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Abstract: As an emerging approach of signal processing, not only has compressed sensing (CS) successfully
compressed and sampled signals with few measurements, but also has owned the capabilities of ensuring the exact
recovery of signals. However, the above-mentioned properties are based on the (compressed) sensing matrices.
Hence the construction of sensing matrices is the key problem. Compared with the intensive study of random
sensing matrices, only a few deterministic constructions are known. In this paper, we provide a family of new
construction of deterministic sensing matrices via singular linear spaces over finite fields, and show its better
performance than Devore’s construction using polynomials over finite fields.
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1 Introduction

The traditional Nyquist [1] sampling theorem points
out that in order to protect from losing information
during sampling signals we have to sample at least t-
wo times faster than their bandwidth. However, it is
too expensive to increase the sampling rate and it also
brings complicated issues to our work. Therefore, it
is high time to replace the conventional sampling and
reconstruction operations with lower rate and keep the
veracity about recovering signals. Meanwhile CS the-
orem has successfully tackled these problems. For a
discrete signal x, which can be regarded as a vector
in Rt with t entries. We want to capture this signal
with t large by taking a small number s of linear mea-
surements. Each linear measurement is to calculate
the inner product v · x of x with vectors v. Then
the s × t matrix Φ, which contains these vectors v,
is called compressed sensing matrix, and the infor-
mation y = Φx, which is extracted from x by Φ, is
named the measurement vector. Here arises one ques-
tion: For a given measurement vector y, how can we
reconstruct the original signal x from y = Φx? Even
though y = Φx is usually ill-posed for s < t, Donoho
[2] and Candës [3] make the most of sparsity to get
that a sparse signal can be reconstructed from very
few measurements. This problem is described as find-
ing the sparsest solution of linear equations y = Φx

min
x∈Rt

∥ x ∥0 s.t. : Φx = y. (1)

This l0-minimization is a combinatorial minimization
problem and is normally NP-hard [4]. In fact, this
kind of method [5] has been used widely. Whereas,
CS provides a mighty method to reconstruct sparse
signals with applicable algorithms and guarantees the
number of measurements s≪ t.

A signal x is said to be k-sparse if the maximum
number of nonzero entries of it equals to k. As we
all know that the reconstruction of a sparse signal[6]
plays a significant in the signal processing field. Pur-
suing greedy algorithms for l0-minimization (1) is one
method to reconstruct k-sparse signals. There is a
famous pursuing greedy algorithm called orthogonal
matching pursuit (OMP) [7]. If the number of mea-
surements s ≥ Dk log( tδ ), where D is a constan-
t and δ ∈ (0, 0.36), OMP can reconstruct x from
(1) with probability surpassing 1 − 2δ. However,
due to the success of the recovery process depend-
ing heavily on the property of the sensing matrix,
sensing matrix plays an important role in the recov-
ery of signals. There are two kinds of sensing ma-
trices, one is called random sensing matrices whose
entries are randomly drawn from certain probabili-
ty distributions, which concludes Gaussian matrices;
Bernoulli matrices; Random partial orthogonal matri-
ces [8, 9, 10]. Another is named deterministic sens-
ing matrices, whose properties are better than random
sensing matrices’. Then another problem emerges:
What kinds of matrices are appropriate? They must
ensure that the prominent information in any k-sparse
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or compressible signal cannot be damaged by the di-
mensionality reduction from x ∈ Rt down to y ∈ Rs.
In order to guarantee this problem, Candés and Tao
[11] have introduced a criterion, named restricted i-
sometry property (RIP).

Definition 1. [12] Let Φ be an s×tmatrix. If there ex-
ists a constant δk ∈ (0, 1), such that for any k-sparse
signal x ∈ Rt, we have

(1− δk)∥ x ∥22 ≤ ∥ Φx ∥22 ≤ (1 + δk)∥ x ∥22, (2)

then the matrix Φ is said to satisfy the RIP of order
k, and the smallest nonnegative number δk in (2) is
called restricted isometry constant (RIC) of order k.

