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Abstract: In this paper we consider the numerical solution of large-scale projected generalized continuous-time
and discrete-time Sylvester equations with low-rank right-hand sides. First, we present the results on the suffi-
cient conditions for the existence, uniqueness, and analytic formula of the solutions of these equations. Second,
we review the low-rank alternating direction implicit method and the low-rank cyclic Smith method for solving
the projected generalized continuous-time Sylvester equation, and propose a numerical method for the projected
generalized discrete-time Sylvester equation. Third, we show that the solutions of these two equations are useful
for computing the HL2 inner product of two descriptor systems. Finally, we present some numerical experiments.
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1 Introduction

In this paper we consider the projected generalized
continuous-time Sylvester equation (PGCTSE)

AXẼ + EXÃ + PlFP̃r = 0, X = PrXP̃l (1)

and the projected generalized discrete-time Sylvester
equation (PGDTSE)

AYÃ − EYẼ = (I − Pl)F(I − P̃r), PrYP̃l = 0 (2)

where E, A ∈ Rn×n, Ẽ, Ã ∈ Rm×m, F ∈ Rn×m, and
X,Y ∈ Rn×m are the sought-after solutions. Here, Pr

and P̃r are the spectral projectors onto the right deflat-
ing subspaces corresponding to the finite eigenvalues
of the pencils λE−A and λẼ−Ã, respectively, while Pl

and P̃l are the spectral projectors onto the left deflat-
ing subspaces corresponding to the finite eigenvalues
of λE − A and λẼ − Ã, respectively.

We assume that the matrices E and Ẽ are singular,
but the pencils λE − A and λẼ − Ã are regular, i.e.,
det(λE − A) and det(λẼ − Ã) are not identically zero.
Under this assumption, the pencils λE −A and λẼ − Ã
have the Weierstrass canonical forms [11]: there exist
nonsingular n × n matrices W,T and m × m matrices

W̃, T̃ such that

E = W
[

I 0
0 N

]
T, A = W

[
J 0
0 I

]
T, (3)

Ẽ = W̃
[

I 0
0 Ñ

]
T̃ , Ã = W̃

[
J̃ 0
0 I

]
T̃ , (4)

where J ∈ Rn f×n f , J̃ ∈ Rm f×m f , N ∈ R(n−n f )×(n−n f )

and Ñ ∈ R(m−m f )×(m−m f ) are block diagonal matrices
with each diagonal block being a Jordan block. The
eigenvalues of J and J̃ are the finite eigenvalues of the
pencils λE − A and λẼ − Ã, respectively, while N and
Ñ correspond to the eigenvalue at infinity. The indices
ν and ν̃ of nilpotency of N and Ñ are called the indices
of the pencils λE − A and λẼ − Ã, respectively. Using
(3) and (4), Pl, Pr, P̃l and P̃r can be expressed as

Pl = W
[

I 0
0 0

]
W−1, Pr = T−1

[
I 0
0 0

]
T, (5)

P̃l = W̃
[

I 0
0 0

]
W̃−1, P̃r = T̃−1

[
I 0
0 0

]
T̃ . (6)

A number of numerical solution methods have
been proposed for the standard /generalized Lyapunov
and Sylvester equations. Two classical direct methods
are the Bartels-Stewart method [3] and the Hammar-
ling method [14]. These methods need to compute the
real Schur forms/generalized real Schur forms of the
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underlying matrices/matrix pencils by means of the
QR/QZ algorithm [13]. Besides direct methods, we
mention, among several iterative methods, the Smith
method [24], the alternating direction implicit itera-
tion (ADI) method [19, 32], the Smith(l) method [21],
the low-rank Smith method [12, 21, 23], the Cholesky
factor ADI method [4, 6, 8, 17], and the (generalized)
matrix sign function method [5, 9, 10, 7, 16, 30].

As m = n, Ã = AT , and Ẽ = ET , (1) is re-
ferred to as the projected generalized continuous-time
Lyapunov equation and (2) as the projected gener-
alized discrete-time Lyapunov equation, which arise
in stability analysis and control design problems for
descriptor systems including the characterization of
controllability and observability properties, balanced
truncation model order reduction, determining the
minimal and balanced realizations as well as comput-
ing H2 and Hankel norms; see [1, 15, 20, 22, 27, 31]
and the references therein. If the pencil λE − A is
c-stable, i.e., all its finite eigenvalues have negative
real part, then the projected generalized Lyapunov e-
quations have unique solutions for each F, and if, ad-
ditionally, F is symmetric and semi-positive definite,
then the solutions are symmetric and semi-positive
definite, see, e.g., [26] for details. Lyapunov equations
are useful in solving Riccati equations, see [2, 33].

Recently, several numerical methods have been
proposed in the literature for solving the projected
generalized Lyapunov equations. In [25], two di-
rect methods, the generalized Bartels-Stewart method
and the generalized Hammarling method, were pro-
posed for the projected generalized Lyapunov equa-
tions. The generalized Hammarling method is de-
signed to obtain the Cholesky factors of the solution-
s. These two methods are based on the generalized
real Schur form of the pencil λE − A, and require
O(n3) flops and O(n2) memory. Iterative methods to
solve the projected generalized Lyapunov equations
have also been proposed. Stykel [31] extended the
ADI method and the Smith method to the projected
equations. Moreover, their low-rank versions were al-
so presented, which could be used to compute low-
rank approximations to the solutions. These methods
are especially suitable for large sparse equations with
low-rank F. Another iterative method for the pro-
jected generalized Lyapunov equations is the modified
generalized matrix sign function method [30]. Unlike
the classical generalized matrix sign function method,
the variant converges quadratically independent of the
index of the underlying matrix pencil, see [30] for
more details. In [18], the modified generalized ma-
trix sign function method is extended to the PGCTSE
(1). This method requires the inverses of two matrices
at each iteration and has a computational complexity

O(max{n3,m3}), and thus is not suitable for large s-
parse problems. The Krylov subspace method for the
projected generalized Lyapunov equations is proposed
in [34].

