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Abstract: This paper considers the optimal investment and risk management strategies for a manager of open-
ended funds under Heston’s stochastic volatility model. The manager is allowed to invest the fund in a financial
market, which consists of one risk-free asset and one risky asset whose price process satisfies Heston’s SV model.
The objective of the fund manager is to maximize the expected exponential utility of the terminal wealth of the
fund assets. We obtain the optimal strategies and value function via stochastic optimal control approach explicitly.
Moreover, a verification theorem is provided and the properties of the optimal strategies are discussed. Finally,
sensitivity analysis is presented to illustrate the influences of parameters on the optimal investment strategy and
redemption limit.
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1 Introduction
As a type of professionally managed collective invest-
ment scheme, the first mutual fund known as the For-
eign & Colonial Government Trust, was established in
London in 1868, and then the mutual funds were intro-
duced into the United States in 1890s. Benefiting from
the scale advantage brought by the property of col-
lective investment, they gradually emerged from other
financial instruments and became popular during the
1920s, soon after that came the funds-oriented invest-
ment boom throughout the world. Nowadays, they
play an important role in household finances, most
notably in retirement planning. At the end of 2011,
funds accounted for 23% of household financial asset-
s. Their role in retirement planning is particularly sig-
nificant. Roughly half of assets in 401(k) plans and in-
dividual retirement accounts were invested in mutual
funds [1]. Compared to direct investment in individual
securities, mutual funds have some significant advan-
tages, such as increased diversification, daily liquidity
(this concept applies only to open-ended funds), pro-
fessional investment management and ability to par-
ticipate in investments that may be available only to
larger investors.

According to the organizational forms, mode of
operation and investment objective, mutual funds are
classified to different types. In terms of the operation
mode, mutual funds are usually divided into closed-

ended and open-ended. The original design of mutual
funds is the closed-ended type with a fix number of
shares which are irredeemable from the fund and can
only be purchased and sold in the market. This means
an investor of close-ended funds can only turn to the
market once he/she urgently needs to realise part of
his/her fund shares, which would not be timely some-
times and always costly when encountered with a mar-
ket downturn.

An excellent solution to such kind of liquidity
shortage is attributed to the innovation in operation
mode brought by the open-ended fund, which can is-
sue and redeem shares at any time. Unlike closed-
ended funds, new shares/units in an open-ended fund
can be created by managers to meet demand from in-
vestors and an investor will generally purchase shares
in the fund directly from the fund itself rather than
from the existing shareholders. That is to say, anytime
when the investor wants to sell his/her shares, the re-
demption requests will be available, which has long
been a great attraction to millions of investors, espe-
cially to those in favor of short-term investment. As
a much more flexible investment option, open-ended
funds soon became the most common type of mutual
funds though it once accounted for only 5% of the in-
dustry’s $27 billion in total assets by 1929. At the end
of 2011, in contrast to 634 closed-end funds amount-
ed to $239 billion, there were 7,581 open-end mutu-
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al funds in the United States with combined assets of
$11.6 trillion [1].

Admittedly, with such an aggressive operating
mode, allowing the investors to buy back their shares
at any time, the managers of open-ended funds are re-
quired to be capable of managing the liquidity risk, es-
pecially for the Quantity of Large Redemption, which
often occurs along with a market slump and may cause
bankruptcy of the funds. Therefore, how to deal with
the Quantity of Large Redemption is the key to liq-
uidity management for open-ended funds. The re-
search on open-ended funds’ operation mode and trig-
ger mechanism of the Quantity of Large Redemption
will greatly help the fund managers to make prop-
er and rational decisions. Scholars have achieved
some fundamental results about the open-ended funds,
though not that much but some are really interesting.

Edelen [2] took the lead in proposing the concept
of investor’s flows and used a separate regression of
both inflow and outflow of funds to analyze the gross
flow. He confirmed a statistically significant indirec-
t cost in the form of a negative relation between a
fund’s abnormal return and investor flows, which was
attributed to the costs of liquidity-motivated trading.
Stein [3] explained why most funds are open-ended
in the perspective of competition and the limits of ar-
bitrage, he suggested that an over-marketing strategy
to attract investors may bring about cutthroat competi-
tion, and the fund management companies would have
to choose the open-ended type passively. He points
out that economically large mispricings can coexist
with rational, competitive arbitrageurs, even without
short-sales constraints or other frictions. By using
the theory of Random process and the theory of Se-
quential Decision, Cheng et al [4] considered the op-
timal investment decision of open-ended funds, which
is based on the benefit of investors and the cost of
transaction. They introduced a method of random dis-
counting factor, by which investors can choose opti-
mal investment strategy, and concluded that when the
fund management company operated only one type of
fund in long-term which has the largest profit, it al-
so should strengthen management for other types of
funds in order to improve yield rate.

