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Abstract: In this paper, we consider a complex network of strings. Suppose that the network is comprised of
eight strings with a fixed vertex, and other exterior vertices that are imposed velocity feedback controller. The
displacement is not continuous at one interior node, while at the other interior nodes continuity holds and the force
is not balanced at all interior nodes. We design controllers for the nodes with discontinuous displacement and with
unbalanced force. We show that the operator determined by the closed loop system has a compact resolvent and
generates C0 semigroup in an appropriate Hilbert space. Under certain condition, we prove that the closed loop
system is asymptotically stable. We also show that there is a sequence of generalized eigenvectors of the system
operator, which forms a Riesz basis. Hence the spectrum determined growth condition holds. If the imaginary axis
is not an asymptote of the spectrum, then the closed loop system is exponentially stable.
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1 Introduction

The dynamical behavior of networks and their control
problems, which appear widely in engineering (see
[1, 2]), are hot issues of great interest in engineering
and applied mathematics. Early works on network-
s mainly considered the networks described by Ordi-
nary Differential Equations (ODE for short), which is
called the Point-to-Point networks system. As an ap-
plication of networks, the ODE network systems have
given nice results for some actual problems. Howev-
er, some kinds of structures, such as multi-link flex-
ible structure (see [1]), electron scattering and neu-
ral impulses (see [3, 4, 5]), cannot be suitably de-
scribed by ODE networks, since for such kind of net-
works, not only the global dynamic behavior but al-
so the interaction and transmission of effects at the
nodes have to be taken into account due to the flexi-
bility of individual elements. Therefore, the networks
described by Partial Differential Equations (PDE for
short) are proposed. In the past decades, with the
wide use of flexible material in engineering, various
physical models of multi-link flexible structures, for
instance, trusses, frames, robot arms, solar panels, an-
tennae and deformable mirrors that are consisting of
finitely many interconnected flexible elements such as
strings, beams, plates and shells, have been mathe-
matically studied. For more applications of flexible
structures networks we refer to [1, 6, 7, 8] and the ref-
erences therein.

Because of the importance of the PDE networks
in practice, many mathematicians have devoted to s-
tudy the control problem of networks such as strings
networks and beams networks, a lot of nice result-
s have been obtained. For example, Rolewicz [9]
proved that networks are not exact controllable un-
der some geometrical conditions, which may be the
earliest results of control problems for flexible struc-
ture networks. Chen et al. [2] dealt with the stabi-
lization problem for serially connected beams by the
energy multiplier method. Using the similar method,
[10] got the exponential stabilization of a long chain
of coupled vibrating strings. Ammari et al. [11, 12]
and [13] discussed the stabilization problem of tree-
shaped and star-shaped of elastic strings and assert-
ed that the networks are asymptotically stable un-
der some conditions. A similar method was used to
consider the energy decay of elastic Euler-Bernoulli
beams with star-shaped and tree-shaped network con-
figuration (see [14]). By virtue of Hamiltons princi-
ple, Schmidt [15] derived a nonlinear system of partial
differential equations for networks of vibrating strings
and obtained a controllability result for the linearized
coupled wave equations.

Compared with rigid structures, the control prob-
lems of flexible structures are more complicated be-
cause the system we want to control is described by
partial differential equations (PDEs) which must be
discussed in an infinite dimensional space. It will be-
come a difficult problem to give an analytic solution
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although it may be simple in rigid structures. By the
great efforts of many mathematicians and engineers,
there have obtained many nice results on the control
problems of flexible structures. For example, Dáger
and Zuazua in [16, 17] studied the controllability of
star-shaped and tree-shaped networks of string and in
[18] Dáger concerned with observation and control of
vibrations in tree-shaped networks of strings; Leuger-
ing et al in [19] studied the exact controllability of
networks of strings and beams by using the multi-
plier method and in [20, 21] studied the domain de-
composition of optimal control problems for dynam-
ic networks of elastic strings and beams; Deckoninck
and Nicaise in [22, 23] studied control and eigenvalue
problems of networks of Euler-Bernoulli beams. The
stabilization of an elastic chain system, as one of the
simplest network structures, also has been studied by
many researchers. For instance, Liu et al [10] studied
the exponential stability of a long chain coupling vi-
brating strings; Xu and Han in [24, 25] studied the sta-
bilization and Riesz basis property of serially connect-
ed Timoshenko beams. For the elastic network struc-
tures, Wang et al in [26] studied Riesz bases and sta-
bilization for tree-shaped Euler-Bernoulli beams con-
taining three beams. However, there was few results
concerned with the stabilization and Riesz basis prop-
erty of the complex networks with circuits. The aim
of this paper is to study a complex network of strings
with one circuit. In particular, we are interested in the
stabilization, Riesz basis property and spectrum deter-
mined growth condition.

