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Abstract: The recently proposed smooth projection twin support vector machine(SPTSVM) gains a good
generalization ability and is suitable for many binary classification problems. But we know that different
smooth approximation functions may bring different classification accuracies. In order to study the
influence of smooth approximation functions for SPTSVM, in this paper, we first overview eight known
smooth approximation functions and describe their differentiability and error ranges by five lemmas and
one theorem. Then, we perform a series of comparative experiments on classification accuracy and
running time by using SPTSVM with Newton-Armijo method on 10 UCI datasets and 6 NDC datasets.
From experiment results, we can get a choice order of the eight approximation functions in generally.

Key–Words: Smooth projection TSVM; plus function; smooth approximation function; choice order

1 Introduction
Recently, nonparallel hyperplane support vector
machine (NHSVM) classification methods, as the
extension of the classical SVM, have become
the researching hot spots in the field of machine
learning. The study of NHSVM classification
methods originates from generalized eigenvalue
proximal SVM (GEPSVM) [1], twin support vec-
tor machine (TSVM) [2] and projection twin sup-
port vector machine (PTSVM) [3]. For binary
data classification problems, NHSVM methods
aim to find a hyperplane for each class, such that
each hyperplane is proximal to the data points
of one class and far from the data points of the
other class. GEPSVM, TSVM and PTSVM are
three representative algorithms of NHSVM, and
all the other NHSVM methods are improved ver-
sions based on them.

GEPSVM obtains each of nonparallel hyper-
planes by solving the eigenvector corresponding
to a smallest eigenvalue of a generalized eigen-
value problem, so that each hyperplane is as close
as possible to the points of its own class and as
far as possible from the points of the other class,
in the meantime. Twin support vector machine
(TSVM) constructs a pair of nonparallel hyper-
planes by solving two smaller size QPPs rather

than a single quadratic programming problem
(QPP) such that each one is as close as possible
to one class, and as far as possible from the other
class. A new input will be assigned to one of the
classes depending on its proximity to which hy-
perplane. Experiments show that TSVM is faster
than SVM [2,4]. Different from GEPSVM and
TSVM, the central idea in PTSVM is to find a
projection axis for each class, such that within-
class variance of the projected samples of its
own class is minimized; meanwhile, the project-
ed samples of the other class scatter away as far
as possible. PTSVM is an improvement and ex-
tension of multi-weight vector projection SVM
(MVSVM) [5].

In order to further enhance the performance
of PTSVM, Shao et al. [6] proposed a least
squares version of PTSVM, called least squares
PTSVM (LSPTSVM). LSPTSVM works ex-
tremely faster than PTSVM because the solu-
tions of LSPTSVM can be attained by solv-
ing two systems of linear equations, whereas
PTSVM needs to solve two QPPs. Because of
this, the least squares method is also received
great attention in support tensor machine. Lat-
er, Shao et al. [7-9] proposed a simple and rea-
sonable variant of PTSVM from theoretical point
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of view, called PTSVM with regularization term
(RPTSVM), in which the regularized risk prin-
ciple is implemented and the nonlinear classifi-
cation ignored in PTSVM is also considered in
RPTSVM. Ding and Hua [10] formulated a non-
linear version of LSPTSVM for binary nonlin-
ear classification by introducing nonlinear ker-
nel into LSPTSVM. This formulation leads to
a novel nonlinear algorithm, called nonlinear L-
SPTSVM (NLSPTSVM). Ding et al. reviewed
many known nonparallel hyperplane support vec-
tor machine algorithms in [11]. In addition, by
means of the idea of smooth TSVM in [12], the
authors of the paper introduce smoothing tech-
nique into PTSVM and propose smooth PTSVM
(SPTSVM) in [13].

We know that by using smoothing tech-
niques, we can solve primal unconstrained d-
ifferentiable optimization problems rather than
dual QPPs, which results that many optimiza-
tion methods can be used in smooth versions
of various variants of TSVM, such as Newton
method, quasi Newton method, Newton-Armijo
method and so on. But we discover that differ-
ent smooth approximation functions have differ-
ent impacts for classification results even using
the same classifier. So, in this paper, we first
overview eight smooth approximation functions
proposed in [14-22] and then compare their in-
fluences for SPTSVM on 16 datasets taken from
UCI database and NDC database. Taking into ac-
count the length of the paper, we only discuss the
influences of smooth approximation functions for
linear version of SPTSVM. By means of kernel
skill, we can discuss the influences of smooth ap-
proximation functions for nonlinear SPTSVM by
using the similar way.