However, although aforementioned works have
provided a wide range of ideas and prospectives, their
results are fragmented and a systematic and complet-
ed research method is still needed. It is difficult but
significant to establish the open-ended funds’ typi-
cal redemption mechanism, meaning that when and
how many the investors choose to redeem their shares
should be quantified or modeled, especially for the
case of Quantity of Large Redemption. Notably, some
research on investment and insurance may lead to a
solution to the problem. Some mature methods ap-

plied to studying reinsurance and investment for in-
surers will provide a cogent and thoughtful guidance
to our work.

For example, Hipp and Taksar [5] used the com-
pound Poisson process to describe the insurer’s sur-
plus process and studied the optimal investment prob-
lem in new business to minimize the ruin probability.
Yang and Zhang [6] then extended the study of Hipp
and Taksar [5] to the case of an insurer with jump-
diffusion risk model. With the deepening of the in-
surance and reinsurance research, academe subdivides
the insurance problems into different circumstances,
then follows the proportional reinsurance, excess-of-
loss reinsurance and other categories. Subsequently,
Zhao et al [7] considered the optimal investment and
excess-of-loss reinsurance problem for an insurer with
jump-diffusion risk process. The application of jump-
diffusion risk model in insurance greatly inspires the
ideas and methods to study the open-ended funds, the
stochastic subscription and redemption of open-ended
funds can be seen as the random claims in insurance
and reinsurance problems, and the redemption fee is
similar to premium.

In this paper, we will try to apply the compound
Poisson process to simulate the stochastic process-
es for investors to subscribe and redeem their shares.
Furthermore, we assume that the price process of risky
asset satisfies the Heston’s stochastic volatility (SV)
model. Heston model is proposed by Heston [8] and
is a common used SV model. Compared to the Stein-
Stein model [9] under which the risky asset’ price
process and its stochastic varying volatility parame-
ter are driven by two independent Wiener processes,
Heston’s SV model holds a similar hypothesis with
assuming that the two Wiener processes are correlated
and the risky asset’s appreciation rate is also stochas-
tic. It has already gained its popularity in option pric-
ing and is used in investment problems recently.

2 Model and assumptions
To meet the daily requirement of redemption from
fund shareholders, a fund manager has to reserve
some liquid assets, such as cash, sight deposits and
short-term bonds, as part of the whole fund assets.
The price process of such assets (risk-free assets) is
denoted by B(t) which follows

dB(t) = r0B(t)dt,

where r0 > 0 represents the risk-free interest rate.
The price process S(t) of the risky asset is assumed to
follow the Heston’s SV model,

dS(t) = S(t)[(r0 + λL(t))dt+
√
L(t)dW1(t)]
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S(0) = s0,

dL(t) = k(θ − L(t))dt+ σ
√
L(t)dW2(t),

L(0) = l0,

where k,θ,σ andλ are all positive constants. {W1(t)}
and {W2(t)} are two correlated standard Brownian
motions with E[W1(t)W2(t)] = ρt. In addition,
we also assume 2kθ ≥ σ2 to insure that L(t) is al-
most surely non-negative as mentioned in Cox et al
[10]. Here L(t) is related to the appreciation rate and
volatility of risky asset and {W2(t)} represents the
corresponding random fluctuation. λL(t) can be re-
garded as the risk premium (see Rm −Rf in William
Sharpe’s CAPM) for taking risk

√
L(t). Thus, the

unit risk premium can be written as λ
√
L(t). Con-

sidering that the financial market is supposed to in-
clude only one risky asset (and a risk-free asset), then
λ
√
L(t) can be seen as a criterion to measure the fi-

nancial market’s performance. We suppose the Quan-
tity of Large Redemption will only occurs when the
unit risk premium tumbles below a particular level ζ.
Let χ(t) denotes the indicator function for the poten-
tial large redemption,

χ(t) =

{
1 , L(t) < ( ζλ)

2 .
= ζ0,

0 , L(t) ≥ ζ0,

apparently, L(t) is an almost everywhere continuous
function on a given duration [0, T ], then χ(t) ≡ 1
holds over some intervals, in which the unit risk pre-
mium is less than ζ, i.e., L(t) < ζ0.