Let G = (V,E) be a graph with vertices V =
{a1, a2, · · · , a8} and edges E = {s1, s2, · · · , s8}. The
nodes a2, a3, a4 and a7 are interior nodes of G, and
the vertices a1, a5, a6 and a8 are external nodes of G
(or called boundary of G). The edges s1, s2, · · · , s8
are connected by a1 and a2, a2 and a3, a2 and a4,
a3 and a5, a4 and a6, a3 and a7, a4 and a7,a7 and
a8,respectively. It is shown as in the following Fig-
ure 1. Now we suppose that the elastic structure is
expanded on the graph G, whose equilibrium position
coincides with G. Suppose that the elastic structure
at node a1 is fixed and at a5, a6, a8 are free. De-
note displacement of the elastic structure by yj(x, t)
on the j-th edge at position x ∈ sj and at time t,
j = 1, 2, · · · , 8 respectively. The notation yx(x, t) and
yt(x, t) denote the partial differential with respect to
x and t, respectively.

The motion of the elastic structure on edges sj is
governed by partial differential equation

Tjyj,xx(x, t) = mjyj,tt(x, t),

where j = 1, 2, · · · , 8, and mj and Tj are the mass
densities and tensions, respectively.
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Figure 1: An elastic structure on the graph G

For this elastic structure, we impose the following
geometric and dynamic conditions:

1) At the interior nodes a2, a3 , and a4, displace-
ment of the structure satisfy the continuity condition,
but there are some exterior forces on these nodes, i.e.,

Geometric conditions

y1(1, t) = y2(0, t) = y3(0, t);

y2(1, t) = y4(0, t) = y6(0, t);

y3(1, t) = y5(0, t) = y7(0, t);

at the interior nodes a7 satisfy the following condition

y6(1, t) + y7(1, t) = y8(0, t);

and forces conditions

T1y1,x(1, t)− T2y2,x(0, t)− T3y3,x(0, t) = u1(t);

T2y2,x(1, t)− T4y4,x(0, t)− T6y6,x(0, t) = u2(t);

T3y3,x(1, t)− T5y5,x(0, t)− T7y7,x(0, t) = u3(t);

T6y6,x(1, t)− T8y8,x(0, t) = u6(t);

T7y7,x(1, t)− T8y8,x(0, t) = u7(t);

where uk(t), k = 1, 2, 3, 6, 7 are external exciting lat-
eral forces.

2) At the external vertices a5,a6 and a8, the elastic
structure satisfies the dynamic conditions

Tjyj,x(1, t) = uj(t), j = 4, 5, 8

where uk(t), k = 4, 5, 8 are external exciting lateral
force.
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In order to control this system, at interior nodes
a2, a3, a4, a7 and the exterior vertices a5,a6 and a8,
we adopt velocities feedback controls, i.e.,

uk(t) = −αkyk,t(1, t), k = 1, · · · , 8

In addition, we assume that the initial position of the
system is given by

yj(x, 0) = yj,0(x), yj,t(x, 0) = yj,1(x)

Thus, the closed form of the complex network system
is described by

Tjyj,xx(x, t) = mjyj,tt(x, t),
y1(0, t) = 0,
y1(1, t) = y2(0, t) = y3(0, t),
y2(1, t) = y4(0, t) = y6(0, t),
y3(1, t) = y5(0, t) = y7(0, t),
y6(1, t) + y7(1, t) = y8(0, t),
T1y1,x(1, t)− T2y2,x(0, t)− T3y3,x(0, t)
= −α1y1,t(1, t),
T2y2,x(1, t)− T4y4,x(0, t)− T6y6,x(0, t)
= −α2y2,t(1, t),
T3y3,x(1, t)− T5y5,x(0, t)− T7y7,x(0, t)
= −α3y3,t(1, t),
Tjyj,x(1, t) = −αjyj,t(1, t), j = 4, 5, 8
T6y6,x(1, t)− T8y8,x(0, t) = −α6y6,t(1, t),
T7y7,x(1, t)− T8y8,x(0, t) = −α7y7,t(1, t),
yj(x, 0) = yj,0(x), yj,t(x, 0) = yj,1(x).

(1.1)
The contents of this paper is organized as follows.

In section 2, we shall discuss the well-posedness and
the the asymptotic stability of the system (1.1). In sec-
tion 3, we shall carry out a complete asymptotic anal-
ysis for the spectrum of the system operator. We shall
prove that the operator has a compact resolvent whose
spectrum is located in a strip, parallel to the imaginary
axis under certain conditions. In section 4, we prove
that the generalized eigenvectors of the system oper-
ator are complete, and there is a sequence of general-
ized eigenvectors that form a Riesz basis with paren-
theses. We show that the system satisfies the spectrum
determined growth condition. Therefore, if the imag-
inary axis is not an asymptote of spectrum, then the
system decays exponentially.