Actually, suppose that a sensing matrix satisfies
the RIP and its RIC is small enough, then OMP can
recover sparse signals exactly [13]. Adversely, if a
sensing matrix does not meet the RIP, we cannot as-
certain if it could recover the signal or not. There is
a relationship among sparsity k, s and t. Given a k-
sparse signal x ∈ Rt, which can be accurately recov-
ered from s measurements. Then an upper bound of
the possible sparsity is

k ≤ Cs/ log(t/s), (3)

where C is a constant [14]. Thanks to the random-
ness of entries of random sensing matrices, the upper
bound of k in (3) has been achieved by random sens-
ing matrices, which could recover sparse signals with
high probability[8]. Whereas, there are also some d-
eficiencies about random sensing matrices. First, ran-
dom sensing matrices need a lot of storage space to
store their entries. Second, there is no efficient algo-
rithm testing whether a random sensing matrix could
satisfy the RIP or not, let alone with high probability.
But the deterministic sensing matrices conquer those
deficiencies.

Definition 2. [15] Let Φ be a matrix with columns u1,
u2, . . . , ut, the coherence of Φ is defined as

µ(Φ) = max
b̸=j

| ⟨ub, uj⟩ |
∥ ub ∥2 · ∥ uj ∥2

, for 1 ≤ b, j ≤ t.

(4)
As a coherence can be looked as an equivalent form
of the RIP, it is an important issue in the deterministic
constructions.

Lemma 3. [16] Suppose Φ is a matrix with coherence
µ. Then Φ satisfies the RIP of order k with δk ≤ µ(k−
1), whenever k < 1

µ + 1.
For an s × t matrix Φ, there is a famous Welch

bound [17]

µ(Φ) ≥

√
t− s

s(t− 1)
, (5)

which means that the deterministic constructions de-
pended on coherence can only obtain sensing matri-
ces with the RIP of order k = O(s1/2).

Briefly, There are two steps about CS theory. In
the first step, we design a CS matrix Φ that ensures
that the salient information in any k-sparse or com-
pressible signal is not damaged by the dimensionality
reduction from x ∈ Rt down to y ∈ Rs. In the second
step, we develop a reconstruction algorithm to recover
x from the measurements y. Here, we put our focus
on the first step.

Recently, some deterministic constructions of
sensing matrices have been presented. Devore’s
polynomials over finite fields[18]; Gao F’s algebra-
ic curves [19]; Amini and Marvasti’s bipolar matrix
by BCH code [20] and its generalization [21]; Bour-
gain’s additive combinatorics[16]. In this paper, we
construct one kind of deterministic construction based
on singular linear spaces over finite fields, and show
its excellent properties.

2 Singular linear spaces
In this section we shall introduce the concepts of sub-
spaces of type (m,h) in singular linear space, (see
Wang et al. [22]) and provide several lemmas. Let
Fq be a finite field with q elements, where q is a prime
power. For two non-negative integers n and l, F(n+l)

q

denotes the (n+ l)-dimensional row vector space over
Fq. The set of all (n+l)×(n+l) nonsingular matrices
over Fq of the form(

T11 T12
0 T22

)
,

where T11 and T22 are nonsingular n×n and l× l ma-
trices, respectively, forms a group under matrix mul-
tiplication, called the singular general linear group of
degree n+ l over Fq and denoted by GLn+l,n(Fq). If
l = 0 (resp. n = 0), GLn,n(Fq) = GLn(Fq) (resp.
GLl,0(Fq) = GLl(Fq)) is the general linear group of
degree n (resp. l) (See Wan [23]).

Let P be am-dimensional subspace of F(n+l)
q , de-

note also by P anm×(n+ l) matrix of rankm whose
rows span the subspace P and call the matrix P a ma-
trix representation of the subspace P . There is an ac-
tion of GLn+l,n(Fq) on F(n+l)

q defined as follows

F(n+l)
q ×GLn+l,n(Fq) → F(n+l)

q

((x1, . . . , xn, xn+1, . . . , xn+l), T ) 7→
(x1, . . . , xn, xn+1, . . . , xn+l)T.