The surplus process of open-ended funds is de-
scribed by a jump-diffusion risk model, which we de-
note by {R(t) : t ≥ 0} satisfies

dR(t) = χ(t)c(t)dt+ βdW0(t) + dI(t)

− χ(t)dO(t)
(1)

where β > 0 is a constant, and {W0(t)} with β stand-
ing for the uncertainty associated with the surplus of
open-ended funds at time t, is another standard Brow-
nian motion which is independent with {W1(t)} and
{W2(t)}. I(t) =

∑N1(t)
i=1 Ii is a compound Poisson

process denoting the cumulative net buying by time
t, where N1(t), the number of subscription occurring
in the time interval [0, t], is a homogeneous Poisson
process with intensity α1, and the subscription sizes
{Ii|i ≥ 1} are independent and identically distribut-
ed positive random variables with common distribu-
tion F1(x). O(t) =

∑N2(t)
i=1 Oi as a representation of

cumulative Quantity of Large Redemption, is another
compound Poisson process, whereN2(t) with intensi-
ty α2 denotes the number of large redemption by time
t, and {Oi : i ≥ 1} have the similar properties as
{Ii : i ≥ 1} with common distribution F2(x).

Remark 1 For the convenience of mathematical cal-
culation, we assume N1(t) = N2(t) = N(t) and
α1 = α2 = α. It should be noted this assumption can
not be extended to the more general cases. Actually,
the net buying process I(t) is relatively independen-
t of the Quantity of Large Redemption process O(t).
The statistical relativity between them should be spec-
ified by the practical data, which is a direction of our
future efforts.

Besides that, other random variables are all sup-
posed to be independent with each other.

When Quantity of Large Redemption appears,
we assume that Oi stands for the total redemption
each time (like every business day) from all the fund
shareholders, in other words, a single shareholder
will participate in the joint redemption with others.
Hence, the entire fund can theoretically be redeemed
at any time. Apparently, a fund manager will try to
shrink this sort of liquidity risk to avoid bankruptcy,
then comes the redemption limit a(t), the maximum
amount of a single large redemption. The part of re-
demption at time t exceeding a(t) is supposed to be
invalid or get into the next redemption request auto-
matically.

In consideration of the impact cost (extra cost
for a trader due to market slippage) for massive sale
of securities (Chang et al [13] points out that the
trading turnover has a significant effect on the short-
run abnormal returns and long-run cumulative return-
s of portfolios) to meet the shareholders’ redemption
needs, and opportunity cost for holding some cash as-
sets with low yields, redemption fees are charged from
traders as a stiff penalty used to discourage short-term,
in-and-out trading of mutual fund shares. We de-
note the redemption fees (subtracting the correspond-
ing impact cost and opportunity cost) by c(t) in (1),
which is supposed to be a certain percentage η > 0 of
the expected quantity of large redemption and credited
to the fund’s assets. Thus,

c(t) = ηα(

∫ a(t)

0
ydF2(y) +

∫ ∞

a(t)
a(t)dF2(y))

= ηα

∫ a(t)

0
F2(y)dy

(2)

where F2(x) = 1− F2(x).
Let π(t) denotes the money amount invested in

the risky asset at time t, hence a trading strategy for
a fund manager can be described by (π(t), a(t)). As-
sociated with the trading strategy (π(t), a(t)), open-
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ended fund’s wealth process X(t) then evolves as

dX(t) =
(
π(t)λL(t) + χ(t)ηα

∫ a(t)

0
F2(y)dy

+ r0X(t)
)
dt+ π(t)

√
L(t)dW1(t)

+ βdW0(t) + d

N(t)∑
i=1

Ii − χ(t)d

N(t)∑
i=1

Oi

(3)

Remark 2 Let (Ω,F , {Ft}, P ) be a complete prob-
ability space satisfying the usual condition, where
{Ft} is generated by process {X(t)}. All stochas-
tic processes introduced in this paper are supposed
to be adapted processes in this space. An ad-
missible trading strategy means that (π(t), a(t)) is
Ft-progressively measurable, 0 6 a(t) 6 X(t),
E[
∫ T
0 π2(t)L(t)dt] < ∞ for all T < ∞, and (3) has

a unique strong solution.
Π denotes the set of all admissible strategies. And

for simplicity, an admissible strategy (π(t), a(t)) and
the indicator function for the large redemption χ(t)
will be written as (π, a) and χ accordingly in the next
sections.