2 Well-posedness of the system
In this section we shall study the well-posedness of the
closed loop system (1.1). To this aim, we begin with
formulating this system into an appropriate Hilbert s-
tate space.

Set

Y (x, t) = (y1(x, t), y2(x, t), · · · , y8(x, t)),

We define n× n matrices by

T = diag{T1, T2, · · · , T8},

M = diag{m1,m2, · · · ,m8}

Γ = diag{α1, α2, · · · , α8},

where αi > 0, i = 1, · · · , 8.
Then equation (1.1) can be rewritten in the fol-

lowing form
TYxx(x, t) = MYtt(x, t)
Y (0, t) = CY (1, t)
TYx(1, t)− CτTYx(0, t) = −ΓYt(1, t)
yj(x, 0) = yj,0(x), yj,t(x, 0) = yj,1(x).

(2.2)

where

C =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 1 0



Let the state space be H = {(f, g)τ ∈
H1((0, 1),C8) × L2([0, 1],C8)|f(0) = Cf(1)} e-
quipped with an inner product, for ∀(f, g), (f̂ , ĝ) ∈
H, via ⟨(f, g), (f̂ , ĝ)⟩H =

∫ 1
0 (Tf

′(x), f̂ ′(x))dx +∫ 1
0 (Mg(x), ĝ(x))dx, where(·, ·) denotes the inner

product in C8, a direct verification shows that
||(f, g)||2 = ((f, g), (f, g))H induces a norm on H
and H is a Hilbert space.

We define an operator A in H by

D(A) =

(f, g) ∈ H |

f ∈ H2((0, 1),C8),
g ∈ H1((0, 1),C8)
Tf ′(1)− CτTf ′(0)
= −Γg(1)


(2.3)

A(f, g) = (g(x),M−1Tf ′′(x)) (2.4)

Now we rewrite (2.2) as an evolutionary equation
in H {

dU(t)
dt = AU(t), t > 0

U(0) = U0
(2.5)

where U(t) = (Y, Yt)
τ and U0 = (Y0, Y1) is given.

Theorem 1 Let H and A be defined as before. Then
A is dissipative, A−1 is compact, and hence A gener-
ates a C0 semigroup of contractions on H.
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Proof First, we prove that A is a dissipative operator.
For any (f, g) ∈ D(A), we have

⟨A(f, g), (f, g)⟩H
=

∫ 1
0 (Tg

′(x), f ′(x))dx

+
∫ 1
0 (M(M−1T )f ′′(x), g(x))dx

= (Tg(x), f ′(x))|10
+

∫ 1
0 [(f

′′(x), T g(x))− (Tg(x), f ′′(x))]dx

and hence,

R⟨A(f, g), (f, g)⟩H
= R(Tg(x), f ′(x))|10
= R(Tf ′(1), g(1))−R(Tf ′(0), g(0))
= R(Tf ′(1)− CτTf ′(0), g(1))
= R(−(Γg(1), g(1)) ≤ 0

So, A is a dissipative operator in H.
Next, we shall prove that A−1 is compact. Clear-

ly, D(A) is dense in H. For any fixed (µ, ν) ∈ H,
we consider the solvability of the equation A(f, g) =
(µ, ν), (f, g) ∈ D(A), i.e.,

g(x) = µ(x), x ∈ (0, 1),
M−1Tf ′′(x) = ν(x), x ∈ (0, 1),
f(0) = Cf(1),
Tf ′(1)− CτTf ′(0) = −Γg(1).

(2.6)

Integrating the second equation in (2.6) from x to 1
leads to

Tf ′(1)− Tf ′(x) =

∫ 1

x
Mν(s)ds (2.7)

and

(1−x)Tf ′(1)−Tf(1)+Tf(x) =

∫ 1

x
dr

∫ 1

r
Mν(s)ds.

(2.8)
From (2.7) and (2.8), we have

Tf ′(1)− Tf ′(0) =

∫ 1

0
Mν(s)ds (2.9)

and

Tf ′(1)− Tf(1) + Tf(0) =

∫ 1

0
dr

∫ 1

r
Mν(s)ds.

(2.10)
Using the boundary conditions in (2.6) we get

(I − Cτ )Tf ′(1) = −Γµ(1)−
∫ 1
0 CτMν(s)ds,

and

Tf ′(1) = −(I − Cτ )−1[Γµ(1) +
∫ 1
0 CτMν(s)ds].

