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Abstract: - For handling multi-criteria fuzzy decision-making problems, the degree of satisfiability and non-
satisfiability of each alternative with respect to a set of criteria is often represented by a set of vague values.
In multi-criteria fuzzy decision-making problems, vague set based score functions have become more and more
popular for building models that concern the evaluation and comparison of alternatives in the decision-making
process. However, several deficiencies remain evident when using these vague based score functions to handle
multi-criteria decision-making problems. Therefore, the main objective of this study is propose a novel score func-
tion for a more effective and reasonable method for measuring the degree of suitability to which an alternative
satisfied the decision maker’s requirement. An illustrative example is provided, which shows that the proposed
vague set based score function is more effective and reasonable than other existing score functions in handling
multi-criteria decision-making problems.
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1 Introduction
Multi-criteria fuzzy decision-making problems deal-
s with theoretical models, algorithms and practi-
cal applications in considering imprecise or uncer-
tain human expertise and knowledge involving mul-
tiple criteria encountered in decision-making environ-
ments [6, 14, 17, 39].

In multi-criteria fuzzy decision-making problem-
s, vague set based score functions have been defined
and found to be applicable for building models that
concern the evaluation and comparison of alterna-
tives in the decision making process [3, 15, 19, 20,
21, 30, 32, 36]. In the past five years, many re-
searchers have also presented some new methods sup-
ported by the aforementioned vague set based score
functions for handling multi-criteria fuzzy decision
making problems [4, 9, 10, 25, 29, 31]. However,
several deficiencies remain evident when using these
vague based score functions to handle multi-criteria
decision-making problems. These include ignorance
of the unknown part that can cause information loss,
inefficient calculation of the score value and unreason-
able comparison results for ranking the vague values.
Therefore, there is an emerging demand for a more
effective and reasonable score function.

In light of these deficiencies and limitations, the
main objective of this study is to propose a novel score
function for a more effective and reasonable method
for measuring the degree of suitability to which an al-
ternative satisfies the decision maker’s requirement.

The rest of this paper is organized as follows. In
section 2, relevant definitions and operations of vague
sets are briefly reviewed. In Section 3, several familiar
research works on existing score functions for trans-
forming vague values into numerical values are re-
viewed and criticized. In Section 4, the proposed new
score function is introduced and demonstrated to be
suitable for multi-criteria decision-making problems
under uncertain environments. An illustrative exam-
ple is given to support the proposed score function.
Finally, conclusions of this study are drawn in Section
5.

2 Preliminaries
In real-world applications, there may exist certain de-
gree of hesitation regarding the belongingness of an
element to a set. However, there are no means of
expressing such degree of hesitation by using fuzzy
set. Atanasov presented intuition fuzzy set theory [1].
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Gau and Buehrer [12] proposed the concept of vague
set, where the grade of membership is bounded to a
subinterval [tA(xi), 1 − fA(xi)] of [0, 1]. Instead of
fuzzy sets, this paper used vague sets for handling
multi-criteria decision-making problems. Bustince &
Burillo showed that vague sets are indeed intuitionis-
tic fuzzy sets and unified the vague sets and the intu-
ition fuzzy sets [2]. Relevant definitions and opera-
tions of vague sets, which are in [12, 24, 30, 37], are
briefly reviewed as follows.

Vague sets and vague values
A vague set, as well as being an intuitionistic fuzzy
set, is a further generalization of fuzzy set [1, 2, 12].
Instead of using point-based membership as in fuzzy
set, interval-based membership is used in vague set.
Let X be a classical set of data objects, called the
universe of discourse, X = {x1, x2, . . . , xn}, with
a generic element of X denoted by xi. A vague set
A in the universe of discourse X is characterized by
a truth membership function tA, and a false mem-
bership function fA, where tA: X → [0, 1], fA:
X → [0, 1]. tA(xi) is a lower bound of the grade of
membership of xi derived from the “evidence for xi”,
fA(xi) is a lower bound on the negation of xi derived
from the “evidence against xi”, and tA(xi)+fA(xi) ≤
1. These lower bounds are used to create a subinterval
on [0, 1], namely [tA(xi), 1 − fA(xi)], to generalize
the µA(xi) of fuzzy sets, where tA(xi) < µA(xi) <
1− fA(xi).

The vague set A is a set of ordered pairs, given by
A = {(xi, [tA(xi), 1 − fA(xi)])|xi ∈ X}, where the
grade of membership of xi in the vague set is bounded
to a subinterval [tA(xi), 1 − fA(xi)] of [0, 1]. Here,
the interval [tA(xi), 1 − fA(xi)] is the vague mem-
bership (also called vague value) of the object xi in
vague set A. The vague value [tA(xi), 1 − fA(xi)]
indicates that the exact grade of membership µA(xi)
of xi may be unknown but it is bounded by tA(xi)
≤ µA(xi) ≤ 1 − fA(xi). For example, consider
a universe X = {DOG, CAT, and RAT}. A vague
set A of X could be A = {< DOG, [0.7, 0.2] >,<
CAT, [0.3, 0.5], < RAT, [0.5, 0.9] >}. For consider-
ing [tA(xi), 1 − fA(xi)] = [0.5, 0.9], we can see that
tA(xi) = 0.5, 1 − fA(xi) = 0.9 and fA(xi) = 0.1.
The result can be explained as: xi belong to vague set
A and accept evidence is 0.5, decline evidence is 0.1
and hesitation is πA(xi) = 1−fA(xi)−tA(xi) = 0.4.
It can also be interpreted as: the vote for resolution is
5 in favor, 1 against, and 4 abstentions, or to say: the
number of supporter is 5, the number of objector is 1,
and the number of abstainer is 4.

Equality of two vague values
Let xA = [tA(xi), 1 − fA(xi)] be the vague value of

xi in the vague set A, and xB = [tB(xi), 1− fB(xi)]
be the vague value of xi in the vague set B, where
tA(xi), tB(xi), fA(xi), fB(xi) ∈ [0, 1]. If tA(xi) =
tB(xi) and fA(xi) = fB(xi), then the vague values
xA and xB are called equal (i.e., [tA(xi), 1− fA(xi)]
= [tB(xi), 1− fB(xi)]).

