, d, β, a, k, u are all positive
constants. Based on system (1), many modified mod-
els have been established. For example, Wang et al.
[7] studied the global stability of an improved HBV
model with standard incidence function and cytokine–
mediated ’cure’, Huang et al. [8, 9] considered the
global properties for delayed or undelayed HBV mod-
els with Beddington–DeAngelis functional response,
Zhuang et al. [10] discussed the local and global Hopf
bifurcations for an improved HIV model with time de-
lay and cure rate.

In view of the responses of the immune system,
Nowak and Bangham [4] constructed the new model
as follows: 

dx
dt = s− dx− βxv,
dy
dt = βxv − ay − pyz,
dv
dt = ky − uv,
dz
dt = cyz − µz,

(2)

where z denotes the cytotoxic–T–lymphocyte (CTL)
cells. Many researches have shown that although pro-
tection against infection is multifactorial phenomenon
depending on both the innate and adaptive immune
mechanisms, CTL cells play an important role in the
control of HBV infection, see [11, 12].

Furthermore, time delay can not be ignored in
models for immune responses. There is always a lag
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between the time target cells are contacted by the virus
particles and the time the contacted cells become ac-
tively infected [13, 14, 15]. As a consequence, the
CTL cells produced at time tmay depend on the num-
ber of CTL cells and infected target cells at time t−τ ,
for a time delay τ > 0. Accordingly, the CTL re-
sponses in (2) can be more realistically modeled by
cy(t − τ)z(t − τ). Therefore, Canabarro et al. [16]
proposed the following delayed differential equations
model



dx
dt = s− dx− βxv,
dy
dt = βxv − ay − p,
dv
dt = ky − βxv − uv,
dz
dt = cy(t− τ)z(t− τ)− µz,

(3)

They only numerically investigated the solutions of
delayed system (5). The stability and periodicity of
solutions were founded by numerical simulations.

Thus, in this paper, we consider the more general
model as follows:



dx
dt = s− dx− βxv + qyz,
dy
dt = βxv − ay − (p+ q)yz,
dv
dt = ky − uv,
dz
dt = cy(t− τ)z(t− τ)− µz,

(4)

where the bilinear term qyz represents that the CTL
cells cure the infected hepatocytes by a nonanalytic
effector mechanism [17, 18]. In system (4) all param-
eters are positive constants.

For system (4), Xie et al. [15], Bai and Zhou [19]
studied the dynamical behaviors in the absence of v
when q = 0, respectively. Tian and Xu [20] studied
the global stability and Hopf bifurcation when q = 0
with saturation incidence. Wang et al. [21] also stud-
ied the global stability of the model with Beddington–
DeAngelis incidence rate when q = 0 and τ = 0.

The aim of this paper is to investigate the stabili-
ty of nonnegative equilibrium and existence of Hopf
bifurcation phenomena. The paper is organized as
follows. In Section 2, basic mathematical proper-
ties of the model are studied. Asymptotic stabilities
of infection–free equilibrium and immune–free equi-
librium are studied in Sections 3 and 4, respectively.
The stability of immune–present equilibrium and ex-
istence of Hopf bifurcation are established in Section
5. In Section 6, we give a numerical example to verify
the theoretical results. Finally, conclusions and dis-
cussions are drawn.

2 Preliminaries
Let X = C([−τ, 0];R) be the Banach space of con-
tinuous mapping from [−τ, 0] to R equipped with the
sup–norm. The initial conditions are given by{
x(θ) ≥ 0, y(θ) ≥ 0, v(θ) ≥ 0, z(θ) ≥ 0, θ ∈ [−τ, 0]
x(0) > 0, y(0) > 0, v(0) > 0, z(0) > 0.

(5)
By the standard theory of functional differential equa-
tions [22, 23], we can obtain that there exists a unique
solution (x(t), y(t), v(t), z(t)) of system (4) satisfy-
ing the above initial conditions.

2.1 Positiveness and Boundedness of Solu-
tions

Proposition 1 Let (x(t), y(t), v(t), z(t)) be any so-
lution of (4) with the initial conditions (5). Then
(x(t), y(t), v(t), z(t)) are positive and ultimately
bounded.

Proof: From (4), we have

x(t) = x(0)e−
∫ t

0
(d+βv(ζ))dζ

+
∫ t
0(s+ qy(η)z(η))e

−
∫ t

η
(d+βv(ζ))dζdη,

y(t) = y(0)e−
∫ t

0
(a+qz(ζ))dζ

+
∫ t
0 βx(η)v(η)e

−
∫ t

η
(a+qz(ζ))dζdη,

v(t) = v(0)e−ut +
∫ t
0 ky(η)e

−u(t−η)dη,
z(t) = z(0)e−bt +

∫ t
0 cy(η − τ)z(η − τ)ebtdη.