Using the condition f(0) = Cf(1) leads to

Tf ′(1)− Tf(1) + TCf(1) =
∫ 1
0 dr

∫ 1
r Mν(s)ds,

Further we have

f(1) = −(I − C)−1T−1(I − Cτ )−1

[Γµ(1) +
∫ 1
0 CτMν(s)ds]

−(I − C)−1T−1
∫ 1
0 dr

∫ 1
r Mν(s)ds.

Thus, we get

f(x)

= −T−1(I − Cτ )−1[Γµ(1) +
∫ 1
0 CτMν(s)ds]

(x− 1)− (I − C)−1T−1(I − Cτ )−1

[Γµ(1) +
∫ 1
0 CτMν(s)ds]− (I − C)−1T−1∫ 1

0 dr
∫ 1
r Mν(s)ds+ T−1

∫ 1
x dr

∫ 1
r Mν(s)ds

From discussion above we see that for each (µ, ν) ∈
H, there exists unique a solution (f, g) ∈ D(A). So
A−1 exists and A−1(µ, ν) = (f, g), the Sobolev Em-
bedding Theorem asserts that A−1 is compact. Thus
according to the Lumer-Phillips theorem (see, [27]),
A generates a C0 semigroup of contractions.

As a consequence of Theorem 1, we have the fol-
lowing result.

Corollary 2 The spectrum σ(A) consists of isolated
eigenvalues of A of finite multiplicity, i.e., σ(A) =
σp(A).

Corollary 3 Let A be defined as before, S(t) be the
C0 semigroup generated by A. Then it holds that
σ(A) ⊂ {λ ∈ C | Rλ < 0} and hence S(t) is asymp-
totically stable.

Proof For any λ ∈ σ(A), we will prove Rλ < 0.
If it is not true, there exists at least one λ0 ∈ σ(A)
with Rλ0 = 0. Clearly, λ0 ≠ 0. For this λ0, let
(f, g) ∈ D(A) be a corresponding eigenvector. Then
from A(f, g) = λ0(f, g) we get that g(x) = λ0f(x)
and

0 = Rλ0∥(f, g)∥2H = Rλ0⟨(f, g), (f, g)⟩H
= R⟨A(f, g), (f, g)⟩H
= −(Γg(1), g(1))

Since Γ = diag{α1, α2, · · · , α8},where αi > 0, i =
1, · · · , 8, we can obtain g(1) = 0 and, so f(1) = 0.
From f(0) = Cf(1), we have f(0) = 0. Thus f(x)
satisfies the following differential equations

λ2
0Mf(x) = Tf ′′(x), x ∈ (0, 1),

f(0) = 0 = f(1),
T f ′(1)− CτTf ′(0) = 0.

(2.11)
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For the sake of convenience, we set

B2 = T−1M = diag{ρ21, ρ22, · · · , ρ28},

ρj =

√
mj

Tj
, j = 1, 2, · · · , 8.

Since M and T are positive definite matrices, so
B is a positive definite matrices, too. Therefore, the
general solution of the equation (2.11) is of the form

f(x) = exλ0Bu+ e−xλ0Bv, u, v ∈ C8.

From (2.11) and λ0 ≠ 0, we have{
u+ v = eλ0Bu+ e−λ0Bv = 0,
Tλ0B(eλ0Bu− e−λ0Bv) = CτTλ0B(u− v).

(2.12)
From the first equation of (2.12) we get that u = −v
and sinhλ0Bu = 0; the second equation becomes

TM coshλ0Bu = CτTBu.

Note that TM , sinhλ0B and coshλ0B are diagonal
matrices, so we have TM coshλ0B = coshλ0BTM ,
TM sinhλ0B = sinhλ0BTB, which will lead to

coshλ0BTMu = CτTMu, sinhλ0BTBu = 0.

Hence, (eλ0B − Cτ )TMu = 0. Since det(eλ0B −

Cτ )) = e
λ0

8∑
k=1

ρk
̸= 0, we get that u = 0. There-

fore, f(x) = 0, and (f, g) = 0. This contradicts
to (f, g) being an eigenvector of A. Thus, for any
λ ∈ σ(A),Rλ < 0. The stability Theorem of semi-
group (see, [28]) asserts that S(t) is asymptotically
stable.

3 Asymptotic analysis of spectrum of
A

In this section, we will discuss the asymptotic distri-
bution of the spectrum of A. Thanks to Corollary 3,
we need only to discuss the eigenvalue problem of A.

Let λ ∈ C and (f, g) ∈ D(A) be a non-zero vec-
tor such that (λI − A)(f, g) = 0. It is equivalent to
the following equations

g(x) = λf(x), x ∈ (0, 1),
λB2f(x) = f ′′(x), x ∈ (0, 1),
f(0) = Cf(1),
Tf ′(1)− CτTf ′(0) = −λΓf(1).