Maximum operation of two vague values
Let xA = [tA(xi), 1 − fA(xi)] be the vague value of
xi in the vague set A, and xB = [tB(xi), 1− fB(xi)]
be the vague value of xi in the vague set B,
where tA(xi), tB(xi), fA(xi), fB(xi) ∈ [0, 1].
The result of the maximum operation of the vague
values xA and xB is a vague value xC , written
as xC = xA ∨ xB = [tC(xi), 1 − fC(xi)] =
[max(tA(xi), tB(xi)),max(1 − fA(xi), 1 −
fB(xi))] = [max(tA(xi), tB(xi)), 1 −
min(tA(xi), tB(xi))].

Minimum operation of two vague values
Let xA = [tA(xi), 1 − fA(xi)] be the vague value of
xi in the vague set A, and xB = [tB(xi), 1− fB(xi)]
be the vague value of xi in the vague set B, where
tA(xi), tB(xi), fA(xi), fB(xi) ∈ [0, 1]. The result of
the minimum operation of the vague values xA and
xB is a vague value xC , written as xC = xA ∧ xB =
[tC(xi), 1− fC(xi)] = [min(tA(xi), tB(xi),min(1−
fA(xi), 1 − fB(xi))] = [min(tA(xi), tB(xi)), 1 −
max(tA(xi), tB(xi))].

Equality of two vague sets
Let A and B be two vague sets of the universe of
discourse X . If ∀i, 1 ≤ i ≤ n, tA(xi) = tB(xi),
fA(xi) = fB(xi), then the vague set A and B are
called equal.

Intersection of two vague sets
The intersection of two vague sets A and B is a
vague set C, written as C = A ∧ B, whose truth
membership function and false-membership function
are tC and fC , respectively, where ∀xi ∈ X ,
tC(xi) = min(tA(xi), tB(xi)), 1−fC(xi) = min(1−
fA(xi), 1 − fB(xi)). That is, [tC(xi), 1 − fC(xi)] =
[min(tA(xi), tB(xi)),min(1−fA(xi), 1−fB(xi))] =
[min(tA(xi), tB(xi)), 1−max(fA(xi), fB(xi))].

Union of two vague sets
The union of two vague sets A and B is a vague
set Z, written as Z = A ∨ B, whose truth mem-
bership function and false-membership function
are tZ and fZ , respectively, where ∀xi ∈ X ,
tZ(xi) = max(tA(xi), tB(xi)), 1 − fZ(xi) =
max(1 − fA(xi), 1 − fB(xi)). That is, [tZ(xi), 1 −
fZ(xi)] = [max(tA(xi), tB(xi)),max(1 −
fA(xi), 1 − fB(xi))] = [max(tA(xi), tB(xi)), 1 −
max(fA(xi), fB(xi))].
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3 Existing Score Functions for M-
CDM Based on Vague Set

A multi-criteria decision making problem is one that
aims to find a desirable solution from a finite number
of feasible alternatives, which are assessed on multi-
ple criteria both quantitatively and qualitatively. Let
A be a discrete set of m alternatives and let C be
a set of n independent criteria, where A = {A1,
A2, . . . , Am}, C = {C1, C2, . . . , Cn} respectively.
An alternative satisfies a criterion should it meets the
desired level of evaluation. The satisfaction is gradual
and can be characterized by a vague value. A multi-
criteria decision making problem formulated by vague
sets can be concisely expressed in matrix format as in
Table 1.

Table 1 The characteristics of the alternatives

C1 · · · Cj · · · Cn

A1 [t11, t
∗
11] · · · [t1j , t

∗
1j ] · · · [t1n, t

∗
1n]

A2 [t21, t
∗
21] · · · [t2j , t

∗
2j ] · · · [t2n, t

∗
2n]

...
... · · ·

... · · ·
...

Ai [ti1, t
∗
i1] · · · [tij ,

...t∗ij ] · · · [tin, t
∗
in]

...
... · · ·

... · · ·
...

Am [tm1, t
∗
m1] · · · [tmj , t

∗
mj ] · · · [tmn, t

∗
mn]

Assume that the characteristics of the alternative
Ai and the criterion Cj are represented by the vague
set shown as follows:

Ai = {(C1, [ti1, 1− fi1]), (C2, [ti2, 1− fi2]), . . . ,

(Cn, [tin, 1− fin])}, 1 ≤ j ≤ n, and 1 ≤ i ≤ m.

With respect to criteria Cj , the alternative Ai per-
formance is measured by the vague value Aij , Aij =
[tij , 1 − fij ], where tij indicates the degree to which
the alternative Ai satisfies criteria Cj , fij indicates the
degree to which the alternative Ai does not satisfy cri-
teria Cj , tij ∈ [0, 1], fij ∈ [0, 1], tij + fij ≤ 1, 1 ≤
j ≤ n, and 1 ≤ i ≤ m. Let 1 − fij = t∗ij , where
1 ≤ j ≤ n, 1 ≤ i ≤ m. Then Ai can be rewritten as

Ai = {(C1, [t1j , t
∗
1j ]), (C2, [ti2, t

∗
i2]), . . . , (Cn,

[tin, t
∗
in])}.

Then the characteristics of these alternatives may
be represented by Table 1. Assume that there is a deci-
sion maker who wants to choose an alternative which
satisfies the criteria Cj , Ck, . . . , and Cp or which sat-
isfies the criteria Cs. This decision maker’s require-
ments are represented by the following expression:

Cj AND Ck AND , . . . , AND Cp OR Cs.

Thus, the degrees that the alternative Ai satisfies and
does not satisfy the decision maker’s requirements can
be measured by the evaluation function E as follows:

E(Ai) = ([tij , t
∗
ij ] ∧ . . . ∧ [tip, t

∗
ip]) ∨ [tis), t

∗
is]

= [(min(tij , . . . , tip)),min(t∗ij , . . . , t
∗
ip))]

∨ [tis), t
∗
is]

= [max(min(tij , . . . , tip), tis),max(min(t∗ij ,

. . . , t∗ip), t
∗
is)] = [tAi, t

∗
Ai] = [tAi, 1− fAi], (1)

where ∧ denotes the minimum operator and ∨ stands
for maximum operator of the vague values, and E(Ai)
is a vague value, and 1 ≤ i ≤ m. The score of E(Ai)
can be measured by several familiar score function
S(E(Ai)). The greater the value of S(E(Ai)), the
higher the degree of appropriateness that alternatively
satisfies some criteria.