In this paper, we firstly present the results on
the sufficient conditions for the existence, uniqueness,
and analytic formula of the solutions of the PGCTSE
and the PGDTSE. Then, we review the low-rank A-
DI method and the low-rank cyclic Smith method for
solving the PGCTSE with low-rank right-hand sides.
We propose a numerical method for the PGDTSE. Fi-
nally, we show that the solutions of these two equa-
tions are useful for computing the HL2 inner product
of two descriptor systems.

Throughout this paper, we adopt the following
notation. The square identity and zero matrices are
denoted by I and 0, respectively. The spaces of m × n
real matrices are denoted by Rm×n. The 2-norm and
the Frobenius matrix norm are denoted by ∥ · ∥2 and
∥ · ∥F , respectively. The superscript “ ·T ” denotes
the transposition of a vector or a matrix. Moreover,
ρ(A) is the spectral radius of square matrix A and
κ(A) = ∥A∥2∥A−1∥2 is the spectral condition number
of A. The open left is denoted by C−.

The remainder of the paper is organized as fol-
lows. In Section 2, we give the sufficient condition-
s for the existence, uniqueness, and analytic formu-
la of the solutions of the PGCTSE and the PGDTSE.
In Section 3, we propose the low-rank ADI method
and the low-rank cyclic Smith method to the PGCTSE
with low-rank right-hand sides. In Section 4, we
present a numerical method for the PGDTSE. In Sec-
tion 5, we present an application. Section 6 is devoted
to numerical experiments. Some concluding remarks
are given in the last section.

2 Solution of PGCTSE and PGDTSE
In this section, we consider the solutions of the
PGCTSE (1) and the PGDTSE (2).

The following theorem gives sufficient conditions
for the existence, uniqueness, and analytic formula of
the solution of the PGCTSE (1); see, e.g., [18].

Theorem 1 Let λE − A and λẼ − Ã be regular
pencils with finite eigenvalues {ζ1, ζ2, · · · , ζn f } and
{η1, η2, · · · , ηm f } counted according to their multiplic-
ities, respectively. Then, the projected generalized
continuous-time Sylvester equation (1) has a unique
solution for every F if ζi + η j , 0 for any i =
1, 2, · · · , n f and j = 1, 2, · · · ,m f .

Moreover, if λE − A and λẼ − Ã are c-stable,
i.e., all their finite eigenvalues have negative real part,
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then X can be expressed as

X =
1

2π

∫ ∞
−∞

(−iωE − A)−1PlFP̃r(iωẼ − Ã)−1dω.

We now consider the solution of the PGDTSE (2).
Similarly, we have the following result.

Theorem 2 Let λE − A and λẼ − Ã be regular pen-
cils with A and Ã nonsingular. Then, the PGDTSE (2)
has a unique solution Y for every F. Moreover, the
solution Y can be expressed as

Y =

min{ν,ν̃}−1∑
k=0

(A−1E)kA−1(I − Pl)F

·(I − P̃r)Ã−1(ẼÃ−1)k (7)

=
1

2π

∫ 2π

0
(e−iωE − A)−1(I − Pl)F(I − P̃r)

·(eiωẼ − Ã)−1dω. (8)

Proof: Define Ŷ = TYW̃ and F̂ = W−1FT̃−1, and
partition Ŷ and F̂ appropriately as

Ŷ =
[

Ŷ11 Ŷ12

Ŷ21 Ŷ22

]
, F̂ =

[
F̂11 F̂12

F̂21 F̂22

]
.

Using (5) and (6), we can rewrite the second equation
of (2) into

0 = PrYP̃l = T−1
[

I 0
0 0

]
TYW̃

[
I 0
0 0

]
W̃−1

= T−1
[

I 0
0 0

] [
Ŷ11 Ŷ12

Ŷ21 Ŷ22

] [
I 0
0 0

]
W̃−1.

Thus, this shows that Ŷ11 = 0.
By using the expressions of E, A, E, Ã in (3) and

(4), we obtain

AYÃ = W
[

J 0
0 I

]
TYW̃

[
J̃ 0
0 I

]
T̃

= W
[

J 0
0 I

] [
0 Ŷ12

Ŷ21 Ŷ22

] [
J̃ 0
0 I

]
T̃

= W
[

0 JŶ12

Ŷ21 J̃ Ŷ22

]
T̃ , (9)

EYẼ = W
[

I 0
0 N

]
TYW̃

[
I 0
0 Ñ

]
T̃

= W
[

I 0
0 N

] [
0 Ŷ12

Ŷ21 Ŷ22

] [
I 0
0 Ñ

]
T̃

= W
[

0 Ŷ12Ñ
NŶ21 NŶ22Ñ

]
T̃ , (10)

(I − Pl)F(I − P̃r)

= W
[

0 0
0 I

]
W−1FT̃−1

[
0 0
0 I

]
T̃

= W
[

0 0
0 I

] [
F̂11 F̂12

F̂21 F̂22

] [
0 0
0 I

]
T̃

= W
[

0 0
0 F̂22

]
T̃ . (11)

By (9), (10), and (11), the PGDTSE (2) can be equiv-
alently written as

NŶ21 − Ŷ21 J̃ = 0,

JŶ12 − Ŷ12Ñ = 0,

Ŷ22 − NŶ22Ñ = F̂22.

(12)

Since A and Ã are nonsingular, J and J̃ have no
zero eigenvalue. Thus, the first two equations in (12),
which are standard continuous-time Sylvester equa-
tions, have unique trivial solutions, respectively; see
[11].