Here we suppose that the fund manager has an ex-
ponential utility function U(·), which is strictly con-
cave and continuously differentiable on (−∞,∞),
and aims to maximize the expected utility of the
fund’s terminal wealth, i.e.,

max
(π,a)∈Π

E[U(X(T ))] (4)

with U(x) = − 1
γ e

−γx and coefficient of absolute risk
aversion γ > 0.

Remark 3 Of course, we can choose power utility
and logarithm utility as candidates for the utility func-
tion, some related examples can be seen in the work
of Chang et al [11] and Li et al [12]. But exponential
utility is the only utility function to make the princi-
ple of ”zero utility” give a fair premium, which leads
to an extensive application of exponential utility in in-
surance mathematics.

3 Optimal strategies and verification
theorem

For an admissible strategy (π, a), the value function
H from state (x, l) at time t is defined as

H(t, x, l) = sup
(π,a)∈Π

E[U(X(T )|X(t) = x, L(t) = l],

(5)

where 0 ≤ t < T , and H satisfies the boundary con-
dition H(T, x, l) = − 1

γ e
−γx.

For any H(t, x, l) ∈ C1,2,2([0, T ] × R+ × R+),
we define an operator Aπ,a, satisfying

Aπ,aH(t, x, l) = Ht +
(
r0x+ χηα

∫ a

0
F2(y)dy

+ πlλ
)
Hx + k(θ − l)Hl +

1

2
(β2 + π2l)Hxx

+
1

2
σ2lHll + ρσπlHxl + αE

[
H
(
t, x+ Ii

− χmin(Oi, a), l
)
−H(t, x, l)

]
(6)

where Hx, Hl, Hxx, Hll and Hxl denote the first and
second-order partial derivatives with respect to corre-
sponding variables x and l.

According to Fleming and Soner [14], the opti-
mal value function V (t, x, l) satisfies the following
Hamilton-Jacobi-Bellman (HJB) equation

sup
(π,a)∈Π

Aπ,aV (t, x, l) = 0, t < T (7)

with boundary condition V (t, x, l) = − 1
γ e

−γx.

Inspired by Browne [15], we solve the HJB equa-
tion (7) by making use of ansatz with the form below:

V (t, x, l) = −1

γ
exp

{
−γ
[
xer0(T−t)+f(t)+g(t, l)

]}
(8)

with f(T ) = 0 and g(T, l) = 0. Then we have

Vt = γ
(
r0xe

r0(T−t) − f ′(t)− gt
)
V,

Vx = −γer0(T−t)V, Vxx = γ2e2r0(T−t)V,

Vl = −γglV, Vll = (−γgll + γ2g2l )V,

Vxl = γ2er0(T−t)glV.

Suppose that F1(x) is a uniform distribution on
[0, D], then we can derive

E
[
V
(
t, x+ Ii − χmin(Oi, a), l

)
− V

(
t, x, l

)]
= V

{1− e−γer0(T−t)D

Dγer0(T−t)

[
χγer0(T−t)

∫ a

0
F2(y)

· eχγyer0(T−t)
dy + 1

]
− 1
} (9)
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Substituting the above derivatives into (7) yields

γ(f ′(t) + gt)−
1

2
β2γ2e2r0(T−t) + k(θ − l)γgl

− 1

2
σ2l(−γgll + γ2g2l ) + max

π∈R

{
(λ− ρσγgl)

· γler0(T−t)π − 1

2
γ2le2r0(T−t)π2

}
+ α max

a∈(0,x)

{
χηγer0(T−t)

∫ a

0
F2(y)dy + 1− 1− e−γer0(T−t)D

Dγer0(T−t)

[
χγer0(T−t)

∫ a

0
eχγye

r0(T−t)
F2(y)dy + 1

]}
= 0

(10)

If χ = 0, Quantity of Large Redemption will not
happen according to our assumption above, then we
only need to consider the case of χ = 1. So all the
following discussions will assume χ = 1.