It is obvious that x(t) is positive on the existence in-
terval. Then, we can prove the positiveness of y(t).
On one hand, let t1 > 0 be the first time such that
y(t1) = 0. By the third equation of (4), we have
v(t1) = v(0)e−ut1 +

∫ t1
0 ky(η)e−u(t1−η)dη > 0. On

the other hand, from the second equation of (4), we
have ẏ(t1) = βx(t1)v(t1) > 0 and y(t) < 0 for
t ∈ (t1 − ε, t1), where ε is an arbitrarily small pos-
itive constant. This leads to a contradiction. It follows
that y(t) > 0 and v(t) > 0. Similarly, we can also
prove that z(t) > 0.

Next, we shall check the ultimate boundedness of
solution. From the first two equations of (4), we have

d(x+ y)

dt
= s− dx− ay − pyz

≤ s− dx− ay ≤ s− σ(x+ y),

where σ = min{a, d}. Thus, we have

lim supt→∞(x(t) + y(t)) ≤ s/σ,

x(t) and y(t) are ultimately bounded.
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Let

N(t) = x(t) + y(t) +
a

2k
v(t) +

p

c
z(t+ τ)

and denote δ = min{d, a2 , u, µ}. Then we have

Ṅ(t) = s− dx(t)− a

2
y(t)− au

2k
v(t)

−pµ
c
z(t+ τ)

≤ s− δ(x(t) + y(t) +
a

2k
v(t) +

p

c
z(t+ τ))

= s− δN.

Therefore, lim supt→∞N(t) ≤ s
δ . Hence,

(x(t), y(t), v(t), z(t)) are ultimately bounded and the
proof is complete. ⊓⊔

2.2 Existence of Nonnegative Equilibria
Let the right sides of (4) be zero, we can find that sys-
tem (4) has three nonnegative equilibria with the help
of Mathematica. They are infection–free equilibrium
E0 =

(
s
d , 0, 0, 0

)
, immune–free equilibrium

E1 =

(
au

kβ
,
ksβ − adu

akβ
,
ksβ − adu

auβ
, 0

)
and immune–present equilibrium E2 =
(x0, y0, v0, z0), where

x0 =
cpsu+ cqsu− aquµ

cdpu+ cdqu+ kpβµ
,

y0 =
µ

s
, v0 =

kµ

cu
,

z0 =
cksβ − acdu− akβµ

cdpu+ cdqu+ kpβµ
.

Note that R0 = ksβ/(adu) is the basic repro-
ductive ratio of virus, which describes the number of
cells one cell generates on average over the course of
its infectious period.

3 Stability of Infection–free Equilib-
rium

Assume R0 < 1 so that E0 is the unique equilibrium.
Linearizing (4) aroundE0, we obtain the linear system

dx
dt = −dx− βs

d v,
dy
dt = −ay + βs

d v,
dv
dt = ky − uv,
dz
dt = −µz.

The characteristic equation is

(λ+d)(λ+µ)

(
λ2 + (a+ µ)λ+

adu− kβs

d

)
= 0.

Due to Routh–Hurwitz criterion, all the characteristic
roots have negative real parts if and only if R0 < 1.
Thus the immune–free equilibrium is locally asymp-
totically stable when R0 < 1 and unstable when
R0 > 1.

Theorem 2 If R0 < 1, then the immune–free equilib-
rium E0 is globally asymptotically stable. If R0 > 1,
then E0 is unstable.

Proof: Let x(t), y(t), v(t), z(t) be any positive solu-
tion of system (4) with initial conditions (5).

Define

V (t) =
1

2

(
x(t)− s

d

)2

+
s

d
y(t) +

s

cd
(p+ q)z(t)

+mv(t) +
s

d
(p+ q)

∫ t

t−τ
y(θ)z(θ)dθ,

where m ∈
[
βs2

d2u
, asdk

]
. Calculating the derivative of

V (t) along positive solutions of system (4), we derive
that

dV (t)

dt
= −(d+ βv(t))

(
x(t)− s

d

)2

+qy(t)z(t)

(
x(t)− s

d

)
− y(t)

(
as

d
− km

)
−v(t)

(
mu− βs2

d2

)
− s

cd
(p+ q)µz(t).