3.1 Criticism of existing score functions for
MCDM based on vague set

A score function can be adopted for ranking and selec-
tion in decision-making process based on vague sets.
It can then be used to measure the degree of suitabil-
ity of each alternative, with respect to a set of criteria
presented by vague values. Suppose E is the evalu-
ation function of alternative Ai, and E(Ai) = [tAi,
1 − fAi] is the evaluated vague value for the alterna-
tive, where tAi ∈ [0, 1], fAi ∈ [0, 1], and tAi + fAi ≤
1. In this section, several familiar research works on
score functions are reviewed and criticised

Chen and Tan’s score function [3]
Chen and Tan defined a score function SCT and
the score value of E(Ai) can be defined as:
SCT (E(Ai)) = tAi − fAi, where SCT ((E(Ai))
∈ [−1, 1]. A larger score value implies a higher de-
gree of suitability that the alternative Ai satisfies the
decision maker’s requirement.

In [9, 25], the authors used Chen and Tan’s score
function for evaluating scores of intuitionistic fuzzy
values. In Deng and Wibowo’s study [5], the authors
used Chen and Tan’s score function and presented a
multi-criteria group decision-making approach for ef-
fectively evaluating the performance of e-waste recy-
cling programs under uncertainty in an organization.
Zhu et al. [40] proposed a vague set based adjustment
model using Chen and Tan’s score for regional blood
supply and demand balance adjustment.

Example 1. Suppose there are two alternatives A1

and A2, and the evaluated vague values for the t-
wo alternatives are E(A1) = [0, 1] and E(A2) =
[0.5, 0.5]. By applying Chen and Tan’s score function,
SCT (E(Ai)) = tAi − fAi, we obtain SCT (E(A1)) =
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0− (1−1) = 0, SCT (E(A2)) = 0.5− (1−0.5) = 0.
We cannot know which alternative is better.

It is intuitively appealing that if SCT (E(A1)) >
SCT (E(A2)) then A1 should be better than A2, but
if SCT (E(A1)) = SCT (E(A2)) this does not always
mean that A1 is equal to A2. That is, it cannot differ-
entiate many vague values even though they are obvi-
ously different. For this reason, Hong and Choi [15]
added an accuracy function to measure the degree of
accuracy in the grades of membership of each alterna-
tive with respect to a set of criteria.

Hong and Choi’s accuracy function [15]
Hong and Choi defined the accuracy function H
and the accuracy value of E(Ai) can be defined as:
H(E(Ai)) = tAi + fAi, where H(E(Ai)) ∈ [0, 1]. A
larger value of H(E(Ai)) implies a higher degree of
accuracy in the grades of membership of the alterna-
tive Ai.

This measure provides additional useful informa-
tion to efficiently help the decision-maker to make his
decisions. They also showed that the relationship be-
tween the score function SCT and the accuracy func-
tion H is similar to the relationship between mean and
variance in statistics. A conservative person might
choose the alternative with high accuracy value, but
an aggressive person may choose the alternative with
low accuracy value.

Example 2. For the two vague values of the t-
wo alternatives presented earlier, E(A1) = [0, 1]
and E(A2) = [0.5, 0.5], we get S(E(A1)) =
S(E(A2)) = 0 and we still do not know which one
is better. By using the accuracy function, we get
H(E(A1)) = 0 + 1 − 1 = 0, H(E(A2)) = 0.5 +
1 − 0.5 = 1. In this case, it remains unclear which
alternative is better. The choice of alternative may de-
pend on the decision maker’s preferences: a conser-
vative person might choose the alternative with high
accuracy value H(E(A2)), but an aggressive person
may choose the alternative with low accuracy value
H(E(A1)).

Li and Rao [19] also analyzed the inadequacy of
Chen and Tan’s score function and defined the follow-
ing two score functions SAi

1 and SAi
2 , so as to jointly

measure the degree of suitability to which alternative
Ai satisfies the decision maker’s requirement.

Li and Rao’s score function [19]
Li and Rao defined two score functions SAi

1 and SAi
2

to jointly measure the degree of suitability to which
the alternative Ai satisfies the decision maker’s re-
quirement:

Method I: SAi
1 = tAi, SAi

2 = 1− fAi, or
Method II: SAi

1 = tAi − fAi, SAi
2 = 1− fAi.

A larger score value implies a higher degree of
suitability. The larger the score value of SAi

1 , the high-
er degree of suitability to which the alternative Ai sat-
isfies the decision maker’s requirement. If the score
values of SA1

1 and SA2
1 for the two alternatives A1

and A2 are equal, the score values of SA1
2 and SA2

2 are
further calculated and compared to decide the ranking
order for the two alternatives.

Example 3. If two evaluated vague values for two
alternatives are E(A1) = [0.1, 0.9] and E(A2) =
[0.5, 0.5]. If we use method I, then we obtain
S1(E(A1)) = 0.1 and S1(E(A2)) = 0.5. The al-
ternative A2 is better than alternative A1 in terms
of values of S1; If we use method II, then we obtain
S1 (E(A1)) = S1(E(A2)) = 0, we further obtain
S2(E(A1)) = 0.9, S2(E(A2)) = 0.5. The alterna-
tive A1 is better than the alternative A2 in terms of
values of S2. The two results contradict to each other.
Obviously, we know that Li and Rao’s score function
cannot maintain consistency.

In fact, Chen and Tan’s score function, Hong and
Choi’s accuracy function and Li’s score functions do
not give sufficient information about vague values to
compare with alternatives. They consider only the
truth membership part (i.e., tAi) and the false member-
ship part (i.e., fAi), but ignore the unknown part (i.e.,
1 − tAi − fAi). This ignorance may ultimately lead
to information loss. Thus, Li et al. [20] proposed two
different transforming methods for comparing vague
values.

Li et al.’s transforming function [20]
Let E(Ai) = [tAi, 1− fAi] be a vague value for alter-
native Ai, where tAi ∈ [0, 1], fAi ∈ [0, 1], and tAi+
fAi ≤ 1. The score of E(Ai) can be evaluated by the
transforming function defined as: SLLC(E(Ai)) =
tAi + (1− tAi − fAi)/2 = (tAi + 1− fAi)/2, where
SLLC(E(Ai)) ∈ [−1, 1].

This is also called as the median membership
value of the vague set. The larger the value of
SLLC(E(Ai)), the greater the vague value E(Ai) is
and the higher degree of suitability that the alternative
Ai satisfies the decision maker’s requirement.