The optimal investment policy π∗(t) is obtained
by taking derivative of (10) with respect to π,

π∗ =
λ

γ
e−r0(T−t) − ρσe−r0(T−t)gl. (11)

Similarly, by taking derivative of (10) with re-
spect to a, we figure out the minimizer a0, which sat-
isfies(

η − 1− e−γer0(T−t)D

Dγer0(T−t)
eγa0e

r0(T−t)
)
F2(a0) = 0.

(12)
We let x0 = sup{x : F2(x) < 1} denote the in-
vestors’ maximum redemptions in theory. In consid-
eration of that the investors can redeem all their shares
at any time, x0 ≥ x(t) should hold for any t ∈ [0, T ].
Then we have the following deduction.

If a0 ∈ (0, x0), then 0 < F2(a0) 6 1 and

a0 =
ln
(

ηDγer0(T−t)

1−e−γer0(T−t)D

)
γer0(T−t)

. (13)

Actually, D (the maximum amount for net buy-
ing) is always large enough to make ηDγ > 1, thus
a0 > 0 will hold in most cases when χ = 1. Here we
assume ηDγ > 1 in all cases.

We next prove the optimal strategy for redemp-
tion a∗ = min(a0, x0).

Theorem 4 If χ = 1 and ηDγ > 1, then the optimal
strategy for redemption a∗ = min(a0, x0).

Proof: If a0 ∈ (0, x0), apparently, we have a∗ =
a0. Hence, we only consider the case when a0 >
x0. Since 1−e−γer0(T−t)D

Dγer0(T−t) > 0, then κ(a) , η −

1−e−γer0(T−t)D

Dγer0(T−t) eγae
r0(T−t)

as part of (12) is a decreas-
ing function with respect to a. For ηDγ > 1, we
have κ(0) > 0. If a0 in (13) is not less than x0, then
κ(a) > 0 holds for all a ∈ (0, x0) and (12) is satisfied
when a = x0 for F2(x0) = 0.

So we have proved that a∗ = min(a0, x0) is the
optimal strategy for redemption. ⊓⊔

Remark 5 We need to point out that the restriction
a∗ 6 x0 is not necessary. Indeed, the shareholders
can only redeem the fund’s whole wealth x ≤ x0 at
most, which means a∗ = min(a0, x) is more practi-
cal. Therefore, we will denote a∗ as min(a0, x) in the
rest of this paper.

Inserting (11) and (13) into (10), we obtain

γ(f ′(t) + gt)−
1

2
β2γ2e2r0(T−t) + k(θ − l)γgl

− 1

2
σ2γ2l(1− ρ2)g2l +

1

2
σ2γlgll +

1

2
lλ2

− λρσγlgl + α
{
χηγer0(T−t)

∫ a∗(t)

0
F2(y)dy + 1

− 1− e−γer0(T−t)D

Dγer0(T−t)

[
χγer0(T−t)

∫ a∗(t)

0
eχγye

r0(T−t)

· F2(y)dy + 1
]}

= 0.

(14)

Given the independency between f(t) and g(t, l),
(14) is decomposed into two equations:

γf ′(t)− 1

2
β2γ2e2r0(T−t) + h(t) = 0, (15)

gt −
1

2
σ2γl(1− ρ2)g2l +

1

2
σ2lgll +

(
k(θ − l)

− λρσl
)
gl +

lλ2

2γ
= 0,

(16)

where

h(t) = α
{
− 1− e−γer0(T−t)D

Dγer0(T−t)

[
χγer0(T−t)

·
∫ a∗(t)

0
eχγye

r0(T−t)
F2(y)dy + 1

]
+ χηγer0(T−t)

∫ a∗(t)

0
F2(y)dy + 1

}
.

(17)

On the basis of the boundary condition f(T ) = 0,
the solution to (15) is

f(t) =
β2γ

4r0

(
1− e2r0(T−t)

)
+

1

γ

∫ T

t
h(s)ds. (18)
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To solve (16), we suppose the solution has the fol-
lowing form

g(t, l) = A(t)l +B(t) (19)

withA(T ) = B(T ) = 0 ( for g(T, l) = 0 ). Then (16)
can be written as

B′(t) + kθA(t) +
(
A′(t)− 1

2
σ2γ(1− ρ2)A2(t)

− (k + λρσ)A(t) +
λ2

2γ

)
l = 0.