The third equation in (12) is a standard discrete-
time Sylvester equation, and has a unique solution,
which can be formulated as

Ŷ22 =

min{ν,ν̃}−1∑
k=0

NkF̂22Ñk

=
1

2π

∫ 2π

0
(e−iωN − I)−1F̂22(eiωÑ − I)−1dω.

By the expression of Ŷ22 and Ŷ = TYW̃, it is easy to
verify that (7) and (8) hold. ⊓⊔

3 Iterative method for PGCTSE
The ADI method and the Smith method are among
the most popular iterative methods for solving large
sparse standard Lyapunov or Sylvester matrix equa-
tions; see, e.g., [8, 17, 19, 21, 24, 32]. Recently, these
iterative methods are extended to projected general-
ized Lyapunov equations by Stykel [31]. In this sec-
tion, we review the ADI method and the Smith method
for iteratively solving the PGCTSE (1), see [35].

3.1 The ADI method

In the remainder of this paper, we always assume that
the pencils λE − A and λẼ − Ã are c-stable, i.e., all
their finite eigenvalues have negative real part. In this
case, the matrices A and Ã are nonsingular.
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Multiplying the first equation in (1) on the left by
A−1 and on the right by Ã−1, we get the following pro-
jected standard Sylvester equation

(A−1E)X + XẼÃ−1 + A−1PlFP̃rÃ−1 = 0,
X = PrXP̃l.

(13)

The iterates Xi of the ADI iteration for (13) are usual-
ly generated by the alternating solution of two linear
systems with multiple right-hand sides

(A−1E + βiI)Xi− 1
2
=

−Xi−1(ẼÃ−1 − βiI) − A−1PlFP̃rÃ−1,

Xi(ẼÃ−1 + αiI) =
−(A−1E − αiI)Xi− 1

2
− A−1PlFP̃rÃ−1,

where X0 = 0 and the shift parameters {αi}ki=1 and
{βi}ki=1 are elements of C−. These two equations are
equivalent to the following single iteration step:

Xi = (A−1E + βiI)−1(A−1E − αiI)Xi−1

·(ẼÃ−1 − βiI)(ẼÃ−1 + αiI)−1

−(αi + βi)(A−1E + βiI)−1A−1

·PlFP̃rÃ−1(ẼÃ−1 + αiI)−1. (14)

We can rewrite the iteration (14) as

Xi = (E + βiA)−1(E − αiA)Xi−1(Ẽ − βiÃ)(Ẽ + αiÃ)−1

−(αi + βi)(E + βiA)−1PlFP̃r(Ẽ + αiÃ)−1. (15)

Let X denote the exact solution of (1). Then it is easy
to verify that the error matrix X − Xi obeys the recur-
sion

X − Xi = (E + βiA)−1(E − αiA)(X − Xi−1)

·(Ẽ − βiÃ)(Ẽ + αiÃ)−1

= · · ·
= AiXÃi, (16)

where

Ai = Pr(E+βiA)−1(E−αiA) · · · (E+β1A)−1(E−α1A),
(17)

and

Ãi = (Ẽ−β1Ã)(Ẽ+α1Ã)−1 · · · (Ẽ−βiÃ)(Ẽ+αiÃ)−1P̃l.
(18)

By using (3), (4), (5), and (6), we obtain

Ai = T−1
[

Ji 0
0 0

]
T, Ãi = W̃

[
J̃i 0
0 0

]
W̃−1,

(19)

where

Ji = (I + βiJ)−1(I − αiJ) · · · (I + β1J)−1(I − α1J),

J̃i = (I − β1 J̃)(I + α1 J̃)−1 · · · (I − βi J̃)(I + αi J̃)−1.

This implies that if {αi}ki=1 contains all finite eigen-
values (multiple eigenvalues counted by their algebra-
ic multiplicities) of A−1E or if {βi}ki=1 contains all fi-
nite eigenvalues of Ã−1Ẽ, then X − Xi ≡ 0. This is
due to the Cayley-Hamilton theorem [11], which s-
tates that p(A) ≡ 0 for A’s characteristic polynomial
p(λ) = det(λI − A).

From equation (16), we can see that the param-
eters {αi}ki=1 and {βi}ki=1 should be chosen to achieve
min
α j, β j
∥Ai∥2 · ∥Ãi∥2.

About the ith approximate solution Xi of the ADI
method, by using the equations (16)-(19), we have the
following estimate.

Theorem 3 Assume J and J̃, in the Weierstrass form
(3) and (4) of the pencils λE − A and λẼ − Ã, are
diagonal. Then

∥X − Xi∥2 6 κ(T )κ(W̃)ρ(Ai)ρ(Ãi)∥X∥2.

Note that the iterate Xi is explicitly computed by
the ADI iteration (15), so the storage requirement is
O(mn). One should notice that in many cases the s-
torage requirement is the limiting factor rather than
the amount of computation. We note that low-rank
schemes are the only existing methods that can effec-
tively solve large-scale Lyapunov/Sylvester equation-
s.

Assume that the low-rank right-hand side F has
the factored form F = BC with B ∈ Rn×r and C ∈
Rr×m. Instead of explicitly forming Xi, the low-rank
method compute and store approximate solutions in
low-rank factored form. If the numerical rank l of X
is much smaller than min{m, n}, i.e. l ≪ min{m, n},
then the storage is reduced from O(mn) to O(ml) or
O(nl).

The key idea in the low-rank version of the ADI
iteration is to rewrite the iteration Xi in (15) as an outer
product:

Xi = UiHiVi.