Combining the proof of Proposition 1, it follows that
V ′(t) ≤ 0. It is obvious that V ′(t) = 0 if and only if
x = s

d , y = v = z = 0. By LaSalle’s invariance prin-
ciple, the global asymptotic stability of E0 follows.
This completes the proof. ⊓⊔

4 Stability of Immune–free Equilib-
rium

It is well known that the stability of the equilibrium
of delay differential equation depends on the distri-
bution of the zeros of characteristic equation. In the
following, we shall use the main results in Ruan and
Wei [24], which is a generalization of the lemma in
Cook and Grossman [25], to analyze the distribution
of characteristic roots. We first state the useful lemma
as follows.
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Lemma 3 Consider the following exponential poly-
nomial:

P (λ, e−λτ1 , e−λτ2 , . . . , e−λτm)

= λn + p
(0)
1 λn−1 + p

(0)
2 λn−2 + . . .+ p(0)n

+[p
(1)
1 λn−1 + p

(1)
2 λn−2 + . . .+ p(1)n ]e−λτ1

+ . . .

+[p
(m)
1 λn−1 + p

(m)
2 λn−2 + . . .+ p(m)

n ]e−λτm ,

where τi ≥ 0(i = 1, 2, . . . ,m) and p
(i)
j (i =

0, 1, . . . ,m; j = 1, 2, . . . , n) are constants. As
(τ1, τ2, . . . , τm) vary, the sum of the orders of the ze-
ros ofP (λ, e−λτ1 , e−λτ2 , . . . , e−λτm) in the open right
half plane can change only if a zero appears on or
crosses the imaginary axis.

Theorem 4 Assume that cs > aµ. If 1 < R0 <
1 + aµ

cs−aµ , then the immune–free equilibrium E1 is
asymptotically stable. If R0 > 1 + aµ

cs−aµ , then E1 is
unstable.

Proof: Consider the linearized system of (4) at E1:

dx
dt = −ksβ

au x(t)−
au
k v(t) +

q(ksβ−adu)
akβ z(t),

dy
dt = ksβ−adu

au x(t)− ay(t) + au
k v(t)

− (p+q)(ksβ−adu)
akβ z(t),

dv
dt = ky(t)− uv(t),
dz
dt = c(ksβ−adu)

akβ z(t− τ)− µz(t).

Then the characteristic equation is(
λ+ µ− c(ksβ−adu)

akβ e−λτ
) [
λ3 +

(
a+ u+ ksβ

au

)
λ2

+(a+ u)ksβau λ+ ksβ − adu
]
= 0.

(6)
Notice that 1 < R0 < 1 + aµ

cs−aµ , it is easy to verify

µ− c(ksβ−adu)
akβ > 0 and (a+u)2 ksβau +(a+u)k

2s2β2

a2u2 >

ksβ−adu. According to Routh–Hurwitz criterion,E1

is asymptotically stable when τ = 0.
When τ ̸= 0, we only need to discuss the follow-

ing equation

λ+ µ− c(ksβ − adu)

akβ
e−λτ = 0. (7)

Let λ = iω(ω > 0) be the root of (7). Substituting it
into (7), we have

ω2 =

(
c(ksβ − adu)

akβ
+ µ

)
cksβ − acdu− akµβ

akβ
.

If 1 < R0 < 1 + aµ
cs−aµ , then ω2 < 0, which

means characteristic equation (6) has no purely imag-
inary root and all the roots have negative real parts.

Hence, the immune–free equilibrium E1 is asymptot-
ically stable.

If R0 > 1 + aµ
cs−aµ , then ω2 > 0 . Substituting

λ = iω into (7) and separating real and imaginary
parts, we get {

sinωτ = − ω
A < 0,

cosωτ = µ
A > 0,

where A = c(ksβ−adu)
akβ > 0 when R0 > 1. Then

equation (7) has a pair of purely imaginary roots ±iω1

with τ = τ (l), l = 0, 1, 2, · · ·, where

ω1 =

√
c2(ksβ − adu)2

a2k2β2
− µ2,

and

τ (l) =
1

ω1

{
arcsin

ω1

A
+ 2lπ

}
, l = 0, 1, 2, · · · .

Differentiating both sides of (7) with respect to τ ,
we have

dλ
dτ

∣∣∣∣
λ=iω1

= − iω1A

cosω1τ (l) + i sinω1τl +Aτ (l)
,

and

Re
[

dλ
dτ

]
λ=iω1

=
ω2
1

(cosω1τ (l) +Aτ (l))2 + (sinω1τ (l))2

> 0.