Example 4. If two vague values for two alternatives
are E(A1) = [0.6, 0.8] and E(A2) = [0.5, 0.9]. U-
tilizing Li et al.’s transforming function, we can ob-
tain: SLLC(E(A1)) = tA1 + (1 − tA1 − fA1)/2 =
(tA1 + 1 − fA1)/2 = 0.7, and SLLC(E(A2)) =
tA2+(1−tA2−fA2)/2 = (tA2+1−fA2)/2 = 0.7. In
this case, we do not know which alternative is better.

Li et al.’s defuzzification function [20]
Let E(Ai) = [tAi, 1 − fAi] be a evaluated vague val-
ue of alternative Ai. The defuzzification function to
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measure the numerical value of the vague value is
defined as: SD(E(Ai)) = tAi/(tAi + fAi), where
SD(E(Ai)) ∈ [0, 1].

Example 5. If three evaluated vague values for three
alternatives are E(A1) = [0, 0.1], E(A2) = [0, 0.9]
and E(A3) = [0, 1]. Utilizing Li et al.’s defuzzifica-
tion function, we can obtain SD(E(A1)) = 0/0.9 =
0, SD(E(A2)) = 0/0.1 = 0 and SD(E(A3)) = 0/0.
The vague value E(A2) is equal to the vague value
E(A1), even though they are obviously different. In
this scenario, the vague values are not only indistin-
guishable, but the result is also unreasonable. For de-
fuzzification of the vague value E(A3) = [0, 1], we
obtain SD(E(A3)) = 0/0; thus, it would be either
mathematically meaningless operations or undefined
results in this case.

Lin et al. [21] defined an improved function to
provide a more useful way than those of Chen and
Tan’s score function, Hong and Choi’s accuracy func-
tion and Li and Rao’s score functions. The improved
score function SLXW is written as follows.

Lin et al.’s score function[21]
Let E(Ai) = [tAi, 1− fAi] be a evaluated vague val-
ue for alternative Ai, where tAi ∈ [0, 1], fAi ∈ [0, 1],
and tAi +fAi ≤ 1. Then, the score of the vague
value can be calculated by Lin et al.’s score func-
tion defined as: SLXW (E(Ai)) = tAi − mAi =
tAi − (1− tAi − fAi) = 2tAi + fAi − 1 = 2tAi − t∗Ai,
where SLXW (E(Ai)) ∈ [−1,+1] and mAi is defined
by mAi = 1 − tAi − fAi, 0 ≤ mAi ≤ 1. That is,
mAi stands for the unknown degree, indefinite degree
or hesitancy degree of the vague value.

Although Lin et al. improved Chen and Tan’s s-
core function, Hong and Choi’s accuracy function and
Li and Rao’s score functions, there are still some prob-
lems. Now, we will illustrate to describe the unsolv-
able problems as follows.

Example 6. For the two evaluated vague values of
two alternatives E(A1) = [0.7, 0.8] and E(A2) =
[0.6, 0.6], by applying Lin et al.’s score function, we
can get SLXW (E(A1)) = 2 × 0.7 − 0.8 = 0.6 and
SLXW (E(A2)) = 2 × 0.6 − 0.6 = 0.6. The two
vague values are identical; therefore, it is impossible
to know which one is the better choice.

Here is another example to show its deficiency.

Example 7. For the two evaluated vague values of t-
wo alternatives, E(A1) = [0.4, 0.9] and E(A2) =
[0.4, 1], by applying Lin et al.’s accuracy function, we
can get SLXW (E(A1)) = 2× 0.4− 0.9 = −0.1 and
SLXW (E(A2)) = 2× 0.4− 1 = −0.2. It seems that
the alternative with vague value E(A1) is better than

the alternative with vague value E(A2) in terms of
the values of Lin et al.’s score function. However, the
result is not reasonable if explained in voting model.
For example, alternative A1 has 4 votes in favor and
1 vote against it. Alternative A2 has 4 votes in fa-
vor and no vote against it. Most people may choose
the alternative with vague value E(A2) as the better
choice, which is conflict with the result drawn by Lin
et al.’s score function.

Wang et al. [30] proposed a new score function
SWZL to measure the score of the vague values. The
proposed score function place simultaneous emphasis
on three parts, i.e., tAi, fAi and 1− tAi − fAi. There-
fore, it provides a more sufficient way than those of
Chen and Tan’s score function SCT , Hong’s accuracy
function H and Lin et al.’s score function SLXW to
measure the score of the vague values and to discrim-
inate two vague values.

Wang et al.’s score function [30]
Let E(Ai) = [tAi, 1 − fAi] be a evaluate vague
value for alternative Ai, where tAi ∈ [0, 1], fAi ∈
[0, 1], and tAi + fAi ≤ 1. The score value of E(Ai)
can be evaluated by the score function defined as:
SWZL(E(Ai)) = tAi − fAi − (1 − tAi − fAi)/2 =
(3tAi − fAi − 1)/2, where SWZL(E(Ai)) ∈ [−1, 1].
The larger the score value of SWZL(E(Ai)), the
greater the vague value E(Ai) is and the higher de-
gree of suitability that the alternative Ai satisfies the
decision maker’s requirement.

Example 8. For the two evaluated vague values of t-
wo alternatives, E(A1) = [0.2, 0.6] and E(A2) =
[0.1, 0.9]. Utilizing the score function SWZL, we ob-
tain SWZL(E(A1)) = (3×0.2−0.4−1)/2 = −0.4,
and SWZL(E(A2)) = (3× 0.1− 0.1− 1)/2 = −0.4.
Therefore, they are still indistinguishable. In this case,
we still do not know whether the vague value E(A1)
is superior or inferior with regard to the vague value
E(A2).

The relationship between Chen and Tan’s score
function SCT and Hong and Choi’s accuracy func-
tion H is similar to the relationship between mean
and variance in statistics. Based on the concepts of
score function and accuracy function, Xu used func-
tions SCT and H to develop a method for comparing
two vague values [32, 33, 34].

Xu’s order relation method [32, 33, 34].
Suppose E(A1) = [tA1, 1 − fA1], E(A2) = [tA2,
1 − fA2] are two evaluated vague values for two al-
ternatives. Let SCT (E(A1)) and SCT (E(A2)) be the
score values of E(A1) and E(A2). Let H(E(A1))
and H(E(A2)) be the accuracy values of E(A1) and
E(A2). Then, an order relation between the two
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vague values is given according to the following prin-
ciples:

1. If SCT (E(A1)) < SCT (E(A2)), then E(A1)
is smaller than E(A2), denoted by E(A1) < E(A2);

2. If SCT (E(A1)) = SCT (E(A2)), then:
(1) If SCT (E(A1)) = SCT (E(A2)) and

H(E(A1)) = H(E(A2)), then E(A1) = E(A2);
(2) If SCT (E(A1)) = SCT (E(A2)) and

H(E(A1)) < H(E(A2)), then E(A1) is smaller than
E(A2).