2 Linear PTSVM and
SPTSVM

In this section, we recall linear PTSVM and lin-
ear SPTSVM briefly, for details see [3,13]. Let
T = {(x(i)j , y

(i)
j )}mij=1, i = 1, 2 be a set of da-

ta samples for a binary classification problem,
where i = 1 denotes the positive class, i = 2
denotes the negative class, mi denotes the num-
ber of samples belonging to class i, x(i)j ∈ Rn

and y
(i)
j ∈ {±1} are respectively the input and

class label of jth sample in class i. Let µ(i) =
1
mi

∑mi
j=1 x

(i)
j be the mean of class i for i = 1, 2

and A = [x
(1)
1 , · · · , x(1)m1

]T ∈ Rm1×n and B =

[x
(2)
1 , · · · , x(2)m2

]T ∈ Rm2×n denote the input matri-
ces of positive and negative classes, respectively,
and m = m1 +m2. Let e1 ∈ Rm1 and e2 ∈ Rm2

be vectors of ones.

2.1 Linear PTSVM
The central idea of linear PTSVM is to find a
projection axis for each class such that within-
class variance of the projected samples of its own
class is minimized meanwhile the projected sam-
ples of the other class scatter away as far as possi-
ble. This leads to the following two optimization
problems:

min
w1,ξk

1
2

∑m1
i=1 (w

T
1 x

(1)
i − wT1 µ(1))

2
+ c1

∑m2
k=1 ξk

s.t. wT1 x
(2)
k − wT1 µ(1) + ξk ≥ 1,

ξk ≥ 0, k = 1, 2, · · · ,m2,
(1)

min
w2,ηk

1
2

∑m2
i=1 (w

T
2 x

(2)
i − wT2 µ(2))

2
+ c2

∑m1
k=1 ηk

s.t. − (wT2 x
(1)
k − wT2 µ(2)) + ηk ≥ 1,

ηk ≥ 0, k = 1, 2, · · · ,m1,
(2)

where c1, c2 > 0 are trade-off parameters and
{ξk}m2

k=1 and {ηk}m1
k=1 are slack variables. Put

S1 =
∑m1
j=1 (x

(1)
i − µ(1))(x

(1)
i − µ(1))T ∈ Rn×n,

S2 =
∑m2
j=1 (x

(2)
i − µ(2))(x

(2)
i − µ(2))T ∈ Rn×n,

then the problems (1) and (2) can be written as
the following matrix forms, respectively:

min
w1,ξ

1
2
wT1 S1w1 + c1e

T
2 ξ

s.t. Bw1 − 1
m1
e2e

T
1Aw1 + ξ ≥ e2,

ξ ≥ 0.

(3)

min
w2,η

1
2
wT2 S2w2 + c2e

T
1 η

s.t. − (Aw2 − 1
m2
e1e

T
2Bw2) + η ≥ e1,

η ≥ 0.

(4)

By solving the Wolfe dual problems of the prob-
lems (3) and (4), respectively,

min
α

1
2
αT (B − 1

m1
e2e

T
1A)S

−1
1 (BT − 1

m1
AT e1e

T
2 )α

−eT2 α
s.t. 0 ≤ α ≤ c1e2,

min
β

1
2
βT (A− 1

m2
e1e

T
2B)S−12 (AT − 1

m2
BT e2e

T
1 )β

−eT1 β
s.t. 0 ≤ β ≤ c2e1,
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we can obtain the optimal Lagrange multiplier-
s vectors α∗ and β∗. Without loss of generality,
we can let S1 and S2 are nonsingular matrices.
Otherwise, since they are symmetric nonnegative
definite matrices, we can regularize them by us-
ing S1 + εIn and S2 + εIn to replace S1 and S2,
respectively, where ε > 0 is a sufficient smal-
l number and In denotes the n order unit matrix.
Consequently, we can deduce that

w∗1 = S−11 (BT − 1
m1
AT e1e

T
2 )α

∗,

w∗2 = S−12 (AT − 1
m2
BT e2e

T
1 )β

∗,

and then the class label of a new input x ∈ Rn

can be assigned by

class(x) = arg min
i=1,2

∣∣∣(w∗i )Tx− (w∗i )
Tµ(i)

∣∣∣ .
2.2 Linear SPTSVM
The main idea of linear SPTSVM is to introduce
smoothing technique into PTSVM, which results
in solving a pair of primal unconstraint differen-
tiable optimization problems rather than a pair of
dual QPPs. By introducing the plus functions:

x+ = max {x, 0} , ∀x ∈ R,
x+ = ((x1)+, · · · , (xn)+)T , ∀x ∈ Rn,

the constraints of the primal problems (1) and (2)
can be rewritten as follows, respectively,

ξk = (1− wT1 x
(2)
k + wT1 µ

(1))+,
k = 1, 2, · · · ,m2,

ηk = (1 + wT2 x
(1)
k − wT2 µ(2))+,

k = 1, 2, · · · ,m1,
ξ = (ξ1, · · · , ξm2)

T

= (e2 + e2Ãw1 −Bw1)+ ∈ Rm2 ,
η = (η1, · · · , ηm1)