This is always possible since starting with the ini-
tial guess X0 = 0n×m. The low-rank ADI (LR-
ADI) method is based on (15). Replacing Xi−1 with
Ui−1Hi−1Vi−1, (15) can be reformulated in terms of the
low-rank factors as

Xi = UiHiVi,
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where

Ui =
[

(E + βiA)−1PlB (E + βiA)−1(E − αiA)Ui−1
]
,

Hi =

[
−(αi + βi)I

Hi−1

]
,

Vi =

[
CP̃r(Ẽ + αiÃ)−1

Vi−1(Ẽ − βiÃ)(Ẽ + αiÃ)−1

]
.

From the fact that Y0, H0 and Z0 are all zero matrices,
it can be seen that Ui is n × kr, Hi is kr × kr and Vi is
kr × m. Thus the rank of Xi is no more than kr. Since
the order of the ADI parameters {αi}ki=1 and {βi}ki=1 is
not important, the ordering of {αi}ki=1 and {βi}ki=1 can
be reversed. As shown in [8], we have the following
iterative scheme

Ui =
[

U(1) U(2) · · · U(i)
]
,

Vi =
[

V (1) V (2) · · · V (i)
]
,

where

U(1) = (E + β1A)−1PlB,
U( j+1) = (E + β j+1A)−1(E − α jA)U( j),

V (1) = CP̃r(Ẽ + α1Ã)−1,

V ( j+1) = V ( j)(Ẽ − β jÃ)(Ẽ + α j+1Ã)−1.

So we have

Xi = UiHiVi,

Hi = diag (−(α1 + β1)Ir, · · · ,−(αi + βi)Ir) .

The LR-ADI method for solving the PGCTSE (1)
with F = BC is described in Algorithm 1.

Algorithm 1. The LR-ADI method

Input: E, A ∈ Rn×n, Ẽ, Ã ∈ Rm×m, B ∈ Rn×r and C ∈
Rr×m with λE − A and λẼ − Ã being c-stable; the
ADI shifts {α1, α2, · · · , αk} and {β1, β2, · · · , βk}
computed by Algorithm 2.

Output: U, H and V such that X = UHV is an
approximate solution of the PGCTSE (1) with
F = BC.

1. Compute U1 = (E + β1A)−1PlB, V1 = CP̃r(Ẽ +
α1B̃)−1, and H1 = −(α1 + β1)Ir;

2. Set U = U1, V = V1, and H = H1;

3. For i = 1, 2, · · ·
Ui+1 = (E + βi+1A)−1(E − αiA)Ui;

Vi+1 = Vi(Ẽ − βiÃ)(Ẽ + αi+1Ã)−1;

Hi+1 = −(αi+1 + βi+1)Ir;

U = [U,Ui+1];

V =
[

V
Vi+1

]
;

H = diag(H,Hi+1);

End For

We make a few comments on Algorithm 1:

(i) Since the computation of the Weierstrass canon-
ical form is sensitive under small perturbation-
s, we should make use of the generalized real
Schur factorization to compute the spectral pro-
jectors, see, for example, [25]. For large-scale
problems, the computation of the spectral pro-
jectors by the generalized real Schur factoriza-
tion may be very expensive. However, in some
applications the spectral projectors can be ex-
pressed in explicit form by using the special
block structure of the matrices E, A, Ẽ and Ã;
see numerical examples in this paper or the ref-
erence [31].

(ii) If the number of shift parameters k is smaller
than the number of iterations required to obtain
a prescribed tolerance, then we reuse these pa-
rameters in a cyclic manner.

In the remainder of this subsection, we will con-
sider the choice of shift parameters, which is vitally
important to the successful application of the LR-ADI
iteration. The rate of convergence is dominated by
spectral radii of matrices Ai and Ãi given by (19).
The minimization of these spectral radii with respect
to the parameters {α j}ij=1 and {β j}ij=1 leads to the gen-
eralized ADI minimax problem

min
{α1 , . . . , αi} ∈ C−
{β1 , . . . , βi} ∈ C−

max
x ∈ E f
y ∈ F f

i∏
j=1

∣∣∣∣∣∣ (1 − α jx)(1 − β jy)
(1 + β jx)(1 + α jy)

∣∣∣∣∣∣ ,
where E f and F f denote two sets of finite eigenvalues
of the pencils λE − A and λẼ − Ã, respectively. In
practice since the eigenvalues of the pencils λE − A
and λẼ − Ã are unknown and expensive to compute,
E f and F f are often replaced by domains that contain
the eigenvalues of λE − A and λẼ − Ã, respectively.
Note that A and Ã are nonsingular, this problem is e-
quivalent to find {α j}ij=1 and {β j}ij=1 such that

min
{α1 , . . . , αi} ⊂ C−
{β1 , . . . , βi} ⊂ C−

max
x ∈ E\{0}
y ∈ F\{0}

i∏
j=1

∣∣∣∣∣∣ (x − α j)(y − β j)
(x + β j)(y + α j)

∣∣∣∣∣∣ , (20)
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where E and F denote spectrums of the matrices A−1E
and Ã−1Ẽ, respectively.

To compute the suboptimal ADI shift parameters
for the standard Lyapunov equation with Ã = AT and
E = Ẽ = I, a heuristic algorithm has been proposed
in [21]. It chooses suboptimal ADI parameters from a
set R, which is taken to be the union of the Ritz values
of A and the reciprocals of the Ritz values of A−1, ob-
tained by two Arnoldi processes, with A and A−1. As
shown in [21], the Ritz values obtained by the Arnol-
di process with A tend to be located near the “outer”
eigenvalues, i.e., the eigenvalues near the convex hull
of the spectrum. In particular, the eigenvalues of large
magnitude are usually approximated well. In contrast,
they are generally poor approximations to the eigen-
values near the origin. Therefore, one computes the
reciprocals of the Ritz values obtained by the Arnoldi
process with A−1 to approximate the eigenvalues near
the origin.