(3.13)

So the general solution to the differential equation in
(3.13) is of the form

f(x) = exλBu+ e−xλBv, u, v ∈ C8.

Inserting above into the boundary condition in (3.13)
leads to a system of algebraic equations


(I − CeλB)u+ (I − Ce−λB)v = 0,
((TB + Γ)eλB − CτTB)u
+((Γ− TB)e−λB + CτTB)v = 0.

(3.14)

Clearly, the algebraic equations have non-zero solu-
tion if and only if the determinant of the coefficient
matrix vanishes, i.e., D(λ) = 0 where

D(λ) = det

(
I − CeλB

(TB + Γ)eλB − CτTB

I − Ce−λB

(Γ− TB)e−λB + CτTB

)
. (3.15)

Conversely, if λ ∈ C such that D(λ) = 0, the
equation (3.15) has at least a non-zero solution, then
we can see that λ also is an eigenvalue of A.

Note that

D(λ)

= det

(
e−λB − C

(TB + Γ)− CτTBe−λB

I − Ce−λB

(Γ− TB)e−λB + CτTB

)
det

(
eλB O
O I

)
= det

(
I − CeλB

(TB + Γ)eλB − CτTB
eλB − C

(Γ− TB) + CτTBeλB

)
det

(
I O
O e−λB

)
.

So, we have

∆+ = lim
Rλ→+∞

D(λ)
det(eλB)

= det

(
−C I

TB + Γ CτTB

)
= (α1 + T1ρ1 + T2ρ2 + T3ρ3)
(α2 + T2ρ2 + T4ρ4 + T6ρ6)
(α3 + T3ρ3 + T5ρ5 + T7ρ7)
(α4 + T4ρ4)(α5 + T5ρ5)
[(α6 + T6ρ6)(α7 + T7ρ7) + (α6

+T6ρ6 + α7 + T7ρ7)T8ρ8]
(α8 + T8ρ8)

(3.16)
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∆− = lim
Rλ→−∞

D(λ)
det(e−λB)

= det

(
I −C

−CτTB Γ− TB

)
= (α1 − T1ρ1 − T2ρ2 − T3ρ3)
(α2 − T2ρ2 − T4ρ4 − T6ρ6)
(α3 − T3ρ3 − T5ρ5 − T7ρ7)
(α4 − T4ρ4)(α5 − T5ρ5)[(α6 − T6ρ6 − T8ρ8)
(α7 − T7ρ7 − T8ρ8)− T 2

8 ρ
2
8](α8 − T8ρ8).

(3.17)
So, if lim

Rλ→−∞
D(λ)

det(e−λB)
̸= 0, i.e.,



α1 − T1ρ1 − T2ρ2 − T3ρ3 ̸= 0,
α2 − T2ρ2 − T4ρ4 − T6ρ6 ≠ 0,
α3 − T3ρ3 − T5ρ5 − T7ρ7 ≠ 0,
α4 − T4ρ4 ≠ 0,
α5 − T5ρ5 ̸= 0,
(α6 − T6ρ6 − T8ρ8)(α7 − T7ρ7 − T8ρ8)
−T 2

8 ρ
2
8 ≠ 0,

α8 − T8ρ8 ≠ 0,
(3.18)

there exist positive constants c1, c2 and δ such that
when |Rλ| > δ, we have

c1 det(e
|λ|B) ≤ |D(λ)| ≤ c2 det(e

|λ|B). (3.19)

Hence,

σ(A) = {λ ∈ C | D(λ) = 0} ⊂ {λ ∈ C | |Rλ| ≤ δ}.
(3.20)

and D(λ) is a sine-type function. Levin’s theorem as-
serts that the zero sets of D(λ) is a union of finitely
many separable sets. So, σ(A) is a union of finitely
many separable sets too. From Corollary 3, we can
obtain

σ(A) ⊂ {λ ∈ C| − δ ≤ R(λ) < 0}. (3.21)

Therefore, we can deduce the following result.

Theorem 4 Let H and A be defined as before, and
let D(λ) be defined as (3.15). Then σ(A) = {λ ∈
C | D(λ) = 0} and when the condition (3.18) holds,
σ(A) distributes in a strip parallel to imaginary axis
and is a union of finitely many separable sets.

4 Completeness and Riesz basis
property of eigenvectors of A

In this section, we shall discuss the completeness and
Riesz basis property of the root vectors of A. Firstly,
we establish the completeness of the root vectors of A
and then use the spectral distribution of A to obtain
the Riesz basis property.