(20)

In order to eliminate dependence on l, we decompose
(20) into

A′(t)− 1

2
σ2γ(1−ρ2)A2(t)−(k+λρσ)A(t)+

λ2

2γ
= 0

(21)
and

B′(t) + kθA(t) = 0. (22)

Allowing for the boundary conditions, we derive

A(t) =



λ2

2γ(k+λσ)

(
1− e−(k+λσ)(T−t)

)
, ρ = 1,

λ2

2γ(k−λσ)

(
1− e−(k−λσ)(T−t)

)
, ρ = −1

and k ̸= λσ,
λ2

2γ (T − t), ρ = −1 and k = λσ,

v1v2−v1v2e
− 1

2σ2γ(1−ρ2)(T−t)(v1−v2)

v2−v1e
− 1

2σ2γ(1−ρ2)(T−t)(v1−v2)
, ρ2 ̸= 1,

B(t) = kθ

∫ T

t
A(s)ds,

(23)

where v1, v2 are two different roots of the following
equation with respect to x,

1

2
σ2γ(1− ρ2)x2 + (k + λρσ)x− λ2

2γ
= 0.

Thus,

v1,2 =
−(k + λρσ)±

√
k2 + 2kλρσ + σ2λ2

σ2γ(1− ρ2)
(24)

By now, we have already obtained the solution
V (t, x, l) to HJB equation (7) and the optimal strategy
(π∗, a∗) for a fund manager with exponential utility
under the Heston model,

π∗ =
λ

γ
e−r0(T−t) − ρσe−r0(T−t)A(t),

a∗ =
ln
(

ηDγer0(T−t)

1−e−γer0(T−t)D

)
χγer0(T−t)

, χ = 1 and ηDγ > 1,

(25)

V (t, x, l) = −1

γ
exp

{
− γ
[
xer0(T−t) + f(t)

+A(t)l +B(t)
]}
,

(26)

where A(t), B(t) and f(t) are given by (23) and (18),
respectively.

Theorem 6 Suppose V (t, x, l) is a solution to (7),
then the value function is H(t, x, l) = V (t, x, l). For
the wealth process X(t) associated with an admissi-
ble strategy (π, a), we have

E[U(X(T ))] 6 V (0, x0, l0).

In particular, for (π∗, a∗) given in (25) and the corre-
sponding wealth process X∗(t),

E[U(X∗(T ))] = V (0, x0, l0).

According to Theorem 5, the (π∗, a∗) we have ob-
tained is indeed the optimal strategy among all the ad-
missible ones, and the supremum of the expected ex-
ponential utility E[U(X(T ))] is achievable. The cor-
responding proof can be found in Appendix of Zhao
et al [7].

Furthermore, we find that A(t) is a decreasing
function by taking derivative of (23) with respect to
time t (A′(t) < 0 holds in all cases).

Remark 7 From (25), we find the optimal amount π∗

invested in risky asset is independent of the fund’s
wealth x. This is due to the fact that the exponen-
tial utility function has constant absolute risk aversion
(−U ′(x)/U ′′(x) = 1

γ ).

Remark 8 In addition, the risky asset’s appreciation
rate L(t) (also to be its volatility) doesn’t directly in-
fluence the optimal investment strategy π∗. But the
correlation coefficient ρ between L(t) and the risky
asset’s price S(t) has an influence on the investment
strategy, so does L(t)’s own volatility σ and the drift-
related parameter k.

In a nutshell, the investment strategy mainly de-
pends on the time value e−r0(T−t), the fund manag-
er’s risk aversion γ and the correlation between risky
asset and its volatility ρ.

Remark 9 Unlike the investment strategy, the opti-
mal redemption limit a∗ is independent of the risky
asset’s volatility L(t) and its parameters. When the
financial market runs well (χ = 0), then such a re-
demption limit is not necessary because the Quanti-
ty of Large Redemption won’t appear according to
our assumptions. But it should draw the fund man-
ager’s attention when the whole market is deep down
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(χ = 1). In this case, the redemption limit has connec-
tion with the manager’s risk aversion γ, unit redemp-
tion fee η and the time value e−r0(T−t). The specific
influences of relevant parameters on the optimal strat-
egy (π∗, a∗) will be demonstrated in the next section.