In recent years, Xu’s method has been actively re-
searched for extending new decision-making models.
Some real-world case studies have also been carried
out to deal with multi-criteria fuzzy decision making
problems. In the studies of [11, 16, 29], the authors
used Xu’s method to compare intuitionistic fuzzy val-
ues. Das et al.’s case study [4] applied Xu’s method
for the comparison of intuitionistic multi-fuzzy values
in a real-life case study related to a heart disease di-
agnosis problem. Goyal et al. used Xu’s method to
handle the uncertainty of students’ knowledge on do-
main concepts in an E-learning system [13].

Example 9. For the two evaluated vague values
of two alternatives presented in [10], E(A1) =
[0.4, 0.8001] and E(A2) = [0.4, 0.8], we get
S(E(A1)) = 0.2001 and S(E(A2)) = 0.2. S-
ince S(E(A1)) − S(E(A2)) = 0.0001, we get
S(E(A1)) > S(E(A2)), which is the evidence
for A1 > A2. Further, by the accuracy func-
tion, H(E(A1)) = 0.4 + 1 − 0.8001 = 0.5999,
H(E(A2)) = 0.5 + 1 − 0.7 = 0.8. S-
ince H(E(A1)) − H(E(A2)) = 0.2001, we get
H(E(A1)) > H(E(A3)), which is the evidence
for A1 > A2. However, by Xu’s order relation
method, we are forced to conclude that A1 > A2

even though the difference S(E(A1))− S(E(A2)) =
0.0001 is negligible in comparison to the difference
H(E(A1))−H(E(A2)) = 0.2001.

Xu’s order relation method provides additional
useful information to help the decision-makers make
their decisions. Like Hong and Choi’s accuracy func-
tion, the limitation of this method is that the score
and the accuracy degree are not taken into account si-
multaneously [10]. Ye [36] defined an modified score
function to improve Hong and Choi’s accuracy func-
tion as follows.

Ye’s modified score function [36]
Let E(Ai) = [tAi, 1 − fAi] be the vague value for
alternative Ai, where tAi ∈ [0, 1], fAi ∈ [0, 1], and
tAi+ fAi ≤ 1. Then the score of E(Ai) can be e-
valuated by the modified score function J , as follows:
J(E(Ai)) = tAi − fAi + µmAi = tAi(1 − µAi) +
tAi(1 + µAi) − 1, where J(E(Ai)) ∈ [−1,+1], µ ∈

[−1, 1], and mAi is defined by mAi = 1 − tAi −
fAi, 0 ≤ mAi ≤ 1. The parameter µ is introduced to
indicate that there is a trend of unanimous modifica-
tion by taking into account the effect of the unknown
degree mAi on the score of E(Ai), and can be chosen
according to actual cases:

1. If µ > 0, the value of the third term µmAi of
J(E(Ai)) is positive, and it tends to increase the score
of E(Ai) due to its addition in the first term tAi;

2. If µ < 0, the value of the third term µmAi is
negative, then it tends to decrease the score of x due
to its addition to the second item fAi;

3. If µ = 0, the improved score function
J(E(Ai)) is the same score function as SCT (E(Ai))
proposed by Chen and Tan [3].

In the renewed vote for resolution, µmAi can also
be interpreted as: if µ > 0, most abstentions may be
in favor of; if µ < 0, most of them for; or if µ = 0,
they still keep abstentions with.

Recently, Dou used Ye’s score function to handle
multi-criteria QoS routing decision-making problem-
s [7]. Although Ye’s accuracy function seems to better
reflect the differences between truth membership and
false membership, there are still some problems.

Example 10. For the two vague values of two al-
ternatives presented earlier, E(A1) = [0, 1] and
E(A2) = [0.5, 0.5], by applying Ye’s modified score
function [33], when parameter µ = 0, then we get:
J(E(A1)) = 0× (1− 0) + 1× (1 + 0)− 1 = 0 and
J(E(A2)) = 0.5× (1− 0) + 0.5× (1 + 0)− 1 = 0.
We still do not know which one is the better choice.
Although Ye’s modified score function seems to better
reflect the differences between truth membership and
false membership, this method is still invalid in some
cases.

In order to overcome the above problem, in the
following definition, Ye [37] proposed an improved
score function which provides additional useful infor-
mation to efficiently evaluate the degree of suitability
of each alternative for decision making.

Ye’s improved score function [37]
Suppose there is a vague value E(Ai) = [tAi, 1−fAi]
for alternative Ai, where tAi ∈ [0, 1], fAi ∈ [0, 1], and
tAi+fAi ≤ 1. The score of E(Ai) can be evaluated by
the improved score function defined as: J(E(Ai)) =
tAi(1 +mAi)−m2

Ai, where J(E(Ai)) ∈ [0, 1].

Example 11. For two vague values, E(A1) =
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[0.7, 0.9] and E(A2) = [0.67, 0.7], by applying Ye’s
improved score function, we can obtain J(E(A1)) =
tA1(1+mA1)−m2

A1 = 0.7(1+0.1)−0.12 = 0.76 and
J(E(A2)) = tA2(1+mA2)−m2

A2 = 0.67(1+0.3)−
0.32 = 0.78. It seems that the alternative with vague
value E(A1) is inferior to the alternative with vague
value E(A2). However, the result is not reasonable if
explained in terms of a voting model: alternative A1

has 70% in favour and 10% against it; alternative A2

has 67% in favour and 30% against it. In this sce-
nario, Ye’s improved accuracy function will produce
the opposite result, which would be in conflict with
the decision makers’ desired outcomes.

In addition to the aforementioned main score
functions, many other researchers have also proposed
different definitions of score functions, such as Li-
u, Wang, and Lin [23], Priya and Supriya [26], So-
lairaju et al. [28], Wang and Li [31], Dymova et
al. [10]. However, these score functions have the same
problematic deficiencies that the above familiar works
have.