From above analysis, we can conclude that the
immune–free equilibrium E1 is stable when 1 <
R0 < 1 + aµ

cs−aµ and unstable when R0 > 1 + aµ
cs−aµ .

Moreover, Hopf bifurcation will occur when time de-
lay is slightly larger than τ (0) and small–amplitude
periodic solutions will bifurcate from the equilibrium
E1. The proof is then complete. ⊓⊔

5 Stability of Positive Equilibrium
and Existence of Hopf Bifurcation

Assume R0 > 1+ aµ
cs−aµ and cs > aµ so that the pos-

itive immune–present equilibrium E2 exists. In this
section, we shall take the CTL–response delay τ as
a bifurcation parameter and show that the immune–
present equilibriumE2 will lose its linear stability and
a Hopf bifurcation occurs when the time delay τ pass-
es through a critical value.
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Linearizing system (4) at E2 = (x0, y0, v0, z0),
we obtain

dx
dt = −(d+ βv0)x(t) + qz0y(t)− βx0v(t)

+qy0z(t),
dy
dt = βv0x(t)− (a+ (p+ q)z0)y(t)y(t)

+βx0v(t)− (p+ q)y0z(t),
dv
dt = ky(t)− uv(t),
dz
dt = cz0y(t− τ) + cy0z(t− τ)− µz(t).

The characteristic equation is

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 − e−λτ (b1λ
3

+b2λ
2 + b3λ+ b4) = 0,

(8)

whose coefficients are

a1 = a+ d+ u+ βv0 + (p+ q)z0 + µ,

a2 = ad+ au+ du+ aβv0 + βuv0 − kβx0

+(p+ q)dz0 + (p+ q)uz0 + βpv0z0

+(a+ d+ u)µ+ µβv0 + (p+ q)µz0,

a3 = adu+ aβuv0 − βdkx0 + (p+ q)duz0

+βpuv0z0 + (ad+ au+ du)µ+ (a+ u)βµv0

−βkµx0 + (p+ q)dµz0 + (p+ q)uµz0

+βpµv0z0,

a4 = µ(adu+ dpuz0 + dquz0 + auv0β − dkβx0

+puv0z0),

b1 = cy0,

b2 = (a+ d+ u)µ+ βv0,

b3 = µ(ad+ au+ du+ aβv0 + βuv0 − kβx0),

b4 = µ(adu+ auβv0 − dkβx0).

When τ = 0, equation (8) becomes

λ4+(a1−b1)λ3+(a2−b2)λ2+(a3−b3)λ+a4−b4 = 0.

Through trivial computation, we can obtain

D1 = a1 − b1 > 0,

D2 = (a1 − b1)(a2 − b2)− (a3 − b3) > 0,

D3 = (a1 − b1)[(a2 − b2)(a3 − b3)

−(a1 − b1)(a4 − b4)]− (a3 − b3)
2 > 0,

D4 = (a4 − b4)D3 > 0.

Routh–Hurwitz criterion implies that all roots of (8)
have negative real parts if and only if R0 > 1+ aµ

cs−aµ

and cs > aµ with τ = 0.

Proposition 5 Assume thatR0 > 1+ aµ
cs−aµ and cs >

aµ. Then, at τ = 0, the immune–present equilibrium
E2 is locally asymptotically stable.

When τ ≠ 0, let λ = iω (ω > 0) be a purely
imaginary root of (8). Substituting it into (8), we can
get

ω4 − ia1ω
3 − a2ω

2 + ia3ω + a4 − (cosωτ
−i sinωτ)(−ib1ω3 − b2ω

2 + ib3ω + b4) = 0.

Separating the real and imaginary parts leads to
ω4 − a2ω

2 + a4 = (b4 − b2ω
2) cosωτ

+(b3ω − b1ω
3) sinωτ

−a1ω3 + a3ω = (b3ω − b1ω
3) cosωτ

−(b4 − b2ω
2) sinωτ.

(9)

Squaring and adding both equations of (9), we have

σ4 + c1σ
3 + c2σ

2 + c3σ + c4 = 0, (10)

where

σ = ω2,

c1 = a21 − b21 − 2a2,

c2 = a22 + 2a4 − 2a1a3 − b22 + 2b1b3,

c3 = a23 − 2a2a4 + 2b2b4 − b23,

c4 = a24 − b24.