4 Numerical analysis
In this section, some numerical simulations are pre-
sented to illustrate the effects of parameters on the op-
timal redemption limit and investment strategy. First-
ly, we consider the optimal redemption limit α∗ in a
specific market. Since the emergence of large redemp-
tion depends on the market’s performance, a simula-
tion of the financial market L(t) and the correspond-
ing trigger line ζ0 should be given out preferential-
ly. Considering that investors always participate in
the collective investment scheme when the market en-
vironment is relatively moderate, θ and l0 are sup-
posed to be similar to each other, otherwise, the fi-
nancial market will be expected to get a strong trend
according to our numerical tests. Here we assume
the market-related parameters are given by k = 0.3,
ζ0 = 0.65, θ = l0 = 1 and σ = 0.5, and other basic
parameters are listed as ρ = 0.4, r0 = 0.15, λ = 1.5,
η = 0.01, D = 1000, T = 10, x0 = 1 and γ = 0.5.
Then the net buying Ii follows uniform distribution
U(0, 1000) and Figure 1 shows the simulation of the
financial market with trigger line ζ0 = 0.65. There-
fore, Quantity of Large Redemption only occurs when
the market L(t) is deep down below the trigger line.

0 2 4 6 8 10
t

0.0

0.5

1.0

1.5

2.0

2.5

L
(t
)

The Market Process L(t) with trigger line ζ0 =0.65

L(t)

the trigger line ζ0

Figure 1: A simulation of the financial market with
the trigger line ζ0 = 0.65.

Figure 2 illustrates the optimal redemption lim-
it a∗ corresponding to the financial market in Figure
1. As is shown in Figure 2, the magenta curve de-
notes the optimal redemption limit with trigger line
ζ0 = +∞, which means large redemption will appear
throughout the whole period [0, T ]. Similarly, the red
part in stem form represents the optimal strategy for
redemption in the case ζ0 = 0.65, and the redemption
limit for the situation χ = 0 (i.e., L(t) > ζ0 = 0.65)

0 2 4 6 8 10
t

1.0

1.5

2.0

2.5

3.0

3.5

α
∗

The optimal redemption limit α ∗

α ∗  without trigger line(ζ0 = +∞)

α ∗  with ζ0 =0.65

Figure 2: The optimal redemption limit a∗ corre-
sponding to Figure 1

is supposed to be the initial wealth x0 = 1, though
it is not that necessary. Furthermore, we notice that
time t has a positive influence on the redemption lim-
it, this can be explained by the fact that the fund’s
wealth/asset always increases with time (rising in-
comes like cumulative net buying from shareholders
and investment returns), which leads to greater guar-
antees for liquidity risk, so higher redemption limit is
approved to attract more investors.

Figure 3-4 shows the impacts of parameters on
the optimal redemption limit (for ease of comparison,
we assume the trigger line ζ0 = +∞). Figure 3 indi-
cates that the optimal redemption limit increases ini-
tially and then declines with time twhen the risk aver-
sion coefficient γ is close to 0.1 (when γ = 0.1, then
ηDγ = 1). Moreover, the peak’s occurrence delays
with the increase of γ. Though there is no rigid dis-
tinctions between the redemption limits with different
risk aversions, the redemption limit decreases with γ
increasing in most cases, which means the fund man-
ager with higher risk aversion coefficient will get s-
maller tolerance of liquidity risk. From the left part
of Figure 4, we find that the optimal redemption limit
increases with the unit redemption fee η and the gap
between two adjacent curves expends along with time
t. Actually, when a fund manager wants to charge
more for the same redemption, he should raise the re-
demption limit as compensation to maintain the old
investors and attract the new ones. The right part of
Figure 4 illustrates the effect of interest rate r0 on the
optimal redemption limit. As seen, the optimal re-
demption limit is a decreasing function of r0 (this is
partly because a higher interest rate means higher op-
portunity costs, then the fund manager has to lower the
redemption limit to maintain a relatively stable profit)
and all the curves converge to the same point at time
T . Thus, the gap between two cases with different
interest rates will gradually disappear along with the
loss of time value.