As mentioned above, when using these vague
based score functions to address multi-criteria
decision-making problems, the problematic deficien-
cies of existing score functions can be summarized as
follows. Firstly, for the vague values, insufficient in-
formation of the unknown part may cause information
loss during score value transformation. In addition to
that, for some researchers’ works, over-complicated
calculations are inefficient for transferring the vague
values into comparable score values. Furthermore,
for some cases, undesirable or unreasonable results,
which are conflict with the decision makers’ desires,
may be obtained. Finally, for some cases, mathemat-
ically meaningless operation or undefined results dur-
ing vague values transformation could arise.

To address these problematic deficiencies, there is
an emerging demand for proposing a novel score func-
tion to transform the uncertain and imprecise vague
values into comparable numerical values.

4 The Proposed Novel Score Func-
tion for MCDM Based on Vague
Set

In order to overcome the aforementioned problems of
score functions for decision making, we proposed a
novel vague set based score function inspired by type-
2 fuzzy sets theory to provide another useful way to
assist the decision making problems. The concept of
type-2 fuzzy sets was initially proposed by Zadeh [38]
as an extension of ordinary fuzzy sets. In the follow-
ing, notions of Type-2 fuzzy sets are briefly recalled,
and the proposed vague based score function which

is fundamental to measure the degree of suitability of
each alternative is defined.

Definition 1. Type-2 fuzzy set [8, 27, 38]
A type-2 fuzzy set A in X is characterized by a three
dimensional type-2 membership function µA(x, u) :
X × [0, 1] → [0, 1], A = {(x, u), µA(x, u)) |∀x ∈
X ∧ ∀u ∈ Jx ⊆ U = [0, 1]}, where x is a point
in the primary domain X , and Jx is called the pri-
mary membership function of x; u is a point in the
secondary domain U , and µA(x, u) is called the sec-
ondary membership function whose domain is the pri-
mary membership of x. When all µA(x, u) = 1,
∀u ∈ Jx ⊆ U = [0, 1], then the type-2 membership
function is an interval type-2 membership function
and the type-2 fuzzy set A is an interval type-2 fuzzy
set. The interval secondary membership function re-
flects a uniform uncertainty at the primary member-
ships of x.

tA(x) 1-fA (x)

x

μA(x)

μA(x, μA(x))

X

1

V

U

Figure 1 Secondary membership function of vague
value

Fig. 1 shows a 3D representation of a vague value
[tA(x), 1− fA(x)], where vague set A in the universe
of discourse X , A = {(x, [tA(x), 1 − fA(x)])|x ∈
X}, and where the interval [tA(x), 1−fA(x)] of [0, 1]
is a vague value to the object x in vague set A. In the
third dimension, a corresponding second membership
function µA(x, µA(x)) maps the membership degree
of the elements in the interval [tA(x), 1−fA(x)]. The
value µA(x, µA(x)) is a random value from the inter-
val [0, 1]. It means that the second membership func-
tion µA(x, µA(x)) indicates to what degree of support
an element on the interval [tA(x), 1− fA(x)] falls un-
der “the concept xi is true”.

In the interval [tA(x), 1 − fA(x)], if an ele-
ment has a grade of second membership function
µA(x, µA(x)) equal to 1, this reflects a complete fit-
ness between the element and “the concept x is true”;
if an element has a grade of support membership func-
tion µA(x, µA(x)) equal to 0, then the element does
not belong to that “the concept x is true”. For the
element tA(x), the property of “being true” is fully
satisfied. Hence the membership degree under “being
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true” is equal to 1. For the element (1 − fA(x)), the
property of “being true” is equal to zero. For the ele-
ments µA(x) less than tA(x) or more than (1−fA(x)),
the property of “being true” is completely excluded
from this set. For the element µA(x) between tA(x)
and (1 − fA(x)), the property of “being true” is par-
tially satisfied.

The second membership value of each elemen-
t in the interval [tA(x), 1 − fA(x)] = [p, q] can
be read as follows: the second membership function
µA(x, µA(x)) takes numerical values “Equal to 1 and
is continuous and strictly decreasing to 0 as the µA(x)
value increases between tA(x) and 1−fA(x)”. There-
fore, the second membership function µA(x, µA(x))
are plausibly to be strictly decreasing on the inter-
val [tA(x), 1 − fA(x)]. Using this function, the sec-
ond membership value µA(x, µA(x)) on the interval
[tA(x), 1 − fA(x)] is linearly mapped to a value in
range [1, 0].

Definition 2. Vague value set and its secondary
membership function
If X is a collection of objects denoted generically by
x, then A is defined to be a vague set of the uni-
verse of discourse X , written as A = {(x, [tA(x), 1−
fA(x)])|x ∈ X}. The vague value [tA(x), 1− fA(x)]
indicates that the exact grade of membership µA(x)
of x may be unknown but it is bounded by tA(x) ≤
µA(x) ≤ 1 − fA(x). Therefore, the vague set A
can also be generalized as a type-2 fuzzy set, whose
secondary membership function can be presented as
µA(x, µA(x)). This implies that the value of the pri-
mary membership of x, µA(x), is also referred to as
the secondary domain of the secondary membership
function µA(x, µA(x)).

In this case, X is referred to as the primary do-
main; U is referred to as the secondary domain, as
well as the value of the primary membership of x; V
is referred to as the secondary membership value of
x. As shown in Fig.1, µA(x) of [0, 1] is the primary
membership function, whose primary domain is the
universe of discourse X; µA(x, µA(x))) of [0, 1] is
the secondary membership function, whose secondary
domain is the vague value U .

At x, the secondary membership value corre-
sponding to each primary membership value in the
closed interval [tA(x), 1 − fA(x)] = [tA(x), tA(x)

∗]
can be represented as follows.

µA(x, µA(x)) =
0, for µA(x) < tA(x);
(1− fA(x)− µA(x))/(1− fA(x)− tA(x)),

for tA(x) ≤ µA(x) ≤ 1− fA(x);
0, for 1− fA(x) < µA(x),

where µA(x, µA(x)): X × [0, 1] → [0, 1].
Clearly, the interval [tA(x), 1 − fA(x)] and the

secondary membership value, which is both “normal”
and “convex”, define a right triangular fuzzy number
denoted as TFN(tA(x), tA(x), 1− fA(x)). Each data
object in the interval [tA(x), 1 − fA(x)] represents
an element of the “the concept x is true” associat-
ed with a degree of secondary membership function
µA(x, µA(x)), linearly decreasing from 1 to 0.