Let us define a new operator by

A0(f, g) = (g,M−1Tf ′′)
D(A0)

=

(f, g) ∈ H |
f ∈ H2((0, 1),C8),
g ∈ H1((0, 1),C8)
|Tf ′(1)− CτTf ′(0) = 0


(4.22)

Theorem 5 A0 is a skew-adjoint operator in H and
for ∀(µ, ν) ∈ H, λ ∈ R, the solution (fλ, gλ) of the
equation λ(f, g)−A0(f, , g) = (µ, ν) satisfy

∥gλ(1)∥ ≤ K∥(µ, ν)∥H. (4.23)

where K is a positive constant.

Proof. It is easy to check that D(A∗
0) = D(A0)

and A∗
0 = −A0. In what follows we mainly prove the

inequality (4.23).
For ∀(µ, ν) ∈ H, λ ∈ R. Suppose that (fλ, gλ)

satisfy the equation

(λI −A0)(f, g) = (µ, ν), (f, g, ) ∈ D(A0).

we have

λfλ(x)−gλ(x) = µ(x), λgλ(x)−M−1Tf ′′
λ (x) = ν(x),

fλ(0) = Cfλ(1), T f
′
λ(1)− CτTf ′

λ(0) = 0

Since

fλ(1) =

∫ 1

0
f ′
λ(x)dx+fλ(0) =

∫ 1

0
f ′
λ(x)dx+Cfλ(1),

we have

fλ(1) = (I − C)−1(

∫ 1

0
f ′
λ(x)dx),

Similarly, we have

µ(1) = (I − C)−1(

∫ 1

0
µ′(x)dx),

Hence,

gλ(1) = λfλ(1)− µ(1)

= (I − C)−1T− 1
2

[λ
∫ 1
0 T

1
2 f ′

λ(x)dx−
∫ 1
0 T

1
2µ′(x)dx]

So, we have

∥gλ(1)∥
≤ ∥(I − C)−1T− 1

2 ∥[|λ|(
∫ 1
0 (Tf

′
λ(x), f

′
λ(x))dx)

1
2

+ (
∫ 1
0 (Tµ

′(x), µ′(x))dx)
1
2 ]

≤ ∥(I − C)−1T− 1
2 ∥(|λ|∥R(λ,A0)(µ, ν)∥H

+ ∥(µ, ν)∥).
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Since A0 is a skew-adjoint operator, ∥λR(λ,A0)∥ ≤
1, λ ∈ R, we have

∥gλ(1)∥ ≤ 2∥(I − C)−1T− 1
2 ∥∥(µ, ν)∥H, ∀λ ∈ R.

So,
∥gλ(1)∥ ≤ K∥(µ, ν)∥H

where K = 2∥(I − C)−1T− 1
2 ∥.

Theorem 6 Let H and A be defined as before and A0

be defined as (4.22). If the conditions in (3.18) hold,
then the system of the root vectors of A is complete in
H.

Proof. The completeness of the root vectors of A is
just

Sp(A) = {
∑

yk, yk ∈ E(λk,A)H, ∀λk ∈ σ(A)},

where E(λk,A) is the Riesz projection corresponding
to λk.

Assuming that (µ0, ν0) ∈ H and (µ0, ν0) ⊥
Sp(A), then the resolvent R∗(λ,A)(µ0, ν0) is a H-
valued entire function for λ ∈ C. Thus for any
(µ, ν) ∈ H, the function

F (λ) = ⟨(µ, ν), R∗(λ,A)(µ0, ν0)⟩H

is an entire function that satisfies

|F (λ)| ≤ (Rλ)−1∥(µ, ν)∥H∥(µ0, ν0, )∥H, Rλ > 0

due to A generates a C0 semigroup of contraction.
Thus, limRλ→+∞ F (λ) = 0.

Now let us consider the resolvent problems for
λ ∈ ρ(A) ∩ ρ(A0) ∩ R

(λI −A)(f1λ, g1λ) = (µ, ν),

(λI −A0)(f2λ, g2λ) = (µ, ν, ).

Set

f̃(x) = f1λ(x)− f2λ(x), g̃(x) = g1λ(x)− g2λ(x).

Then

R(λ,A)(µ, ν) = R(λ,A0)(µ, ν) + (f̃ , g̃),

which implies that g̃(x) = λf̃(x), and f̃ satisfy the
following equation

λ2B2f̃(x) = f̃ ′′(x), x ∈ (0, 1),

f̃(0) = Cf̃(1),

T f̃ ′(1)− CτT f̃ ′(0) + λΓf̃(1) = −Γg2λ(1).

So, we have

f̃(x) = exλBy + e−xλBz, y, z ∈ C8,

where y and z satisfy the following algebraic equa-
tions

(I − CeλB)y + (I − Ce−λB)z = 0,
((Γ + TB)eλB − CτTB)y
+((Γ− TB)e−λB + CτTB)z = −λ−1Γg2λ(1).