T

= (e1 − e1B̃w2 + Aw2)+ ∈ Rm1 .

where Ã = (µ(1))T and B̃ = (µ(2))T . In order to
avoid the singularities of the matrices S1 and S2

involved in linear PTSVM, we adding the gener-
alization terms c3

2
‖w1‖2 and c4

2
‖w2‖2 in problems

(1) and (2), respectively. In addition, for obtain-
ing differentiable optimization problems, we re-
place one penalty by two penalty for slack vec-
tors ξ and η. Consequently, we get two improved
unconstraint optimization problems:

min
w1

c1
2

∥∥∥(e2 + e2Ãw1 −Bw1)+
∥∥∥2

+1
2

∥∥∥Aw1 − e1Ãw1

∥∥∥2 + c3
2
‖w1‖2,

(5)

min
w2

c2
2

∥∥∥(e1 − e1B̃w2 + Aw2)+
∥∥∥2

+1
2

∥∥∥Bw2 − e2B̃w2

∥∥∥2 + c4
2
‖w2‖2.

(6)

Because the plus function (x)+ for x ∈ R is non-
differentiable, for effectively and quickly solv-
ing the problems (5) and (6) by using the known
optimization methods, we need to introduce a s-
moothing approximation function ρ(x, ζ) for the
plus function (x)+, where ζ is a smoothing pa-
rameter. Consequently, the problems (5) and (6)
can be further improved as the following two un-
constraint differentiable optimization problems:

min
w1

f1(w1) =
1
2

∥∥∥Aw1 − e1Ãw1

∥∥∥2
+ c1

2

∥∥∥ρ(e2 + e2Ãw1 −Bw1, ζ)
∥∥∥2

+ c3
2
‖w1‖2,

(7)

min
w2

f2(w2) =
1
2

∥∥∥Bw2 − e2B̃w2

∥∥∥2
+ c2

2

∥∥∥ρ(e1 + Aw2 − e1B̃w2, ζ)
∥∥∥2

+ c4
2
‖w2‖2.

(8)

In this paper, we mainly use Newton-Armijo
method for solving the problems (7) and (8).

2.3 Newton-Armijo method
Newton-Armijo method is one of the most popu-
lar iterative algorithms for solving unconstrain-
t smooth optimization problems and has been
shown to be quadratically convergent (see [15]).
In order to use Newton-Armijo method, firstly
we need to calculate the gradient vectors∇fi(wi)
and Hessian matrices ∇2fi(wi) of the objective
functions of the problems (7) and (8):

∇f1(w1) =

c1
∑m2
i=1 ρ(z1i, ζ)ρ

′(z1i, ζ)(Ã
T − x(2)i )

+(A− e1Ã)T (A− e1Ã)w1 + c3w1,
∇2f1(w1) =
c1
∑m2
i=1(ρ

′(z1i, ζ)
2 + ρ(z1i, ζ)ρ

′′(z1i, ζ))

·(ÃT − x(2)i )(ÃT − x(2)i )T

+(A− e1Ã)T (A− e1Ã) + c3I,
∇f2(w2) =

c2
∑m1
i=1 ρ(z2i, ζ)ρ

′(z2i, ζ)(x
(1)
i − B̃T )

+(B − e2B̃)T (B − e2B̃)w2 + c4w2,
∇2f2(w2) =
c2
∑m1
i=1(ρ

′(z2i, ζ)
2 + ρ(z2i, ζ)ρ

′′(z2i, ζ))

·(x(1)i − B̃T )(x
(1)
i − B̃T )T

+(B − e2B̃)T (B − e2B̃) + c4I,
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where z1i = 1 + Ãw1 − (x
(2)
i )Tw1, z2i =

1 − B̃w2 − (x
(1)
i )Tw2 and I is the identity ma-

trix of appropriate dimension. Then we calcu-
late the search direction dt by Newton method
(called Newton direction) and search stepsize λt
by Armijo method (called Armijo stepsize) for
t-th step iteration. The specific procedure is as
follows, in which we only solve the problem (7).
With the similar way, we can solve the problem
(8).

Algorithm 1. The Newton-Armijo algorith-
m for solving linear SPTSVM

Step 1. Initialization. For given parameter
values c1, c3 and the maximum number of itera-
tions T , let t = 0 and ε > 0 be small enough and
take arbitrarily nonzero vector wt1 ∈ Rn.

Step 2. Calculate Newton direction dt
by solving the system of linear equations
∇2f1(w

t
1)dt = −∇f1(wt1).

Step 3. Calculate Armijo stepsize λt by
inexact linear searching, that is, choose λt =

max
{
1, 1

2
, 1
4
, · · ·

}
satisfying

f1(w
t
1)− f1(wt1 + λtdt) ≥ −λt

4
∇f1(wt1)Tdt.