For example, at x, the primary membership val-
ues are in the vague interval µA(x) = [tA(x), 1 −
fA(x)] = [0.6, 0.90] and their associated secondary
membership values are as follows:

µA(x, µA(x)) = 0, for all µA(x) < 0.6;
µA(x, µA(x)) = 1, for µA(x) = 0.6;
µA(x, µA(x)) is strictly decrease from 1 to 0, for

µA(x) from 0.6 to 0.90;
µA(x, µA(x)) = 0, for all µA(x) > 0.90.

Yager’s centroid method [35]
Yager proposed a centroid index ranking method for
calculating the value u∗N for a fuzzy number N :

u∗N =
∫ b
a w(u)µN (u)du/

∫ b
a µN (u)du, where a and b

are the lower bound and the upper bound of the fuzzy
number; w is a weighing function and w(u) denotes
the weighing value of the weighing function measur-
ing the importance of the value u; µN is a member-
ship function and µN (u) indicates the membership
value of the element u in the fuzzy number N . When
w(u) = u (i.e. linear weight), the value u∗N be-
comes the geometric center of gravity (CoG) shown
as follows: u∗N =

∫ b
a u · µN (u)du/

∫ b
a µN (u)du. This

method is used as a transforming method to transfor-
m the aforementioned right triangular fuzzy number
TFN(tA(x), tA(x), 1− fA(x)) into a single compara-
ble numerical score. The larger the value of µN , the
larger the expected truth value and the better the rank-
ing of the fuzzy number N .

4.1 Proposed new score function
Suppose the evaluation function of an alternative can
be expressed by the vague value E(A) = [tA(x),
1 − fA(x)], where 0≤ tA(x) ≤ 1 − fA(x) ≤ 1. By
the above definition, the elements in the vague val-
ue [t(x), 1 − f(x)] can be generalized as a type-2
fuzzy set, whose secondary membership function can
be presented as µ(x, µA(x)) to define a right triangu-
lar fuzzy number TFN(tA(x), tA(x), 1− fA(x)).

As shown in Figure 2, by applying Yager’s
centroid method, the transformed numerical score
of the defined triangular fuzzy number TFN(tA(x),
tA(x), 1 − fA(x)) can be regarded as the cen-
troid index of the right triangular fuzzy number
TFN(tA(x), tA(x), 1 − fA(x)). Thus, the numerical
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0                          

μA(x, μA (x))
g.c.

tA (x) 1-fA (x) μA(x)

1

Figure 2 Membership function of a vague value
V (x) = [tA(x), 1− fA(x)]

score of the vague value SL(E(A)) can be calculated
by the following transforming score function:

SL(E(A)) =

∫ 1−fA(x)

tA(x)

x · (1− fA(x)− tA(x))

1− fA(x)− tA(x)
dx/∫ 1−fA(x)

tA(x)

(1− fA(x)− tA(x))

1− fA(x)− tA(x)
dx

= tA(x) + (1− fA(x)− tA(x))/3

=
2

3
tA(x) +

1

3
(1− fA(x)) (2)

The secondary membership function µ(x, µA(x))
maps each element in the primary membership value
µA(x) = [tA(x), 1 − fA(x)] to a secondary member-
ship value between 0 and 1.

This method is used as an effective and efficient
transforming method to transform the vague member-
ship values of the elements in the vague interval into
a single comparable crisp value.

To illustrate, at x, the primary membership val-
ues are in the vague interval [tA(x), 1 − fA(x)] =
[0.6, 0.9]. The primary membership function
µA(x) and the secondary membership function
µA(x, µA(x)) define a right triangular fuzzy number
TFN(t(x), tA(x), 1−fA(x)) = TFN(0.6, 0.6, 0.9) and
can be transformed as follows:

SL(E(A)) =
2

3
× 0.6 +

1

3
× 0.9 = 0.7

4.2 Illustrative example
In the above section, a novel score function for mea-
suring the degree of suitability that an alternative sat-
isfies the decision maker’s requirement is shown. the
proposed score function differ from the previous ones
in that the proposed score function is a linear function
to transform the vague values rather than non-linear
functions proposed by other authors.

In this section, we took a case application as an il-
lustration using the data set which is slightly modified

from an example presented earlier in [30]. The pro-
posed new score function is demonstrated as follows
to draw comparisons of ranking orders with some
commonly used score functions.

Example 12. For a multi-criteria decision making
problem based on vague set, let A = {A1, A2, A3, A4,
A5, A6, A7} be a set of alternatives and let C =
{C1, C2, C3, C4} be a set of criteria. The character-
istics of the alternatives are represented by the vague
sets shown as follows:
A1 = {(C1, [0.2, 0.4]), (C2, [0.5, 0.8]), (C3, [0.0,
0.6]), (C4, [0.0, 1.0])}
A2 = {(C1, [0.8, 1.0]), (C2, [0.6, 0.8]), (C3, [0.5,
0.5]), (C4, [0.3, 0.5])}
A3 = {(C1, [0.4, 0.6]), (C2, [0.1, 0.9]), (C3, [0.5,
0.8]), (C4, [0.1, 0.4])}
A4 = {(C1, [0.4, 0.6]), (C2, [0.5, 0.7]), (C3, [0.6,
0.6]), (C4, [0.1, 0.9])}
A5 = {(C1, [0.8, 0.9]), (C2, [0.2, 0.5]), (C3, [0.4,
0.6]), (C4, [0.6, 1.0])}
A6 = {(C1, [0.3, 1.0]), (C2, [0.4, 0.9]), (C3, [0.2,
0.85]), (C4, [0.65, 0.7])}
A7 = {(C1, [0.5, 0.8]), (C2, [0.0, 0.9]), (C3, [0.3,
0.6]), (C4, [0, 0.7])}

Assume that the decision maker want to rank the
alternatives A1 through A7 which satisfy the criteria
C1 and C2 and C3 or which satisfy the criteria C4.

By applying the minimum operation and maxi-
mum operation in Eq. (1), we can yield the evaluation
values of alternative:
E(A1) = ([0.2, 0.4] ∧ [0.5, 0.8] ∧ [0.0, 0.6]) ∨ [0.0,
1.0] = [0.0, 1.0]
E(A2) = ([0.8, 1.0] ∧ [0.6, 0.8] ∧ [0.5, 0.5]) ∨ [0.3,
0.5] = [0.5, 0.5]
E(A3) = ([0.4, 0.6] ∧ [0.1, 0.9] ∧ [0.5, 0.8]) ∨ [0.1,
0.4] = [0.1, 0.6]
E(A4) = ([0.4, 0.6] ∧ [0.5, 0.7] ∧ [0.6, 0.6]) ∨ [0.1,
0.9] = [0.4, 0.9]
E(A5) = ([0.8, 0.9] ∧ [0.2, 0.5] ∧ [0.4, 0.6]) ∨ [0.6,
1.0] = [0.6, 1.0]
E(A6) = ([0.3, 1.0] ∧ [0.4, 0.9] ∧ [0.2, 0.85]) ∨
[0.65, 0.7] = [0.65, 0.85]
E(A7) = ([0.5, 0.8] ∧ [0.0, 0.9] ∧ [0.3, 0.6])∨
[0, 0.7] = [0, 0.7].