Therefore,
y = (I − CeλB)−1(C − eλB)e−λBz
= (C − o(λ−1))e−λBz, (λ → −∞);

((Γ + TB)eλB − CτTB)y + ((Γ− TB)e−λB

+CτTB)z = −λ−1Γg2λ(1).

Hence, when λ → −∞

e−λBz = −λ−1(Γ− TB − CτTBC
+ o(λ−1))−1Γg2λ(1)

When |λ| is large enough, we have

f̃(1) = eλBy + e−λBz
= eλB(C − o(λ−1))e−λBz + e−λBz
= −λ−1(I + o(λ−1))(Γ− TB
− CτTBC + o(λ−1))−1Γg2λ(1)

Therefore, there exist a positive constants M1 such
that

∥f̃(1)∥ ≤ M1|λ−1|∥g2λ(1)∥,
and

λ−1T f̃ ′(0)
= λ−1T (C + o(λ))Γ(Γ− TB − CτTBC

+o(λ−1))−1g2λ(1)

Hence,

∥(f̃ , g̃)∥2H
=

∫ 1
0 (T f̃

′(x), f̃ ′(x))dx+
∫ 1
0 (T g̃(x), g̃(x))dx

= (T f̃ ′(1), f̃ ′(1))− (T f̃ ′(0), f̃ ′(0))

= −λ(Γf̃(1), f̃(1))− (Γg2λ(1), f̃(1))

≤ |λ|∥Γ∥∥f̃(1)∥2 + ∥Γ∥∥g2λ(1)∥∥f̃(1)∥
≤ M2|λ−1|∥g2λ(1)∥2

where M2 is a positive constant.
From theorem 4.1, we have

∥g2λ(1)∥ ≤ K∥(µ, ν)∥H

Thus, there exist a positive constant M3,

∥(f̃ , g̃)∥H ≤ M3

√
|λ−1|∥(µ, ν)∥H.
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For λ ∈ ρ(A) ∩ ρ(A′) ∩ R− and |λ| sufficiently
large, we have

|F (λ)|
= |⟨R(λ,A)(µ, ν), (µ0, ν0)⟩H|
= |⟨R(λ,A0)(µ, ν), (µ0, ν0)⟩H
+ ⟨(f̃ , g̃), (µ0, ν0)⟩H|
≤ |λ−1|∥(µ, ν)∥H∥(µ0, ν0)∥H
+

√
|λ−1|M3∥(µ, ν)∥H

Hence, we can get

lim
Rλ→−∞

F (λ) = 0.

Since F (λ) is an entire function of finite exponential
type, the Phragmén-Linderöf Theorem (see, [29]) says
that

|F (λ)| ≤ M, ∀λ ∈ C.

So Liouvills Theorem asserts that F (λ) ≡ 0. This
means that (µ0, ν0) = 0. Therefore, Sp(A) = H.

In order to obtain the Riesz basis generation of
the root vectors of A, we need the following Lemma
(see, [30] and [25]).

Lemma 7 Let A be the generator of a C0 semigroup
T (t) on a separable Hilbert space H. Suppose that
the following conditions are satisfied

(1) The spectrum of A has a decomposition

σ(A) = σ1(A) ∪ σ2(A)

where σ2(A) consists of the isolated eigenvalues of A
of finite multiplicity (repeated many times according
to its algebraic multiplicity).

(2) There exists a real number α ∈ R such that

sup{Rλ, λ ∈ σ1(A)} ≤ α ≤ inf{Rλ, λ ∈ σ2(A)}

(3) The set σ2(A) is a union of finite many sepa-
rated sets.

Then the following statements are true:
(a) There exist two T (t)−invariant closed sub-

spaces H1,H2 and H1 ∩ H2 = {0} such that
σ(A|H1) = σ1(A) and σ(A|H2) = σ2(A);

(b) there exists a finite combination E(Ωk,A) of
some {E(λk,A)}∞k=1 :

E(Ωk,A) =
∑

λ∈Ωk∩σ2(A)

E(λ,A)

such that {E(Ωk,A)H2}k∈N forms a Riesz basis of
subspaces for H2. Furthermore,

H = H1

⊕
H2.

(c) If supk≥1 ∥E(λk,A)∥ < ∞, then

D(A) ⊂ H1

⊕
H2 ⊂ H.

(d) H has a decomposition of the topological di-
rect sum, H = H1

⊕
H2, if and only if

sup
n≥1

∥
n∑

k=1

E(Ωk,A)∥ < ∞.

Now applying Lemma 7 to our model, combining
Theorem 1, Theorem 4 and Theorem 6, we have the
following result.

Theorem 8 Let H and A be defined as before. If the
conditions in Theorem 4 are fulfilled, then there is a
sequence of eigenvectors of A that forms a Riesz basis
with parentheses for H. Indeed, in this case, A gen-
erates a C0 group on H. In particular, the system as-
sociated with A will satisfy the spectrum determined
growth condition.