In [8], this idea has been extended to Sylvester
equations. A heuristic procedure which is easy to im-
plement has been proposed in [8]. It can also be natu-
rally extended to the generalized problem (20). Here,
we need to compute the largest and smallest (in mod-
ulus) non-zero approximate eigenvalues of A−1E and
Ã−1Ẽ, respectively. Note that E and Ẽ are assumed to
be singular, inverses of A−1E and Ã−1Ẽ do not exist.
In [31], Stykel proposed a strategy to overcome this
difficult. Define

P = Pr(EPr − AQr)−1

= (PlE − QlA)−1Pl = T−1
[

I 0
0 0

]
W−1

and

P̃ = P̃r(ẼP̃r − ÃQ̃r)−1

= (P̃lẼ − Q̃lÃ)−1P̃l = T̃−1
[

I 0
0 0

]
W̃−1,

where T , T̃ , W and W̃ are the transformation matrices
as in (3) and (4). A simple calculation gives that

PA = T−1
[

J 0
0 0

]
T, P̃Ã = T̃−1

[
J̃ 0
0 0

]
T̃ .

Then it is clear that the reciprocals of the smallest non-
zero eigenvalues of A−1E and Ã−1Ẽ are the largest
eigenvalues of PA and P̃Ã, respectively. Thus, we can
run two Arnoldi processes with the matrices PA and
P̃Ã to compute the smallest non-zero eigenvalues of
A−1E and Ã−1Ẽ, respectively. In some applications,
similar to the projectors Pr, Pl, P̃r and P̃l, the matri-
ces P and P̃ can be also obtained in explicit form by

making use of the special block structure of the matri-
ces E, A, Ẽ and Ã.

The algorithm for choosing {α j}kj=1 and {β j}kj=1 is
summarized in Algorithm 2. For more details about
this algorithm, the interesting reader is referred to [8].

Algorithm 2. Choose ADI parameters

Input: E, A ∈ Rn×n, Ẽ, Ã ∈ Rm×m, b ∈ Rn and c ∈ Rm

with λE − A and λẼ − Ã being c-stable.

Output: ADI parameters {α1, α2, . . . , αi} and
{β1, β2, . . . , βi}.

1. Run the Arnoldi process with A−1E on b to obtain
the set E+A of Ritz values.

2. Run the Arnoldi process with PA on b to get the
set E−A of Ritz values.

3. Set E = E+A ∪ (1/E−A).

4. Run the Arnoldi process with Ã−1Ẽ on c to obtain
the set F+B of Ritz values.

5. Run the Arnoldi process with P̃Ã on c to obtain the
set F−B of Ritz values.

6. Set F = (F+B) ∪ (1/F−B).

7. Set {α1, β1} = arg min
α ∈ E
β ∈ F

max
x ∈ E
y ∈ F

∣∣∣∣ (x−α)(y−β)
(x+β)(y+α)

∣∣∣∣,
8. For i = 2, 3, · · · , k

Set {αi, βi} =

arg min
α ∈ E′
β ∈ F′

max
x ∈ E
y ∈ F

∣∣∣∣ (x−α)(y−β)
(x+β)(y+α)

∣∣∣∣∏i−1
j=1

∣∣∣∣ (x−α j)(y−β j)
(x+β j)(y+α j)

∣∣∣∣ ,
where E′ is E with α1, . . . , αi−1 deleted, and simi-
larly for F′,

End For

3.2 The Smith method

The Smith method is derived from the projected
discrete-time Sylvester equationAXÃ − X − (α + β)PrBCP̃l = 0,

X = PrXP̃l,
(21)

where

A = (E + βA)−1(E − αA),

Ã = (Ẽ − βÃ)(Ẽ + αÃ)−1,

B = (E + βA)−1B, C = C(Ẽ + αÃ)−1,
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The equation (21) is equivalent to the PGCTSE (1)
with F = BC for any two parameters α, β ∈ C−.

From (21), we obtain the Smith iteration X0 = PrBCP̃l,

Xi = AXi−1Ã − (α + β)PrBCP̃l.

If all of the shifts in the ADI iteration (15) are
constant, i.e., αi = α, βi = β (i = 1, 2, · · · ), then the
ADI iteration reduces to the Smith method. In [21],
Penzl illustrated that the ADI iteration with a single
shift (Smith method) converges very slowly, while a
moderate increase in the number of shifts s accelerates
the convergence nicely. However, it is also observed
that the speed of convergence is hardly improved by
a further increase of s; see Table 2.1 in [21]. These
observations lead to the idea of the cyclic Smith(s)
iteration, a special case of ADI where s different shifts
are used in a cyclic manner.

The low-rank scheme based on the Smith(s) itera-
tion was also introduced in [21]. The method is called
the cyclic low-rank Smith method (LR-Smith(s)) and
is a special case of LR-ADI, where s shifts are reused
in a cyclic manner. This idea can be generalized for
the equation (1). The generalized LR-Smith method
consists of two steps. First the matrices Ys, Hs and
Zs are obtained by an s step generalized LR-ADI it-
eration. Then one solves the discrete-time Sylvester
equation

AsXBs − X + UsHsVs = 0,

where As and Bs is as in (17) and (18) with i = s,
respectively.

The generalized LR-Smith method for the
PGCTSE (1) with F = BC is described in Algorith-
m 3.

Algorithm 3. The LR-Smith(s) method

Input: E, A ∈ Rn×n, Ẽ, Ã ∈ Rm×m, B ∈ Rn×r and
C ∈ Rr×m with λE−A and λẼ− Ã being c-stable.

Output: U, H and V such that Y = UHV is an
approximate solution of the PGCTSE (1) with
F = BC.