Step 4. Update wt1. Calculate the next itera-
tive point by formula wt+1

1 = wt1 + λtdt.
Step 5. If

∥∥∥wt+1
1 − wt1

∥∥∥ < ε or the maximum
number of iterations T is achieved, stop iteration
and take w∗1 = wt+1

1 ; otherwise, put t ← t + 1
and return to step 2.

Step 6. The class label of a new input x ∈ Rn

is assigned by

class(x) = arg min
i=1,2

∣∣∣∣(w∗i )Tx− (w∗i )
T 1

mi

∑mi

j=1
x
(i)
j

∣∣∣∣ .
3 Smooth approximation

functions
In this section, we briefly overview eight smooth
approximation functions for the plus function x+,
which are taken from [14-22], and describe the
differentiability and error ranges of these approx-
imation functions as five lemmas and one theo-
rem. In all approximation functions, ζ > 0 de-
notes the smooth parameter.

In 1980, Zhang [14] introduced a smooth ap-
proximation function as the integral of the sig-
moid function for the plus function x+, which is
defined as follows.

ρ1(x, ζ) = x+
1

ζ
ln(1 + e−ζx), ∀x ∈ R. (9)

Later, this approximation function is used in
many SVM models, such as [23-25]. It is evident
that

lim
ζ→+∞

ρ1(x, ζ) = x+,∀x ∈ R.

This indicates that the approximation effect will
be better and better with the increase of the value
of ζ . The first- and second-order derivatives of
ρ1(x, ζ) are respectively

ρ1
′(x, ζ) =

1

1 + e−ζx
,

and

ρ1
′′(x, ζ) =

ζe−ζx

(1 + e−ζx)2
,

where ln(·) is the natural logarithms and e is the
base of natural logarithms.

Lemma 3.1. [22] Let ρ1(x, ζ) be defined by
(9). Then

(1) ρ1(x, ζ) is arbitrary order smooth with re-
spect to x;

(2) ρ1(x, ζ) ≥ x+,∀x ∈ R;
(3) for arbitrarily k > 0 with |x| < k, one

has ρ1(x, ζ)2 − x2+ ≤ ( ln 2
ζ
)2 + (2k

ζ
) ln 2.

In 2005, Yuan et al. [15] proposed the fol-
lowing quadratic piecewise polynomial smooth
approximation function for x+ and got a quadrat-
ic polynomial smooth support vector machine
(QPSSVM) model:

ρ2(x, ζ) =


x, x ≥ 1

ζ
,

ζ
4
x2 + 1

2
x+ 1

4ζ
,−1

ζ
< x < 1

ζ
,

0, x ≤ −1
ζ
.

(10)
The first- and second-order derivatives of ρ2(x, ζ)
are respectively

ρ2
′(x, ζ) =


1, x ≥ 1

ζ
,

ζ
2
x+ 1

2
,−1

ζ
< x < 1

ζ
,

0, x ≤ −1
ζ
,

and

ρ2
′′(x, ζ) =

{
ζ
2
, |x| < 1

ζ
,

0, |x| ≥ 1
ζ
.

In the same year, Yuan et al. [16] intro-
duced the following fourth piecewise polynomi-
al smooth approximation function for x+ and got

WSEAS TRANSACTIONS on MATHEMATICS Xinxin Zhang, Liya Fan

E-ISSN: 2224-2880 244 Volume 15, 2016



a fourth polynomial smooth support vector ma-
chine (FPSSVM) model:

ρ3(x, ζ) =


x, x ≥ 1

ζ
,

− 1
16ζ

(ζx+ 1)3(ζx− 3),−1
ζ
< x < 1

ζ
,

0, x ≤ −1
ζ
.

(11)
The first- and second-order derivatives of ρ3(x, ζ)
are respectively

ρ3
′(x, ζ) =


1, x ≥ 1

ζ
,

−1
8
(ζx+ 1)2(ζx− 5),−1

ζ
< x < 1

ζ
,

0, x ≤ −1
ζ
,

and

ρ3
′′(x, ζ) =

{
−3

8
ζ(ζx+ 1)(ζx− 3), |x| < 1

ζ
,

0, |x| ≥ 1
ζ
.

Lemma 3.2 [16] Let ρ2(x, ζ) and ρ3(x, ζ) be
defined by (10) and (11), respectively. Then

(1) ρ2(x, ζ) is 1-order smooth and ρ3(x, ζ) is
2-order smooth with respect to x;

(2) ρ2(x, ζ) ≥ x+ and ρ3(x, ζ) ≥ x+ for all
x ∈ R;

(3) for any x ∈ R, one has ρ2(x, ζ)2 − x2+ ≤
1

11ζ2
and ρ3(x, ζ)2 − x2+ ≤ 1

19ζ2
.