Figure 5-8 demonstrate the sensitivity of optimal
investment strategy π∗ with respect to the relevant pa-
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Figure 3: The effect of risk aversion coefficient γ on
optimal redemption limit a∗.
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Figure 4: The effect of unit redemption fee η and in-
terest rate r0 on optimal redemption limit a∗.

rameters. From Figure 5, we can see the optimal in-
vestment strategy decreases with ρ when ρ > 0 and
increases with |ρ| when ρ < 0. As a measurement
of relevancy, ρ denotes the risky asset’s direction of
price movement relative to the market trend. In the
case of ρ > 0, the risky asset’s price will move in the
same direction of the market trend, otherwise, the two
will go in the opposite directions. In consideration of
the uncertainty in financial market, for a risk-neutral
manager who prefers to maximize the expected mon-
etary value, it will be rational of him/her to invest less
money in the risky asset with an increasing correlation
coefficient ρ when ρ > 0 and invest more in the risky
asset as |ρ| increases when ρ < 0.

For Heston model, k and σ are parameters of
L(t), which denotes the financial market conditions
as well as the volatility of risky asset’s price. The in-
fluences of such parameters on the optimal investment
strategy are presented in Figure 6 and Figure 7. Fig-
ure 6 illustrates that the optimal investment strategy
decreases with respect to σ when ρ > 0 and increases
with σ when ρ < 0. For the case ρ > 0, the volatility
of risky asset’s price will fluctuate a little drastically
when σ increases, which leads to a volatile volatility
for the risky asset and the manager will reduce his in-
vestment in the risky asset. But a negative ρ will help
to weaken the sensitivity of the risky asset’s price to σ
and the volatility of risky asset gets more stable, thus

the fund manager prefers to invest more in the risky
asset. From Figure 7, we find that k, which reflects
the speed of L(t) approaching to θ, has a positive ef-
fect on the optimal investment strategy when ρ > 0
and a negative effect when ρ < 0. That means a larger
k brings about a more stable L(t) and the fund man-
ager would like to increase investment in risky asset
for the case of ρ > 0. While considering the nega-
tive correlation between S(t) and L(t) for ρ < 0, it
is more likely that there will be an expected decline
in the risky asset’s price as k increases. Therefore,
the optimal investment strategy decreases with k when
ρ < 0.
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Figure 5: The effect of the correlation coefficient ρ on
the optimal investment strategy π∗.
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Figure 6: The effect of market-related parameter σ on
the optimal investment strategy π∗.
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Figure 7: The effect of market-related parameter k on
the optimal investment strategy π∗.

WSEAS TRANSACTIONS on MATHEMATICS Zanyong Huang, Ximin Rong

E-ISSN: 2224-2880 133 Volume 15, 2016



0 2 4 6 8 10

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

π
∗ (

t)

The effect of r0  on π
∗

r0 =0.10

r0 =0.15

r0 =0.20

r0 =0.25

0 2 4 6 8 10

t

0

1

2

3

4

5
The effect of γ on π ∗

γ=0.3

γ=0.5

γ=0.7

γ=0.9

0 2 4 6 8 10

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
The effect of λ on π ∗

λ=1.0

λ=1.2

λ=1.5

λ=1.8

Figure 8: The effect of interest rate r0, risk aversion
coefficient γ and λ on the optimal investment strategy
π∗.

The left part of Figure 8 demonstrates that the op-
timal investment in risky asset decreases with respect
to the interest rate r0, which consists with intuition.
The manager would like to invest less in the risky asset
to reduce the opportunity cost resulting from a high-
er interest rate. From the middle part of Figure 8, we
find that the risk aversion coefficient γ has a negative
influence on the optimal investment strategy. Obvi-
ously, a fund manager with larger risk aversion prefers
the risk-free asset to avoid risk. Finally, as shown in
the right part of Figure 8, the optimal investment strat-
egy increases with the unit risk premium λ. The risky
asset with a larger λ gains more popularity to the fact
that more expected return will be obtained.

Remark 10 It would be specially mentioned that the
optimal investment strategy π∗ will not be paired
with the optimal redemption limit α∗ once any of the
market-related parameters (k, θ and σ) is altered in
our numerical analysis.

5 Conclusion
In this paper, we have considered the optimal invest-
ment and risk management strategies for open-ended
funds under Heston’s SV model. The surplus process
of the open-ended fund is assumed to follow a jump-
diffusion risk model consisted of two compound Pois-
son processes. We suppose there are only two assets
available for investment in the financial market, a risk-
free asset and a risky asset, whose price satisfies the
Heston model. By applying the stochastic control ap-
proach, we obtain the optimal investment strategy and
the optimal redemption limit explicitly. Furthermore,
we obtain the value function and present the corre-
sponding verification theorem. Finally, we give a nu-
merical example to illustrate the effects of parameters
on the optimal strategies.
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