The above action induces an action on the set of
subspaces of F(n+l)

q , i.e., a subspace P is carried by
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T ∈ GLn+l,n(Fq) to the subspace PT . The vector
space F(n+l)

q together with the above group action, is
called the (n + l)-dimensional singular linear space
over Fq. For 1 ≤ j ≤ n+ l, let ej be the row vector in
F(n+l)
q whose j-th coordinate is 1 and all other coordi-

nates are 0. Denote by E the l-dimensional subspace
of F(n+l)

q generated by en+1, en+2, . . . , en+l. A m-
dimensional subspace P of F(n+l)

q is called a subspace
of type (m,h) if dim(P ∩ E) = h. The collection
of all the subspaces of types (m, 0) in F(n+l)

q , where
0 ≤ m ≤ n, is the attenuated space. (see A.E. Brouw-
er et al. [24]

Lemma 4. Let V denote the (n+ l)-dimensional row
vector space over a finite field Fq, and fix a sub-
space W of type (n + l − d, h) contained in V . Let
M+(i1, h1; d, h;n + l, n) denote the set of all sub-
spaces U of type (i1, h1) contained in V satisfying
U +W = V , and let N+(i1, h1; d, h;n+ l, n) denote
the size of M+(i1, h1; d, h;n+ l, n). Then

N+(i1, h1; d, h;n+ l, n) =

qd(n+l−i1)

[
n+ l − d− h
i1 − h1 − d

]
q

[
h
h1

]
q

. (6)

Proof. By the transitivity of GLn+l,n(Fq) on the set
of subspaces of the same type, we may choose the sub-
space W of type (n+ l − d, h) as the form(
I(n+l−d−h) 0(n+l−d−h,d+h−l) 0 0

0 0 I(h) 0(h,l−h)

)
.

Let U has a matrix representation of the form(
X(i1−d−h1,n+l−d−h) 0(i1−d−h1,d+h−l) 0 0

Y (d,n+l−d−h) I(d+h−l) B(d,h) I(d,l−h)

0(h1,n+l−d−h) 0 A(h1,h) 0(h1,l−h)

)
where X is an (i1 − d− h1)× (n+ l− d− h) matrix
of rank (i1−d−h1), Y is a d×(n+ l−d−h) matrix,
A is an h1 × h matrix of rank h1, B is a d × h ma-
trix. Then X is an (i1 − d− h1)-subspace which con-
tained in I(n+l−d−h). By Wan ([23, 2002b, Theorem

1.7]), there are
[
n+ l − d− h
i1 − h1 − d

]
q

choices for X . By

the same token, A is an h1-subspace which contained

in I(h) and has
[
h
h1

]
q

choices. By the transitivity of

GLn+l,n(Fq), we may let

X = (I(i1−d−h1) 0(i1−d−h1,n+l−h−i1+h1)),

and
A = (I(h1) 0(h1,h−h1)).

Then U has the unique matrix representation of the
form(

I(α) 0(α,β) 0(α,γ) 0(α,h1) 0 0

0 Y
(d,β)
1 0(d,γ) 0(d,h1) B

(d,h−h1)
1 0(d,l−h)

0(h1,α) 0 0(h1,γ) I(h1) 0 0(h1,l−h)

)
.

where α = i1 − d− h1, β = n+ l− h− i1 + h1 and
γ = h+ d− l. Hence

N+(i1, h1; d, h;n+ l, n) =

qd(n+l−i1)

[
n+ l − d− h
i1 − h1 − d

]
q

[
h
h1

]
q

.