In 2007, Xiong et al. [17] derived an impor-
tant recursive equation (12) and proposed a class
of smooth approximation functions using the in-
terpolation technique. ρd4(x, ζ) = a

∫
Id−1dx

Id−1 =
x(x2− 1

ζ2
)d−1

2d−1 − 2(d−1)
(2d−1)ζ2 Id−2, d = 2, 3, · · · ,

(12)
where d is the number of iterations and a ∈ R
is a parameter. For example, taking d = 2 and
a = 3ζ2, we can calculate that

I1 =
1
3
x3 − 1

3ζ2
x− 2

3ζ2
= 1

3ζ2
(ζ2x3 − x− 2),

then

ρ24(x, ζ) =
ζ2

4
x4 − 1

2
x2 − 2x,∀x ∈ R.

The first- and second-order derivatives of ρ24(x, ζ)
are respectively

(ρ24)
′(x, ζ) = ζ2x3 − x− 2,

and
(ρ24)

′′(x, ζ) = 3ζ2x2 − 1.

It notes that the larger the parameter d is,
the higher the approximation accuracy is, but that
will generate the additional computation cost. So,
we only consider the case of d = 2, that is,
ρ24(x, ζ).

In the same year, Yuan et al. [19] proposed
a three-order spline interpolation polynomial ap-
proximation function and obtained a three-order
spline smooth support vector machine (TSSVM)
model:

ρ5(x, ζ) =



x, x > 1
ζ
,

− ζ2

6
x3 + ζ

2
x2 + 1

2
x+ 1

6ζ
, 0 < x ≤ 1

ζ
,

ζ2

6
x3 + ζ

2
x2 + 1

2
x+ 1

6ζ
,−1

ζ
< x ≤ 0,

0, x ≤ −1
ζ
.

(13)
The first- and second-order derivatives of ρ5(x, ζ)
are respectively

ρ5
′(x, ζ) =



1, x > 1
ζ
,

− ζ2

2
x2 + ζx+ 1

2
, 0 < x ≤ 1

ζ
,

ζ2

2
x2 + ζx+ 1

2
,−1

ζ
< x ≤ 0,

0, x ≤ −1
ζ
,

and

ρ5
′′(x, ζ) =

{
−ζ2 |x|+ ζ > 0, |x| < 1

ζ
,

0, |x| ≥ 1
ζ
.

Lemma 3.3 [18] Let ρ5(x, ζ) be defined by
(13). Then

(1) ρ5(x, ζ) is 2-order smooth with respect to
x;

(2) ρ5(x, ζ) ≥ x+,∀x ∈ R;
(3) for any x ∈ R, one has ρ5(x, ζ)2 − x2+ ≤

1
24ζ2

.
In 2013, Wu et al. [19] introduced a three

order piecewise polynomial approximation func-
tion:

ρ6(x, ζ) =



0, x < − ζ
4
,

8(x+ ζ
4
)3

3ζ2
,− ζ

4
≤ x ≤ 0,

x+
8( ζ

4
−x)3

3α2 , 0 < x ≤ ζ
4
,

x, x > ζ
4
.

(14)

The first- and second-order derivatives of ρ6(x, ζ)
are respectively

ρ6
′(x, ζ) =



0, x < − ζ
4
,

8(x+ ζ
4
)2

ζ2
,− ζ

4
≤ x ≤ 0,

1− 8(x− ζ
4
)2

ζ2
, 0 < x ≤ ζ

4
,

1, x > ζ
4
,
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and

ρ6
′′(x, ζ) =

 0, |x| > ζ
4
,

16( ζ
4
−|x|)
ζ2

≥ 0, |x| ≤ ζ
4
.

Lemma 3.4 [19] Let ρ6(x, ζ) be defined by
(14). Then

(1) ρ6(x, ζ) is 2-order smooth with respect to
x;

(2) ρ6(x, ζ) ≥ x+,∀x ∈ R;
(3) for any x ∈ R, one has ρ6(x, ζ)2 − x2+ ≤

ζ2

385
.
In the same year, Ding et al. [20] introduced

a cluster of polynomial approximation functions
and obtained a polynomial smooth twin support
vector regression:

ρn7 (x, ζ) =


x, x ≥ 1

ζ
,

1
2ζ
(1+ζ

2x2

2
−∑n

l=2
(2l−3)!!
(2l)!!

(1 + ζ2x2)l)

+x
2
, |x| < 1

ζ
,

0, x ≤ −1
ζ
,

(15)
where n = 2, 3, · · · . The first- and second-order
derivatives of ρn(x, ζ) are respectively

(ρn7 )
′(x, ζ) =


1, x ≥ 1

ζ
,

ζx
2
(1 +

∑n
l=2

(2l−3)!!
(2l)!!