1. Compute Us, Hs and Vs by using Algorithm 1 with
k = s;

2. Set U = Ū = Us, H = H̄ = Hs and V = V̄ = Vs;

3. For i = 1, 2, · · ·
For j = 1, 2, · · · , s

Ū = (E + β jA)−1(E − α jA)Ū;

V̄ = V̄(Ẽ − β jÃ)(Ẽ + α jÃ)−1;
End For
U = [U, PrŪ];

V =
[

V
V̄P̃l

]
;

H = diag(H, H̄);
End For

4 Numerical method for PGDTSE

In this section we present a numerical method for
solving the PGDTSE (2) with F = BC.

From (7) and F = BC, it follows that the solution
Y can be expressed as

Y =
min{ν,ν̃}−1∑

i=0

(A−1E)iA−1(I−Pl)BC(I−P̃r)Ã−1(ẼÃ−1)i.

Thus, Y can be reformulated in terms of the low-rank
factors as

Y = UV,

where

U = [A−1(I − Pl)B, A−1EA−1(I − Pl)B,
· · · , (A−1E)min{ν,ν̃}−1A−1(I − Pl)B],

V =


C(I − P̃r)Ã−1

C(I − P̃r)Ã−1ẼÃ−1

...

C(I − P̃r)Ã−1(ẼÃ−1)min{ν,ν̃}−1

 .
Therefore, we obtain a method for solving the
PGDTSE as described in Algorithm 4.

Algorithm 4. Numerical method for PGDTSE

Input: E, A ∈ Rn×n, Ẽ, Ã ∈ Rm×m, B ∈ Rn×r and
C ∈ Rr×m with λE−A and λẼ− Ã being c-stable.

Output: U and V such that Y = UV is a solution of
the PGDTSE (2) with F = BC.

1. Compute U1 = A−1(I−Pl)B and V1 = C(I−P̃r)Ã−1;

2. Set U = U1 and V = V1;

3. For i = 1, · · · ,min{ν, ν̃} − 1
Ui+1 = A−1EUi;
Vi+1 = ViẼÃ−1;
U = [U,Ui+1];

V =
[

V
Vi+1

]
;

End For
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5 Applications
In this section, we show that the PGCTSE (1) and the
PGDTSE (2) play an important role in computing the
HL2 inner production of two c-stable descriptor sys-
tems.

Let H(s) = C(sE − A)−1B and H̃(s) = C̃(sẼ −
Ã)−1B̃ be two c-stable systems. As shown in [27],
H(s) and H̃(s) can be decomposed into

H(s) = Hsp(s) + P(s), H̃(s) = H̃sp(s) + P̃(s),

where

Hsp(s) = CPr(sE − A)−1PlB,

P(s) = C(I − Pr)(sE − A)−1(I − Pl)B,
H̃sp(s) = C̃P̃r(sẼ − Ã)−1P̃lB̃,

P̃(s) = C̃(I − P̃r)(sẼ − Ã)−1(I − P̃l)B̃.

Here, Hsp(s), H̃sp(s) are called the strictly proper parts
of H(s), H̃(s), while P(s), P̃(s) are called the polyno-
mial parts of H(s), H̃(s), respectively.

Define theHL2 inner product of H(s) and H̃(s) by

⟨H(s), H̃(s)⟩HL2 = ⟨Hsp(s), H̃sp(s)⟩H2 + ⟨P(s), P̃(s)⟩L2

=
1

2π

∫ ∞
−∞

trace
(
Hsp(iω)H̃T

sp(iω)
)

dω

+
1

2π

∫ 2π

0
trace

(
P(eiω)P̃T (eiω)

)
dω,

where the notation trace(·) denotes the trace of a ma-
trix. Then, the HL2 norm of H(s) induced by the HL2
inner product is

∥H(s)∥HL2 =

√
∥Hsp(s)∥2H2

+ ∥P(s)∥2L2

=

√
⟨Hsp(s),Hsp(s)⟩H2 + ⟨P(s), P(s)⟩L2 .

The following theorem establishes a connection
between the HL2 inner product of two c-stable sys-
tems and the solutions of two projected generalized
Sylvester equations.

Theorem 4 Assume that H(s) = C(sE − A)−1B and
H̃(s) = C̃(sẼ − Ã)−1B̃ are two c-stable systems. Let X
be the solution of the PGCTSE

AXẼT + EXÃT + PlBB̃T P̃T
l = 0, X = PrXP̃T

r (22)

and Y be the solution of the PGDTSE

AYÃT − EYẼT = (I − Pl)BB̃T (I − P̃l)T , PrYP̃T
r = 0.

(23)
Then, we have

(1) ⟨Hsp(s), H̃sp(s)⟩H2 = trace(CXC̃T );

(2) ⟨P(s), P̃(s)⟩L2 = trace(CYC̃T );

(3) ⟨H(s), H̃(s)⟩HL2 = trace(C(X + Y)C̃T ).

Proof: Following the similar arguments as in [18] and
Section 2, we can show that the solutions of (22) and
(23) can be expressed as

X =
1

2π

∫ ∞
−∞

(−iωE − A)−1PlBB̃T P̃T
l (iωẼT − ÃT )−1dω

and

Y =
1

2π

∫ 2π

0
(e−iωE − A)−1(I − Pl)BB̃T

·(I − P̃l)T (eiωẼ − Ã)−T dω.

Thus, we have

⟨Hsp(s), H̃sp(s)⟩H2

=
1

2π

∫ ∞
−∞

trace
(
Hsp(iω)H̃T

sp(iω)
)

dω

=
1

2π

∫ ∞
−∞

trace
(
C(−iωE − A)−1PlB

· B̃T P̃T
l (iωẼT − ÃT )−1C̃T

)
dω

= trace(CXC̃T ),

⟨P(s), P̃(s)⟩L2

=
1

2π

∫ 2π

0
trace

(
P(e−iω)P̃T (eiω)

)
dω

=
1

2π

∫ 2π

0
trace

(
C(e−iωE − A)−1(I − Pl)

· BB̃T (I − P̃l)T (eiωẼ − Ã)−T C̃T
)

dω

= trace(CYC̃T ).