⊓⊔

Lemma 5. Let V denote the (n+ l)-dimensional row
vector space over a finite field Fq, and fix a subspace
W of type (n+ l − d, h) contained in V . For a given
subspace U2 of type (i2, h2) contained in V satisfying
U2 +W = V , let u(n + l, d, h; i1, h1; i2, h2) denote
the number of subspaces U1 of type (i1, h1) contained
in V satisfying U1 +W = V and U1 ⊆ U2. Then

u(n+ l, d, h; i1, h1; i2, h2) =

qd(i2−i1)

[
i2 − d− h2
i1 − h1 − d

]
q

[
h2
h1

]
q

. (7)

Proof. Since the subgroup GLn+l,n(Fq)W of
GLn+l,n(Fq) fixing W acts transitively on the
set {U |U + W = V, dimU = i2}, the number
u(n+ l, d, h; i1, h1; i2, h2) depends only on i1 and i2.
By Lemma 2.1 and (6), we get

u(n+ l, d, h; i1, h1; i2, h2) =

qd(i2−i1)

[
i2 − d− h2
i1 − h1 − d

]
q

[
h2
h1

]
q

.

⊓⊔

Lemma 6. Let V denote the (n+ l)-dimensional row
vector space over a finite field Fq, and fix a subspace
W of type (n+ l − d, h) contained in V . For a given
subspace U1 of type (i1, h1) contained in V satisfying
U1 +W = V , let u′(n+ l, d, h; i1, h1; i2, h2) denote
the number of subspaces U2 of type (i2, h2) contained
in V satisfying U2 +W = V and U1 ⊆ U2. Then

u′(n+ l, d, h; i1, h1; i2, h2) =[
n+ l − h− i1 + h1
i2 − h2 − i1 + h1

]
q

[
h− h1
h2 − h1

]
q

. (8)
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Proof. Let

M =

(U1, U2)

∣∣∣∣∣
U1 ∈ M+(i1, h1; d, h;n+ l, n),
U2 ∈ M+(i2, h2; d, h;n+ l, n),
U1 ⊆ U2

 .

We compute the size of M in the following two ways.
For a fixed subspace U1 of type (i1, h1), there are

u′(n+ l, d, h; i1, h1; i2, h2) subspaces of type (i2, h2)
containing U1. By Lemma 4

|M | = u′(n+ l, d, h; i1, h1; i2, h2)
N+(i1, h1; d, h;n+ l, n). (9)

For a fixed subspace U2 of type (i2, h2), there are
u(n+ l, d, h; i1, h1; i2, h2) subspaces of type (i1, h1)
contained in U2. By Lemma 4

|M | = u(n+ l, d, h; i1, h1; i2, h2)
N+(i2, h2; d, h;n+ l, n). (10)

Combining (9), (10), (7) and (6), (8) holds. ⊓⊔

Lemma 7. Given integers 0 ≤ h1 ≤ h ≤ l and
d ≤ i − h1 ≤ n + l − h ≤ n + d, the sequence
N+(i, h1; d, h;n+ l, n) is unimodal and gets its peak
at i = ⌊n+l−h

2 ⌋+ h1.

Proof. By Lemma 4, if i1 < i2, then we have

N+(i1, h1; d, h;n+ l, n)

N+(i2, h1; d, h;n+ l, n)

=

qd(n+l−i1)

[
n+ l − d− h
i1 − h1 − d

]
q

[
h
h1

]
q

qd(n+l−i2)

[
n+ l − d− h
i2 − h1 − d

]
q

[
h
h1

]
q

= qd(i2−i1) ·

i2−h1−d∏
i=i1−h1−d+1

(qi − 1)

n+l−h−i1+h1∏
i=n+l−h−i2+h1+1

(qi − 1)

=
(qi1−h1+1 − qd) · · · (qi2−h1 − qd)

(qn+l−h−i2+h1+1 − 1) · · · (qn+l−h−i1+h1 − 1)

=
qi1−h1+1 − qd

qn+l−h−i1+h1 − 1
· · · qi2−h1 − qd

qn+l−h−i2+h1+1 − 1
,

where

qi1−h1+1 − qd

qn+l−h−i1+h1 − 1
<

qi1−h1+2 − qd

qn+l−h−i1+h1−1 − 1

< · · · < qi2−h1 − qd

qn+l−h−i2+h1+1 − 1
.