(1− ζ2x2)l−1)
+1

2
, |x| < 1

ζ
,

0, x ≤ −1
ζ
,

and

(ρn7 )
′′(x, ζ) =



x, x ≥ 1
ζ
,

ζ
2
(1 +

∑n
l=2

(2l−3)!!
(2l−2)!!(1− ζ

2x2)l−1)

− ζ2x2

2

∑n
l=2

(2l−3)!!
(2l−4)!!(1− ζ

2x2)l−2,

|x| < 1
ζ
,

0, x ≤ −1
ζ
,

Lemma 3.5 [25] Let ρn7 (x, ζ) be defined by
(15). Then

(1) ρn7 (x, ζ) is n-order smooth with respect
to x;

(2) lim
n→∞

max(ρn7 (x, ζ)− x+) = 0.
In 2014, a quadratic polynomial smooth ap-

proximation function was proposed in [22] as fol-
lows:

ρ(x, α) =
1

4 |α|
x2 +

1

2
x+
|α|
4
,∀x ∈ R,

where α ∈ R : α 6= 0 is a smooth parameter. If
letting ζ =

√
|α| > 0, one has

ρ8(x, ζ) =
1

4ζ2
x2 + 1

2
x+ ζ2

4

= 1
4
(1
ζ
x+ ζ)2, ∀x ∈ R. (16)

The first- and second-order derivatives of ρ8(x, ζ)
are respectively

ρ8
′(x, ζ) =

1

2ζ
(
1

ζ
x+ ζ),

and
ρ8
′′(x, ζ) =

1

2ζ2
.

Theorem 3.1 Let ρ8(x, ζ) be defined by (16).
Then

(1) ρ8(x, ζ) is 1-order smooth with respect to
x;

(2) ρ8(x, ζ) ≥ x+,∀x ∈ R;
(3) lim
|x|→ζ2

(ρ8(x, ζ)− x+) = 0.

Proof. The first conclusion is obvious. Since

ρ8(x, ζ)− x+ =

{
1
4
(1
ζ
x− ζ)2, x > 0,

1
4
(1
ζ
x+ ζ)2, x ≤ 0,

(17)

we can obtain the second conclusion. From (17),
we can get

lim
x→ζ2

(ρ8(x, ζ)− x+) = lim
x→ζ2

1

4
(
1

ζ
x− ζ)2 = 0

when x > 0, and

lim
x→−ζ2

(ρ8(x, ζ)− x+) = lim
x→ζ2

1

4
(
1

ζ
x+ ζ)2 = 0

when x ≤ 0, which indicates that the third con-
clusion is true.

4 The Influences for SPTSVM
In this section, in order to illustrate the influences
of eight smooth approximation functions for lin-
ear SPTSVM, we perform a series of comparative
experiments of binary classification problems on
classification accuracy and running time by using
10 datasets taken from UCI database [26] and 6
datasets taken from NDC database [27] are list-
ed in Table 1. In 10 UCI datasets, Iris, Vehicle,
Waveform and Balance four datasets all have 3
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Table 1: Description of NDC datasets
Dataset Training data Test data Features
NDC-200 200 40 32
NDC-500 500 100 32
NDC-700 700 140 32
NDC-1000 1000 200 32
NDC-2000 2000 400 32
NDC-3000 3000 600 32

classes, we choose the later two classes for ex-
periments, respectively.

All experiments are implemented in Matlab
(7.11.0) R2010b environment on a PC with an
Intel P4 processor (2.30 GHz) with 4 GB RAM
and SPTSVM is implemented by Newton-Armijo
algorithm, that is, Algorithm 1, and the five-
fold cross-validation method. We know that the
choice of parameters have great impact on the
performance of a classifier, in order to facilitate
comparison, we take ε = 10−3, T = 50 in Algo-
rithm 1 and c1 = c2 = c3 = c4 = 1 after grid
searching from {2−8, · · · , 28}. The classification
accuracy is defined by

Accuracy =
TP + TN

TP + FP + TN + FN
,

where TP, TN, FP and FN denote the numbers
of true positive, true negative, false positive and
false negative, respectively.

The experiment results on 10 UCI dataset-
s are listed in Table 2 and on 6 NDC dataset-
s are listed in Table 3, in which the seventh s-
mooth approximation function ρn7 (x, ζ) is taken
as ρ47(x, ζ). In addition, in order to explain the in-
fluence of order n for ρn7 (x, ζ), we perform com-
parative experiments with n = 2, 3, 4, respective-
ly, and the experiment results are listed in Table
4. It should also be pointed out that the fourth
smooth approximation function ρd4(x, ζ) are not
commonly used, so we only take d = 2, that is
ρ24(x, ζ).