⊓⊔
Similarly to Theorem 4, we easily obtain the fol-

lowing result.

Theorem 5 Let H(s) = C(sE − A)−1B and H̃(s) =
C̃(sẼ − Ã)−1B̃ be two c-stable systems. Let X be the
solution of the PGCTSE

ẼT XA + ÃT XE + P̃T
r C̃TCPr = 0, X = P̃T

l XPl (24)

and Y be the solution of the PGDTSE

ÃT YA − ẼT YE = (I − P̃r)T C̃TC(I − Pr), P̃T
l YPl = 0.

(25)
Then, we have
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(1) ⟨Hsp(s), H̃sp(s)⟩H2 = trace(B̃T XB);

(2) ⟨P(s), P̃(s)⟩L2 = trace(B̃T YB);

(3) ⟨H(s), H̃(s)⟩HL2 = trace(B̃T (X + Y)B).

As a consequence of Theorem 4 and Theorem 5,
we obtain the following result, which is also given in
[29].

Corollary 6 Assume that H(s) = C(sE − A)−1B is a
c-stable system. Let Gpc,Gpo be the proper control-
lability and observability Gramians, and Gic,Gio the
improper controllability and observability Gramian-
s, i.e., Gpc,Gpo are the unique symmetric, positive-
semidefinite solutions of the PGCTLEs

AGpcET + EGpcAT + PlBBT PT
l = 0,

Gpc = PrGpcPT
r ,

(26)

ATGpoE + ETGpoA + PT
r CTCPr = 0,

Gpo = PT
l GpoPl,

(27)

and Gic,Gio are the unique symmetric, positive-
semidefinite solutions of the PGDTLEs

AGicAT − EGicET = (I − Pl)BBT (I − Pl)T ,

PrGicPT
r = 0,

(28)

ATGioA − ETGioE = (I − Pr)TCTC(I − Pr),
PT

l GioPl = 0.
(29)

Then, we have

(1) ∥Hsp(s)∥H2 =

√
trace(CGpcCT ) =√

trace(BTGpoB);

(2) ∥P(s)∥L2 =
√

trace(CGicCT ) =
√

trace(BTGioB);

(3) ∥H(s)∥HL2 =

√
trace(C(Gpc + Gic)CT ) =√

trace(BT (Gpo + Gio)B).

We now consider the HL2 inner product of two
c-stable single input single output (SISO) systems.

Theorem 7 Assume that H(s) = C(sE − A)−1B and
H̃(s) = C̃(sẼ − Ã)−1B̃ are two c-stable SISO systems.
Let X be the solution of the PGCTSE

AXẼ + EXÃ + PlBC̃P̃r = 0, X = PrXP̃l (30)

and Y be the solution of the PGDTSE

AYÃ−EYẼ = (I−Pl)BC̃(I− P̃r), PrYP̃l = 0. (31)

Then, we have

(1) ⟨Hsp(s), H̃sp(s)⟩H2 = trace(CXB̃);

(2) ⟨P(s), P̃(s)⟩L2 = trace(CYB̃);

(3) ⟨H(s), H̃(s)⟩HL2 = trace(C(X + Y)B̃).

Proof: Since H(s) and H̃(s) are SISO systems, it fol-
lows that

Gsp(−iω)G̃T
sp(iω)

= Gsp(−iω)G̃sp(iω)

= C(−iωE − A)−1PlBC̃(iωẼ − Ã)−1P̃lB̃
= C(−iωE − A)−1PlBC̃P̃r(iωẼ − Ã)−1B̃,

P(e−iω)P̃T (eiω)
= P(e−iω)P̃(eiω)
= C(e−iωE − A)−1(I − Pl)BC̃(eiωẼ − Ã)−1(I − P̃l)B̃
= C(e−iωE − A)−1(I − Pl)BC̃(I − P̃r)(eiωẼ − Ã)−1B̃.

Then, we can prove the theorem by following the
same arguments as the proof of Theorem 4. ⊓⊔

The following result, which results directly from
(7), shows that the HL2 norm of a c-stable SISO sys-
tem can be formulated by the solutions of a PGCTSE
and a PGDTSE.

Corollary 8 Let H(s) = C(sE − A)−1B be a c-stable
SISO system. Let X be the solution of the PGCTSE

AXE + EXA + PlBCPr = 0, X = PrXPl

and Y be the solution of the PGDTSE

AYA − EYE = (I − Pl)BC(I − Pr), PrYPl = 0.

Then, we have

(1) ∥Hsp(s)∥H2 =
√

CXB;

(2) ∥P(s)∥L2 =
√

CYB;

(3) ∥H(s)∥HL2 =
√

C(X + Y)B.

6 Numerical experiments
In this section, we present some numerical examples
to illustrate the performance of the LR-ADI method
and the LR-Smith(s) method for the PGCTSE (1).
In the following examples, we compare the numeri-
cal behavior of these two methods with respect to the
number of iterations (ITERs), the CPU time (in sec-
onds), and the relative residual (RES). Here the rela-
tive residual is defined by

RES ≡ ∥AXiẼ + EXiÃ + PlFP̃r∥F
∥PlFP̃r∥F

,
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Table 1: MVP, LSS, and LU at every iteration step

LR-ADI LR-Smith(s)
MVP for E − αA r rs2

MVP for (Ẽ − βÃ)T r rs2

LSS for E + βA r rs2

LSS for (Ẽ + αÃ)T r rs2

LU for E + βA 1 s
LU for (Ẽ + αÃ)T 1 s

where Xi denotes the approximate solution obtained
by the LR-ADI method or the LR-Smith method.