If i2 ≤ ⌊n+l−h
2 ⌋+ h1, then

i2 − h1 < n+ l − h− i2 + h1 + 1,

qi2−h1 − qd

qn+l−h−i2+h1+1 − 1
< 1.

Hence, when

h1 + d ≤ i1 < i2 ≤ ⌊n+ l − h

2
⌋+ h1,

we have

N+(i1, h1; d, h;n+ l, n)

N+(i2, h1; d, h;n+ l, n)
< 1.

If i1 ≥ ⌊n+l−h
2 ⌋+ h1, then

i1 − h1 + 1 > n+ l − h− i1 + h1,

and
qi1−h1+1 − qd

qn+l−h−i1+h1 − 1
> 1.

Hence, when

⌊n+ l − h

2
⌋+ h1 ≤ i1 < i2 ≤ n+ l − h+ h1,

we have N+(i1,h1;d,h;n+l,n)
N+(i2,h1;d,h;n+l,n) > 1. ⊓⊔

3 The construction
In this section, we will put forward a type of deter-
ministic sensing matrix associated with subspaces of
F(n+l)
q , and show it is superior to Devore’s construc-

tion using polynomials over finite fields.

Definition 8. Given integers 0 ≤ h1 ≤ h2 ≤ ⌊h2 ⌋,
h ≤ l, and d = i1 − h1 < i2 − h2 ≤ ⌊n+l−h

2 ⌋. Let
Φ0 be the binary matrix, whose rows are indexed by
M+(i1, h1; d, h;n+l, n), whose columns are indexed
by M+(i2, h2; d, h;n + l, n), and with a 1 or 0 in
the (b, j) position of the matrix, if the b-th subspace
which belongs to M+(i1, h1; d, h;n + l, n) is or is
not contained in the j-th subspace which belongs to
M+(i2, h2; d, h;n+ l, n), respectively.

By the Lemmas 4 and 5, Φ0 is an s × t matrix,
whose constant column weight is ω, where

s = q(i1−h1)(n+l−i1)

[
h
h1

]
q

,

t = q(i1−h1)(n+l−i2)

[
n+ l − i1 + h1 − h
i2 − h2 − i1 + h1

]
q

[
h
h2

]
q

,

ω = q(i1−h1)(i2−i1)

[
h2
h1

]
q

. (11)
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Theorem 9. Let 0 ≤ h1 ≤ h2 ≤ ⌊h2 ⌋, h ≤ l, d = i1−
h1 < i2 − h2 ≤ ⌊n+l−h

2 ⌋ and Φ = 1√
ω
Φ0, then Φ is

a matrix with coherence µ(Φ) = 1
qi1−h1

and satisfies

the RIP of order k with δk ≤ (k−1)

qi1−h1
, whenever k <

qi1−h1 + 1.

Proof. According to Definition 3.1, we know that the
number of ones in every column of Φ0 is the same,
that means the value of the denominator in (4) is

given, which equals to ω = q(i1−h1)(i2−i1)

[
h2
h1

]
q

.

Hence we only need to calculate the maximum val-
ue of |⟨ub, uj⟩|, and then we can obtain the coherence
µ of Φ. Let P1, P2, . . . , Pt be t distinct column-
s of Φ. For any two distinct columns Pb and Pj ,
this also means for any two different subspaces Pb

and Pj , where Pb,Pj ∈ M+(i2, h2; d, h;n + l, n).
As above-mentioned, we want to know the maxi-
mum value of |⟨Pb, Pj⟩|, in other words, we want to
know the maximum number of subspaces U , where
U ∈ M+(i1, h1; d, h;n+ l, n) and contained in both
Pb and Pj . Actually, since the intersection of any two
subspaces is also a subspace, hence let P = Pb