If equation (10) has positive real root, then char-
acteristic equation (8) has purely imaginary roots. For
convenience, we make the following assumption:
(H1) Equation (10) has at least one positive real root.

Let σ = σ0 be the positive root of (10). Then
characteristic equation (8) has a pair of purely imag-
inary roots λ = ±iω0, where ω0 = σ20 . Solving the
linear algebraic equations (9), we obtain cosωτ = − B

(b4−b2ω2)2+(b3ω−b1ω3)2
,

sinωτ = − C
(b4−b2ω2)2+(b3ω−b1ω3)2

,

where

B = (b2− a1b1)ω
6+(a3b1+ a1b3−b4−a2b2)ω4

+(a2b4 + a4b2 − a3b3)ω
2 − a4b4,

C = b1ω
7+ (a1b2− b3− a2b1)ω

5+(a2b3+ a4b1

−a3b2 − a1b4)ω
3 + (a3b4 − a4b3)ω.

We can find that there always exists τ0 > 0 such
that all roots of (8) have negative real parts when τ ∈
[0, τ0) and equation (8) has a pair of purely imaginary
roots λ = ±ω0 when τ = τ0.

Next, we shall verify the transversality condition
at τ = τ0 to explore the existence of Hopf bifurcation.
By the continuous dependence of characteristic roots
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on parameter τ , we can differentiate both sides of (8)
with respect to τ :[

dλ
dτ

]−1

= −τ
λ
− (4λ3 + 3a1λ

2 + 2a2λ+ a3)e
λτ

λ(b1λ3 + b2λ2 + b3λ+ b4)

+
3b1λ

2 + 2b2λ+ b3
λ(b1λ3 + b2λ2 + b3λ+ b4)

and

Re
[

dλ
dτ

]−1

τ=τ0

=
1

ω0Λ

[
(3a1ω

2
0 − a3)(b1ω

3
0 cosω0τ0

−b3ω0 cosω0τ0 + b4 sinω0τ0

−b4ω2
0 sinω0τ0) + (4ω3

0 − 2a2ω0)

(b4 cosω0τ0 − b2ω
2
0 cosω0τ0

−b1ω3
0 sinω0τ0 + b3ω0 sinω0τ0)

+(b3 − 3b1ω
2
0)(b1ω

3
0 − b3ω0)

+2b2ω0(b4 − b2ω
2
0)
]

=
1

ω0Λ

[
4ω6

0 + 3(a21 − 2a2 − b21)ω
4
0

+2(a22 − b22 + 2a4 + 2b1b3

−2a1a3)ω
2
0 + a23 − b23 + 2b2b4

−2a2a4] ,

where Λ = (b1ω
3
0 − b3ω0)

2 + (b4 − b2ω
2
0)

2 > 0.
If the following assumption is satisfied:

(H2) 4ω6
0 +3(a21−2a2− b21)ω4

0 +2(a22− b22+2a4+
2b1b3 − 2a1a3)ω

2
0 + a23 − b23 + 2b2b4 − 2a2a4 > 0,

then we have

sign

{
Re
[

dλ
dτ

]
τ=τ0

}
= sign

{
Re
[

dλ
dτ

]−1

τ=τ0

}
= 1.

Due to Lemma 3, the real part of characteristic root of
(8) becomes positive when τ > τ0 and the equilibri-
um becomes unstable. Moreover, a Hopf bifurcation
occurs when τ passes through the critical value τ0 (see
[26]).

The above analysis can be summarized into the
following proposition.

Proposition 6 Suppose that R0 > 1 + aµ
cs−aµ and

cs > aµ. If conditions (H1) and (H2) are satisfied,
then the immune–present equilibrium E2 is asymptot-
ically stable when τ < τ0 and unstable when τ > τ0.
When τ = τ0, Hopf bifurcation occurs, that is, a fami-
ly of periodic solutions bifurcates fromE2 as τ passes
through the critical value τ0.

6 Numerical Simulations
In this section, we give some numerical examples
to support our theoretical analysis. Here, we solve
the delay differential equation model numerically
by dde23 in MATLAB, which employs the explic-
it Runge–Kutta method. We first fix the parameters
d = 0.5, β = 0.009, a = 0.1, p = 0.024, k = 100,
u = 15, c = 0.15, µ = 0.5, q = 0.01 and denote
R1 = 1 + aµ

cs−aµ . Consider the following special sys-
tem

dx
dt = s− 0.5x− 0.009xv + 0.01yz,
dy
dt = 0.009xv − 0.1y − 0.034yz,
dv
dt = 100y − 15v,
dz
dt = 0.15y(t− τ)z(t− τ)− 0.5z.