From Table 2, we can see that on the classi-
fication accuracy

(1) ρ1(x, ζ) is the best on Breast and Wave-
form two datasets and the next best on the rest
datasets except to Liver dataset;

(2) ρ2(x, ζ) and ρ3(x, ζ) are completely the
same, which are the best on Breast, Pima and
Waveform three datasets, and are slightly worse
than ρ1(x, ζ) on the rest datasets, and are the
worst on Liver dataset;

(3) ρ24(x, ζ) is the best on Balance, Liver,
Iris and Vehicle four datasets and is the worst on
Breast, Pima and Waveform three datasets;

(4) ρ5(x, ζ) is almost the same as ρ2(x, ζ)
and ρ3(x, ζ);

(5) ρ47(x, ζ) is the same as ρ2(x, ζ) and
ρ3(x, ζ) except to Liver dataset and clearly bet-
ter than ρ2(x, ζ), ρ3(x, ζ) and ρ5(x, ζ) on Liver
dataset;

(6) although ρ6(x, ζ) and ρ8(x, ζ) are the
best on WBC and Vote two datasets, respective-
ly, but generally speaking, ρ6(x, ζ), ρ8(x, ζ) and
ρ47(x, ζ) are comparable.

On the running time, ρ8(x, ζ) costs the least
time among these datasets except for Vehicle and
Waveform two datasets and ρ24(x, ζ) costs the
most time except for Liver dataset.

From Table 3, we can see that
(1) ρ1(x, ζ) has the highest classification ac-

curacy on all datasets;
(2) ρ2(x, ζ), ρ3(x, ζ), ρ5(x, ζ) and ρ47(x, ζ)

have the same the classification accuracies on all
datasets, which are slightly lower than the cor-
responding classification accuracies of ρ1(x, ζ),
respectively;

(3) ρ6(x, ζ) and ρ8(x, ζ) have the almost
same the classification accuracies on all dataset-
s, which are comparable with the classifica-
tion accuracies of ρ2(x, ζ), ρ3(x, ζ), ρ5(x, ζ) and
ρ47(x, ζ);

(4) ρ24(x, ζ) has the worst classification ac-
curacies except for NDC-700 dataset and the
longest running times except for NDC-700 and
NDC-2000 datasets;

(5) ρ2(x, ζ) and ρ3(x, ζ) have the shortest
running times on NDC-200, NDC-700 and NDC-
3000 three datasets.

From Table 4, we can see that ρ27(x, ζ),
ρ37(x, ζ) and ρ47(x, ζ) have the same classification
accuracies on 10 UCI datasets, just the running
times are different, which indicates that the clas-
sification accuracy of SPTSVM may have only
small changes with increasing of the order n.

On the basis of the above analysis, we can
conclude that when choosing a smooth approxi-
mation function in order to improve the classifi-
cation accuracy of SPTSVM, in general, we can
firstly consider ρ1(x, ζ), secondly consider one of
ρ2(x, ζ), ρ3(x, ζ) and ρ5(x, ζ), thirdly consider
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Table 2: Comparison results on 10 UCI datasets
Dataset ρ1(x, ζ) ρ2(x, ζ) ρ3(x, ζ) ρ24(x, ζ) ρ5(x, ζ) ρ6(x, ζ) ρ8(x, ζ) ρ47(x, ζ)

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(%) (%) (%) (%) (%) (%) (%) (%)
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Balance 91.2281 90.3509 90.3509 92.9825 90.3509 90.8772 91.2281 90.3509
(625 × 4) 1.6683 0.9795 1.1642 3.5855 0.8727 1.4629 0.7013 0.8203
Breast 72.3637 71.6464 71.6364 59.6364 72.0000 71.6364 70.5455 71.6364
(277 × 9) 0.8860 0.6187 0.7097 1.6413 0.5080 0.6294 0.4153 1.0817
Heart 82.5000 82.9167 82.9167 75.83333 82.9167 81.6667 81.6667 82.9167
(303 × 13) 0.8132 1.8574 0.5638 1.5075 0.5008 0.6890 0.4611 0.9584
Pima 76.0784 76.2092 76.2092 72.9412 76.2092 75.2941 75.4248 76.2092
(768 × 8) 1.9162 1.0741 1.2668 3.2495 1.0680 1.8637 0.7220 2.6805
Vote 96.0000 94.0000 94.0000 94.0000 94.0000 96.0000 96.50000 94.0000
(435 × 16) 0.6796 0.5051 0.5667 1.3384 0.4773 0.5500 0.4432 1.2900
Liver 59.6552 53.7931 53.7931 62.7586 54.1379 60.0000 60.3448 60.0000
(345 × 6) 1.5990 1.0328 1.4103 0.9762 2.9713 0.8570 0.7598 1.3702
WBC 97.1429 96.4706 96.4706 95.1261 96.4706 97.3109 44.0336 96.4706
(600 × 9) 4.1595 0.7249 0.7241 1.9256 0.6794 1.1052 0.5944 1.7458
Iris 93.0000 93.0000 93.0000 96.0000 93.0000 92.0000 92.0000 93.0000
(150 × 4) 0.1968 0.2665 0.1788 0.5141 0.2774 0.2170 0.2155 0.2750
Vehicle 86.0000 86.0000 86.0000 93.0000 86.0000 86.0000 86.0000 86.0000
(150 × 18) 0.5104 0.4405 0.3836 1.4558 0.4668 0.5163 0.5629 0.6887
Waveform 93.0000 93.0000 93.0000 90.0000 93.0000 92.0000 92.0000 93.0000
(150 × 21) 0.8221 0.4066 0.7379 0.9567 0.7906 0.4984 0.4839 0.5858