∩
Pj ,

where |P| = i2−1 and the left one is not contained in
E, then P ∈ M+(i2−1, h2; d, h;n+ l, n). Hence the
maximum number of subspaces U , which contained in

P , is equal to q(i1−h1)(i2−1−i1)

[
h2
h1

]
q

. At last, as the

definition of coherence, then

µ(Φ) =

q(i1−h1)(i2−1−i1)

[
h2
h1

]
q

q(i1−h1)(i2−i1)

[
h2
h1

]
q

=
1

qi1−h1
. (12)

By the Lemma 3, then Φ satisfies the RIP of order k
with δk ≤ (k−1)

qi1−h1
, whenever k < qi1−h1 + 1. This

completes the proof. ⊓⊔
Example 10. Given a construction of sensing matrix
over F2, let i2 − i1 = 2, h1 = h2 and 2(i2 − h2) =
n+ l − h. Then we obtain an s× t matrix Φ with

s = 2(i2−h2−2)(i2−2h2+h+2)

[
h
h2

]
2

,

t = 2(i2−h2−2)(i2−2h2+h)

[
i2 − h2 + 2

2

]
2

[
h
h2

]
2

,

µ(Φ) =
1

2i2−h2−2
.

Φ satisfies the RIP of order k < 2i2−h2−2 + 1. So we
can get that

t

s
=

(2i2−h2+1 − 1)(2i2−h2+2 − 1)

3 · 22(i2−h2−2)
,

then

2i2−h2 =

√
48st+ 256s2 − 48s

3t− 128s
,

Φ can be used to recover signals exactly with sparsity

k ≤
√
3st+ 16s2 − 12s

3t− 128s
.

Next, Let’s recall the Devore’s construction[18].
Devore provides a kind of deterministic sensing ma-
trix using polynomials over finite fields. For our com-
parison, we consider finite field of prime power order.
Let Fq′ be a finite field, where q′ is a prime power.
Given an integer r, where 0 < r < q′, let Pr denotes
the set {f(x)|∂(f(x)) ≤ r, x ∈ Fq′}. Then there are
t′ := q′r+1 such polynomials in it. Denote a null ma-
trix by H with q′× q′ large, and order the positions of
H lexicographically as (0, 0), (0, 1), . . . , (q′ − 1, q′ −
2), (q′−1, q′−1). We classify the construction as three
steps. First, insert one to a position of every row of H
by the following way. Look x 7→ Q(x) as a mapping
of Fq′ → Fq′ , where Q ∈ Pr, x ∈ Fq′ . then change
the value of position (x,Q(x)) into 1. Every row ex-
actly has a one. Second, Transform H into a column
vector vQ with s′ × 1 large, where s′ = q′2. Note
that there are exactly q′ ones in vQ; one in the first
q′ entries, one in the next q′entries, and so on. Third,
Recycle the above two steps for all the polynomials,
which belongs to Pr. Hence there are t′ := q′r+1 col-
umn vectors. At last, we obtain the matrix Φ′

0 with
s′ × t′ large.

Lemma 11. [18] Suppose the matrix Φ′ = 1√
q′
Φ′
0,

then Φ′ satisfies the RIP with δ = (k− 1)r/q′ for any
k < q′/r + 1.

Actually, Devore’s polynomials deterministic ma-
trix has been studied by many experts. They come
up with that it has some deficiencies. First, due to
the restriction of the finite field construction approach,
the value range of measurement s is limited. Second,
the time of construction is long. Third, every col-
umn exactly has q′ nonzero entries. Hence, there are
more nonzero values with the greater matrices, which
makes the sparsity of the matrices adverse. More-
over, according to the practical application of image
processing, we find that its result of reconstruction is
superior to Gaussian matrix but inferior to Hadamard
matrix (see [25]).