Proof Set σ1(A) = {−∞}, σ2(A) = σ(A). Theo-
rem 4 shows that all hypotheses in Lemma 7 are ful-
filled. So the results of Lemma 7 are true. Hence
there is a sequence of eigenvectors of A that form-
s a Riesz basis with parentheses for H2. Theorem
6 says that the eigenvectors is complete in H, that
is H2 = H. Therefore the sequence is also a Riesz
basis with parentheses for H. The Riesz basis prop-
erty of the eigenvectors together with distribution of
spectrum of A implies that A generates a C0 group
on H. At the same time, the Riesz basis property to-
gether with the uniform boundedness of multiplicities
of eigenvalues of A ensure that the system associat-
ed with A satisfies the spectrum determined growth
condition. The proof is then complete.

Set σ(A) = {λn, n ∈ N}, and λn = αn + iβn.
According to Theorem 6, we have D(λn) ≡ 0 for
n ∈ N. Consider the difference

D(αn + iβn)−D(iβn)

= αnD
′(iβn) +

(αn)2

2 D′′(ηn + iβn)

where ηn ∈ (0, αn). From above we see that
D(iβn) → 0 if and only if αn → 0. Therefore, as
a consequence of Theorem 8, we have the following
result.

Corollary 9 Let H and A be defined as before. Sup-
pose that conditions in (3.18) hold. Then the following
statements are true:

(1) If infλ∈iR |D(λ)| ̸= 0, then the system (2.5) is
exponentially stable;

(2) If infλ∈iR |D(λ)| = 0, then the system (2.5) is
asymptotically stable and but not exponentially stable.
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From corollary 9 we see that in order to assert the
exponentially stability of the system, we must judge
whether or not infλ∈iR |D(λ)| is zero. In general, it is
very difficult to verify it. From known stability result
of the 1-d wave networks we know that the stability
of irrational ratio of ρj/ρk is better than the rational
ratio of ρj/ρk. Here, we only give a conclusion for a
special situation.

Assume that T1 = T2 = · · · = T8 and m1 =
m2 = · · · = m8. Let ρ =

√
mi/Ti, i = 1, 2 · · · , 8

and {
wi(λ) = coshλρ+ βi sinhλρ,
vi(λ) = sinhλρ+ βi coshλρ.{

F (λ) = w2w4w6 + v4v6 sinhλρ+ w4v6 sinhλρ,
F ′(λ) = v2w4w6 + v4w6 coshλρ+ w4v6 coshλρ.{
G(λ) = w3w5w7 + v7w5 sinhλρ+ w7v5 sinhλρ,
G′(λ) = v3w5w7 + v7w5 coshλρ+ w7v5 coshλρ.

where βi =
αi
Tiρ

> 0, i = 1, 2, · · · , 8.
After complex calculation, we get

D(λ) = (w1F (λ)G(λ) + sinhλρF (λ)G′(λ)
+ sinhλρF ′(λ)G(λ))w8 + v8 sinhλρ

[ω1(w3w5 + v5 sinhλρ+ w5 coshλρ)
+ sinhλρv3w5 + sinhλρ coshλρv5
+ cosh2 λρw5)F (λ) + (sinhλρw3w5

+ sinh2 λρv5 + sinhλρ coshλρw5)F
′(λ)

+ w1(w2w4 + v4 sinhλρ+ w4 coshλρ)
+ sinhλρv2ω4 + sinhλρ coshλρv4
+ cosh2 λρw4)G(λ) + (sinhλρw2w4

+ sinh2 λρv4 + sinhλρ coshλρw4)G
′(λ)

+ 2w4w5]

and D(λ) has the following form:

D(λ) = a1e
16λρ + a2e

14λρ + · · · · · ·+ a8e
2λρ + a9

where each ai is real constant. Let z = e2λρ. Then
D(λ) = 0 is equivalent to

a1z
8 + a2z

7 + a3z
6 + · · · · · ·+ a8z + a9 = 0

Let zj , j = 1, 2, · · · , 8 are the zeros of above algebraic
equation, we have

D(λ) = a1

8∏
j=1

(e2λρ − zj).

Since there is no zero of D(λ) on the imagi-
nary axis(see corollary 3), so |zj | ̸= 1, Thus,
infλ∈iR |D(λ)| ̸= 0, then the system (2.5) is expo-
nentially stable.

Remark 10 From above calculation we see that if
there exists an ρ such that ρj = kjρ for some kj ∈ N,
then D(λ) also is a polynomial of z = e2λρ. So the
system also is exponentially stable provided there is
no zeros of D(λ).
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