Table 3: Comparison results on NDC datasets with eight smoothing approximation functions
Dataset ρ1(x, ζ) ρ2(x, ζ) ρ3(x, ζ) ρ24(x, ζ) ρ5(x, ζ) ρ6(x, ζ) ρ8(x, ζ) ρ47(x, ζ)

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy
(%) (%) (%) (%) (%) (%) (%) (%)
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

NDC-200 94.3590 92.3077 92.3077 82.0513 92.3077 91.2821 91.2821 92.3077
0.7782 0.5599 0.5541 1.0489 0.6099 0.8651 0.5971 0.6719

NDC-500 93.9394 92.3232 92.3232 91.7172 92.3232 93.1313 92.7273 92.3232
2.2987 1.2045 1.3064 3.0931 1.3178 1.3987 1.1931 1.7377

NDC-700 95.8571 94.7143 94.7143 95.7143 94.7143 95.0000 94.7143 94.7143
2.4246 1.3848 1.1932 3.9989 6.1389 5.8373 4.3381 2.1963

NDC-1000 96.4824 96.2814 96.2814 93.9698 96.2814 96.3819 95.9799 96.2814
3.7086 4.3996 5.9918 19.0389 6.4249 7.9403 1.8923 2.1920

NDC-2000 97.0500 96.60000 96.6000 82.0513 96.6000 96.5000 96.5500 96.6000
10.9988 3.2119 3.1624 3.0184 12.0087 28.1650 15.6249 9.2376

NDC-3000 97.5626 97.0284 97.0284 95.8264 97.0284 97.2621 97.0952 97.0284
27.7454 16.1330 17.0292 47.5982 33.4184 34.4930 19.2605 37.2665

Table 4: Comparison results with ρ27, ρ
3
7 and ρ47

Dataset ρ27(x, ζ) ρ37(x, ζ) ρ47(x, ζ)
Accuracy(%) Accuracy(%) Accuracy(%)
Time(s) Time(s) Time(s)

Balance 90.3509 90.3509 90.3509
(625 × 4) 1.1242 1.9469 0.8203
Breast 71.6364 71.6364 71.6364
(277 × 9) 0.4381 0.6462 1.0871
Heart 82.9167 82.9167 82.9167
(303 × 13) 0.7610 1.4943 0.9585
Pima 76.2092 76.2092 76.2092
(768 × 8) 2.0812 2.1044 2.6805
Vote 94.0000 94.0000 94.0000
(435 × 16) 0.7866 0.7216 1.2900
Liver 60.0000 60.0000 60.0000
(345 × 6) 1.5035 1.3319 1.3702
WBC 96.4706 96.4706 96.4706
(600 × 9) 1.5481 1.5814 1.7459
Iris 93.0000 93.0000 93.0000
(150 × 4) 0.2557 0.2673 0.2750
Vehicle 86.0000 86.0000 86.0000
(150 × 18) 0.5719 0.6552 0.6887
Waveform 93.0000 93.0000 93.0000
(150 × 21) 0.6079 0.6053 0.5858
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one of ρ6(x, ζ), ρ8(x, ζ) and ρn7 (x, ζ) and final-
ly consider ρ24(x, ζ). Of course, different smooth
approximation functions will bring different clas-
sification accuracies. So, we should choose a
suitable smooth approximation function for un-
derlying dataset.

5 Conclusions
In this paper, we study the influence of eight
smooth approximation functions for SPTSVM
on classification accuracy and running time by
means of 10 UCI datasets and 6 NDC datasets.
From experiment results, we can get a choice or-
der of the eight approximation functions in gen-
erally. But we know that different approximation
functions may bring different classification accu-
racies, we should choose a suitable smooth ap-
proximation function for underlying dataset.

As stated in Introduction, GEPSVM, TSVM
and PTSVM are three representative methods of
NHSVM and all the other NHSVM methods are
improved versions based on them. In this paper,
we only discuss the influence of eight known s-
mooth approximation functions for smooth ver-
sion of PTSVM and only discuss the linear ver-
sion of SPTSVM. In the next step of work, we
should do: firstly, we will investigate the in-
fluence of these approximation functions for s-
mooth versions of GEPSVM and TSVM, respec-
tively; secondly, we will consider the nonlinear
version of SPTSVM; thirdly, we will be commit-
ted to finding more smooth approximation func-
tions and compare the accuracies of approximat-
ing with them to the plus function.
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