Inspired by the shortcomings of Devore’s polyno-
mials deterministic sensing matrix, we need to take
sensing matrices into consideration, generally. Here
we denote a = ω/s, which means the rate of nonze-
ro entries in every column of sensing matrices. Given
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the upper bound value of k, the sensing matrix is bet-
ter when the parameter of sparse measurement a is s-
maller, which conduces to the recovery of signals (see
[26]), the matrix is also better when the value of t

s is
larger, which means this matrix can provide powerful-
ly compressed performance.

Consider the above-mentioned questions, careful-
ly. Then we will draw a comparison between our con-
struction and Devore’s one and show our better prop-
erties than Devore’s ones. Let 2(i2 − h2) = n+ l− h
and 2h2 = h, then by Theorem 9 and (11), we will
obtain an s× t sensing matrix Φ with

s = q(i1−h1)(2i2−i1)

[
2h2
h1

]
q

,

t = q(i1−h1)i2

[
2i2 − 2h2 − i1 + h1
i2 − h2 − i1 + h1

]
q

[
2h2
h2

]
q

,

k ≤ qi1−h1 ,

t

s
=

q(i1−h1)i2

[
2i2 − 2h2 − i1 + h1
i2 − h2 − i1 + h1

]
q

[
2h2
h2

]
q

q(i1−h1)(2i2−i1)

[
2h2
h1

]
q

=
1

q(i1−h1)(i2−i1)
·

2i2−2h2−i1+h1∏
i=i2−h2+1

(qi − 1)

i2−h2−i1+h1∏
i=1

(qi − 1)

·

2h2−h1∏
i=h2+1

(qi − 1)

h2∏
i=h1+1

(qi − 1)

≥ 1

q(i1−h1)(i2−i1)
·

2i2−2h2−i1+h1∏
i=i2−h2+1

qi

i2−h2−i1+h1∏
i=1

qi
·

2h2−h1∏
i=h2+1

qi

h2∏
i=h1+1

qi

= q(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2),

and

a =
ω

s

=

q(i1−h1)(i2−i1)

[
h2
h1

]
q

q(i1−h1)(2i2−i1)

[
2h2
h1

]
q

=
1

q(i1−h1)i2
·

h2∏
i=h2−h1+1

(qi − 1)

2h2∏
i=2h2−h1+1

(qi − 1)

≤ 1

q(i1−h1)i2
·

h2∏
i=h2−h1+1

qi

2h2∏
i=2h2−h1+1

qi

=
1

q(i1−h1)i2+h2h1
.

Note that the value of a has been enlarged to
1/q(i1−h1)i2+h2h1 and the value of t

s has been
reduced to q(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2).
In order to be convenient for comparison and
make sure the absoluteness of results, here we
may well let a = 1/q(i1−h1)i2+h2h1 and t

s =

q(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2). Further-
more, we also have an s′ × t′ matrix Φ′ of Devore
with

s′ = q′
2
, t′ = q′

r+1
,

t′

s′
= q′

r−1
,

k′ ≤ q′

r
, a′ =

q′

s′
=

1

q′
,

where 1 < r < q′ and q′ is a prime power.

Theorem 12. Given the matrices Φ and Φ′. Suppose
k and k′ are equal to their upper bound values, re-
spectively, which means k = qi1−h1 , k′ = ⌈ q

′

r ⌉. Let
them be equal to each other and then a < a′ when

r < q(i1−h1)i2+h2h1−i1+h1 .

Proof. Since k=k′, then qi1−h1 = q′

r . Since a′ =
1
q′ , then a′ = 1

rqi1−h1
. Compare a′ = 1

rqi1−h1
and

a = 1/q(i1−h1)i2+h2h1 . We have a < a′ when r <
q(i1−h1)i2+h2h1−i1+h1 . ⊓⊔

Theorem 13. Given the matrices Φ and Φ′. Suppose
the value of t

s and t′

s′ are the same, then a < a′ when

r >
(i2 − i1)(i2 − h2 − i1 + h1)

(i1 − h1)i2 + h2h1

+
(h2 − h1)(2h2 − h1 − i2)

(i1 − h1)i2 + h2h1
+ 1.