Let MVP denote the number of matrix vector
products, LSS denote the number of linear system
solvers, and LU the number of the LU decomposition
of matrices at every iteration for these two method-
s. Table 1 has a rough count of the expenses of LR-
ADI and LR-Smith(s) at every iteration. Only the ma-
jor expenses are considered. From Table 1, we can
see that LR-Smith(s) needs more MVP, LSS, and LU
than LR-ADI at every iteration, so LR-ADI is more
efficient than LR-Smith(s) for the computation cost at
every iteration.

All numerical experiments are performed on an
Intel Pentium Dual E2160 with CPU 1.80GHz and
RAM 2GB under the Window XP operating system
and the usual double precision, where the floating
point relative accuracy is 2.22 × 10−16.

6.1 Example 1

For the first experiment, we consider the 2D instation-
ary Stokes equation that describes the flow of an in-
compressible fluid in a domain. We use the spatial
discretization of this equation by the finite difference
method on a uniform staggered grid to generate two
descriptor systems

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(32)

and

Ẽ ẋ(t) = Ãx(t) + B̃u(t),

y(t) = C̃x(t).

The matrices in (32) are given by

E =
[

I 0
0 0

]
∈ Rn×n, A =

[
A11 A12
A21 0

]
∈ Rn×n.

These matrices are sparse and have a special block
structure. Using this structure, the projectors Pl and

Table 2: LR-ADI, k = 15 vs. LR-Smith(5)

LR-ADI LR-Smith(5)
ITERs 40 11

MVP for E − αA 40 275
MVP for (Ẽ − βÃ)T 40 275

LSS for E + βA 40 275
LSS for (Ẽ + αÃ)T 40 275

LU for E + βA 40 55
LU for (Ẽ + αÃ)T 40 55

CPU 25.48 37.21
RES 8.1879e-13 5.9044e-14

Pr onto the left and right deflating subspaces of the
pencil λE − A can be computed as

Pl =

[
Π −ΠA11A12(A21A12)−1

0 0

]
,

Pr =

[
Π 0

−(A21A12)−1A21A11Π 0

]
,

where Π = I − A12(A21A12)−1A21 is the orthogonal
projector onto the kernel of A21 along the image of
A12, see [28]. The matrices A12 and A21 have full rank
and the pencil λE−A is of index 2. The pencil λẼ− Ã
has the same structure as λE−A. In our experiment the
state space dimensions of the problems are n = 2132
and m = 1280, respectively. The matrix F in (1) is
F = BC̃ with B ∈ Rn and C̃T ∈ Rm.

The numerical results are presented in Table 2.
We point out that the main computational cost is at-
tributed to the LU decomposition of matrices. So, the
CPU time for the LR-Smith(5) method is not much
more than that required by the LR-ADI method with
k = 15. The convergence curves for these two meth-
ods are exhibited Figure 1.

We also computed the solution of the PGDTSE
(2) with F = BC̃. Since the indices of the pencils in
this example is 2, two iteration step of Algorithm 4 is
required. It costs only 2.41 seconds and obtains the
relative residual 2.2104e-15.

6.2 Example 2

For the second experiment, we consider a holonomi-
cally constrained damped mass-spring system with g
masses as in [30]. The vibration of this system is de-
scribed by the descriptor system (32) with the matri-
ces

E =

 I 0 0
0 M 0
0 0 0

 , A =

 0 I 0
K D −NT

N 0 0

 ,
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Figure 1: Convergence curves of LR-ADI and LR-
Smith(5) for Example 1.

where M = diag(m1,m2, · · · ,mg) is the symmetric
positive definite mass matrix, K ∈ Rg×g is the tridi-
agonal stiffness matrix, D ∈ Rg×g is the tridiagonal
damping matrix, and N is the matrix of constraints.
The spectral projectors Pl and Pr can be expressed as

Pl =

 Π 0 −ΠM−1DQ
−ΠT D(I−Π) ΠT −ΠT (K+DΠM−1D)Q

0 0 0

 ,
Pr =

 Π 0 0
−ΠM−1D(I − Π) Π 0

QT (KΠ − DΠM−1D(I − Π)) QT DΠ 0

 .
Here Q = M−1NT (NM−1NT )−1 and Π = I −
M−1NT (NM−1NT )−1N = I − QN is a projector onto
the kernel of N along the image of M−1NT . If N has
full row rank, the the pencil λE − A is of index 3. We
use the same method to generate the pencil λẼ − Ã.
In this experiment the state space dimensions of the
problems are n = 1261 and m = 1161, respectively.

The computational results were reported in Fig-
ure 2 and Table 3. We note that the iteration steps of
the LR-Smith(5) method is 17 while the steps of LR-
ADI is 39, but the CPU time of LR-Smith(5) method
is much more than that of LR-ADI method. This is
because the computation cost at every iteration of two
methods is very different.

7 Conclusions
In this paper, we have reviewed the low-rank alternat-
ing direction implicit method and the low-rank cyclic

Table 3: LR-ADI, k = 15 vs. LR-Smith(5)

LR-ADI LR-Smith(5)
ITERs 39 17

MVP for E − αA 39 425
MVP for (Ẽ − βÃ)T 39 425

LSS for E + βA 39 425
LSS for (Ẽ + αÃ)T 39 425

LU for E + βA 39 85
LU for (Ẽ + αÃ)T 39 85

CPU 41.67 112.86
RES 7.3098e-11 1.4239e-10

Figure 2: Convergence curves of LR-ADI and LR-
Smith(5) for Example 2.

Smith method for solving the PGCTSE with low-
rank right-hand sides. We have proposed a numeri-
cal method for the PGDTSE. Moreover, we show that
these two equations are useful for computing the HL2
inner product of two c-stable descriptor systems. Nu-
merical experiments presented in this paper show the
effectiveness of these methods.
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