(11)

Then we will vary birth rate of susceptible cells s.
By taking s = 0.6, then R0 = 0.72 < 1 and system
(11) has the unique equilibrium E0 = (1.2, 0, 0, 0).
In this case, E2 is globally asymptotically stable, see
Figure 1.

When s = 1, then

1 < R0 = 1.2 < R1 = 1.5

and system (11) has two nonnegative equilibria:
infection–free equilibrium E0 and immune–free equi-
librium E1 = (1.66667, 1.66667, 11.1111, 0). In this
case, E0 is unstable and we can not simulate it. Equi-
librium E1 is asymptotically stable, see Figure 2.

When s = 1.5, then

R1 = 1.8 > R1 = 1.28571

and (11) has three nonnegative equilibria. For
immune–present equilibrium

E2 = (2.18654, 3.33333, 22.2222, 0.917431)

using the software Mathematica, we can easily verify
the conditions in Proposition 6 and obtain the critical
value τ0 = 31.6281. Therefore, the equilibrium E2 is
asymptotically stable when τ = 10 < τ0 (see Figure
3) and unstable when τ = 80 > τ0 (see Figure 4).

However, according to the previous theoretical
analysis, the existence of Hopf bifurcation is only lo-
cal, which means that periodic oscillations only ex-
ist in the small neighborhood of the critical value τ0.
Whether the oscillations exist for arbitrarily large time
delay is the global bifurcation problem and it needs
further investigation, see, for example [10]. There-
fore, it is an interesting question on global continua-
tion of the local Hopf bifurcation obtained in this pa-
per. We leave this for future work.
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7 Conclusion
Incorporating the time delay and immune responses
into viral infection models has been done by many re-
searchers (see [15, 16, 19, 20] ). However, it is still an
interesting exercise to determine how the intercellular
delay affects overall disease progression and, mathe-
matically, how the delay affects the dynamics of sys-
tems [27].

Taking account of the cure of infected cells by the
CTL immune responses, our model is more general
and the models in [15, 19] are only special cases of
system (4) in the present paper.

In this paper, we first proved the positiveness and
ultimately boundedness of solutions of the new model.
By analyzing the corresponding transcendental char-
acteristic equation and constructing appropriate Lya-
punov function, we proved that the infection–free e-
quilibrium is globally asymptotically stable when ba-
sic reproduction number R0 < 1. Then, by stabili-
ty analysis, we obtained the sufficient conditions for
stability of two infected equilibria and existence of
Hopf bifurcation. Thus, the positive immune–present
equilibrium is stable when time delay is smaller than
certain critical value τ0. Numerical simulations con-
firmed our analysis. Biologically, it implies that time
delay may cause the cell and virus populations to os-
cillate under certain conditions.

In fact, the actual incidence rate is probably not
linear and it is more reasonable to assume that the
infection of HBV is given by Beddington–DeAngelis
functional response [8, 9, 21]. In addition, viruses can
move freely in liver. It is more practical to consider
the random mobility for viruses (see [28, 29]). Based
on these factors, we will think over the diffusive and
delayed HBV infection model with immune respons-
es and Beddington–DeAngelis functional response in
future.
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Figure 1: The infection–free equilibrium E0 is glob-
ally asymptotically stable for s = 0.6 and τ = 2 with
initial value (3, 3, 3, 3) .

WSEAS TRANSACTIONS on MATHEMATICS Kejun Zhuang

E-ISSN: 2224-2880 331 Volume 15, 2016



0 100 200 300 400 500
1.6

1.8

2

2.2

2.4

2.6

2.8

3

time t

x(
t)

(a) x− t

0 100 200 300 400 500

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

time t

y(
t)

(b) y − t

0 100 200 300 400 500
2

4

6

8

10

12

14

16

18

20

time t

v(
t)

(c) v − t

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

time t

z(
t)

(d) z − t

Figure 2: The immune–free equilibrium E1 is asymp-
totically stable for s = 1 and τ = 2 with initial value
(3, 3, 3, 3).
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Figure 3: The immune–present equilibrium E2 is
asymptotically stable when τ = 10 < τ0 and s = 1.5
with initial value (4, 6, 10, 2).
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Figure 4: Small–amplitude periodic solution bifur-
cates from the immune-present equilibrium E2 when
τ = 80 > τ0 and s = 1.5 with initial value
(4, 6, 10, 2).
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