Proof. Since t
s = t′

s′ , so

q′r−1 = q(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)
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and hence we get

q′ = q[(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)]/(r−1)

Since a′ = 1/q′, we also obtain

a′ = 1/q[(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)]/(r−1).

Compare a = 1/q(i1−h1)i2+h2h1 and

a′ = 1/q[(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)]/(r−1).

Hence our parameter of sparse measurement a is bet-
ter when

r>
(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)

(i1 − h1)i2 + h2h1
+1.

⊓⊔
For given two sensing matrices, one is our con-

struction, another is Devore’s construction. Let them
satisfy the cases of Theorem 12 and 13, simultane-
ously. Then our construction has the better sparsity of
sensing matrices when

(i2−i1)(i2−h2−i1+ h1)+(h2−h1)(2h2−h1−i2)
(i1 − h1)i2 + h2h1

+1 < r < q(i1−h1)i2+h2h1−i1+h1 .

Theorem 14. Given the matrices Φ and Φ′. Suppose
the value of t

s be equal to the value of t′

s′ , then the
upper bound value of k′ is smaller than k’s one, when

r ≥ (i2 − i1)(i2 − h2 − i1 + h1)

(i1 − h1)i2 + h2h1

+
(h2 − h1)(2h2 − h1 − i2)

(i1 − h1)i2 + h2h1
+ 1.

Proof. Since t
s = t′

s′ , then

q′
r−1

= q(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2),

hence we obtain

q′ = q[(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)]/(r−1).

For the sake of convenience, here we may let

x =
(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)

(r − 1)

where x > 0, then we can obtain q′ = qx,

1 < r

=
(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)

x
+1

< q′.

Since k′ < q′

r + 1, then we can also get

k′ <
qx

(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)
x + 1

+ 1.

Draw a comparison between

qx

(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)
x + 1

+ 1

and qi1−h1 + 1. In other words, we will compare k′
and k’s upper bound values. We notice that the upper
bound value of k′ will decrease with the value of r =
(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)

x + 1 increasing. So
let r = (i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)

x +1 < q, then
we will obtain

qi1−h1 >
qx

(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)
x + 1

when x ≤ i1 − h1. As above-mentioned, we will
obtain

(i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)
(r − 1)

≤ i1−h1.

Hence our construction is better when

r ≥ (i2−i1)(i2−h2−i1+h1)+(h2−h1)(2h2−h1−i2)
i1 − h1

+1

⊓⊔
We have proved that our construction is superior

to the construction of Devore under some conditions.
By changing the numbers of parameters, we will ob-
tain a type of different deterministic sensing matrices.

We will end up this paper with a comparison be-
tween a matrix formed by singular linear space over
F2 and a Devore’s sensing matrix formed by polyno-
mials over F3 via numerical simulation. For a signal
x, we choose OMP to solve l0-minimization (1) and
denote the solution by x′. Define the reconstruction
signal-to-noise ratio (SNR)[27] of x as

SNR(x) = 10 · log10 (
∥ x ∥2

∥ x− x′ ∥2
)dB. (13)

If SNR (x) is no less than 100 dB, we say the recovery
of x is perfect.

Consider a matrix over F2, where

n+ l − h = 4, i2 − h2 − (i1 − h1) = 1,

d = i1 − h1 = 1, h1 = h2 = h = 0.

Then we obtain an s × t sensing matrix with s =
8, t = 28. Furthermore, by Devore’s construction
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Figure 1: Perfect recovery percentage of a 8× 28 ma-
trix formed by singular linear space over F2 and that
of a 9× 27 Devore’s sensing matrix over F3. For each
k, 5000 input signals are used to compute the percent-
age.

using polynomials over finite fields, when r = 2
we also get an s′ × t′ sensing matrix over F3 with
s′ = 9, t′ = 27. Figure shows the perfect recovery
percentage of those two matrices. For each sparsity k,
we input 5000 random signals to compute the perfect
recovery percentage.
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