4.3 Results and discussions
By using the proposed new score function in Eq. (2),
the degree of suitability to which the alternative Ai

satisfies the decision maker’s requirements can be cal-
culated as follows:

SL(E(A1)) =
2

3
× 0 +

1

3
× 1.0 = 0.33
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Table 2 Score function and ranking order

score function ranking order
Chen and Tan’s score function SCT (x) [3] A5 ≻ A6 ≻ A4 ≻ A2 = A1 ≻ A3 = A7

Li et al.’s transforming function [20] A5 ≻ A6 ≻ A4 ≻ A2 = A1 ≻ A3 = A7

Li et al.’s defuzzification function [20] A5 ≻ A6 ≻ A4 ≻ A2 ≻ A3 ≻ A7, A1 is meaningless
Wang et al.’s score function, SWZL(x) [30] A5 = A6 ≻ A4 ≻ A2 ≻ A1 ≻ A3 ≻ A7

Xu’s order relation method [32, 33, 34] A5 ≻ A6 ≻ A4 ≻ A2 ≻ A1 ≻ A7 ≻ A3

Proposed score function in this study, SL(x) A5 ≻ A6 ≻ A4 ≻ A2 ≻ A1 ≻ A3 ≻ A7

SL(E(A2)) =
2

3
× 0.5 +

1

3
× 0.5 = 0.5

SL(E(A3)) =
2

3
× 0.1 +

1

3
× 0.6 = 0.27

SL(E(A4)) =
2

3
× 0.4 +

1

3
× 0.9 = 0.57

SL(E(A5)) =
2

3
× 0.6 +

1

3
× 1.0 = 0.73

SL(E(A6)) =
2

3
× 0.65 +

1

3
× 0.85 = 0.7

SL(E(A7)) =
2

3
× 0 +

1

3
× 0.7 = 0.23

The ranking order of the scores for the seven
vague values is given as follows:

SL(E(A5)) ≻ SL(E(A6)) ≻ SL(E(A4))

≻ SL(E(A2)) ≻ SL(E(A1)) ≻ SL(E(A3))

≻ SL(E(A7))

Consequently, the ranking order of the seven alterna-
tives is given as follows:

A5 ≻ A6 ≻ A4 ≻ A2 ≻ A1 ≻ A3 ≻ A7

Table 2 shows the comparison results of the rank-
ing orders obtained from using familiar score func-
tions and from using the proposed new score function.
By using Chen and Tan’s score function, Li et al.’s
transforming function, and Wang et al.’s score func-
tion, alternatives are still indistinguishable. By using
Li et al.’s defuzzification function, for the vague value
E(A1) = [0, 1], we obtain SD(E(A1)) = 0/0. Thus,
it would be either mathematically meaningless or un-
defined to calculate the score SD(E(A1)) in this case.
By using Xu’s order relation method, the alternative
with evaluated vague value E(A3) is inferior to the
alternative with vague value E(A7). It can be easi-
ly seen that the unreasonable result may be in conflict
with decision makers’ desired outcome in this scenari-
o.

These analytical results demonstrate that by using
existing score functions for comparing vague values,
some comparison are indistinguishable, some opera-
tion are mathematically undefined and some compar-
ison results are unreasonable. However, these defi-
ciencies can be resolved by using the proposed score
function. These results suggest that the novel score
function provides a more distinguishable, easily com-
putable and reasonable way than other score function-
s for discriminating vague values. Therefore, we can
rank all alternatives through this novel score function.

5 Conclusions and Further Research
After reviewing and examining existing vague set
based score functions in the literature, our analysis of
these works revealed that there exist several deficien-
cies when using these score functions in multi-criteria
fuzzy decision-making problems. To address these
problematic deficiencies, this paper has presented a
novel score function to measure the degree of suitabil-
ity of each alternative with respect to a set of criteria
to be represented by vague values.

The proposed novel score function is a linear s-
core function which emphasizes three parts, name-
ly, tx, fx and 1 − tx − fx, simultaneously. As ex-
pected, during vague score transformation, the afore-
mentioned problematic deficiencies of existing score
functions can be overcome: First, during vague val-
ue transformation, the information loss caused by the
insufficient information of the unknown part can be
overcome; Second, the proposed score function is eas-
ily computable with higher precision and consistency
than other existing score functions; Third, undesirable
or unreasonable transformed results, which are in con-
flict with the decision makers’ desires, can be avoid-
ed; Fourth, mathematically meaningless operations or
undefined results during vague values transformation
can be prevented.

An illustrative example has also been given to
allow a comparison of the proposed score function
with the existing main score functions. The analyt-
ical results demonstrate that the proposed vague set

WSEAS TRANSACTIONS on MATHEMATICS Kuo-Sui Lin

E-ISSN: 2224-2880 10 Volume 15, 2016



based score function is more effective and reasonable
than other existing score functions in handling multi-
criteria decision-making problems.

In the future, further work focused on the devel-
opment on new multi-criteria fuzzy decision making
models based on the proposed score function will be
carried out. Another area warranting attention can be
concentrated on conducting real-word case studies to
tackle multi-criteria fuzzy decision making problems
by using the developed decision-making models.

References:

[1] Atanassov, K. T., Intuitionistic Fuzzy Sets,
Fuzzy Sets and Systems, Vol. 20, No. 1, 1986,
pp.87-96.

[2] Bustine, H. and Burillo, P., Vague Sets Are In-
tuitionistic Fuzzy Sets, Fuzzy Sets and Systems,
Vol. 79, No. 3, 1996, pp.403-405.

[3] Chen S. M. and Tan J. M., Handling Multi-
Criteria Fuzzy Decision-Making Problems
Based on Vague Set Theory, Fuzzy Sets and
Systems, Vol. 67, No.2, 1994, pp.163-172.

[4] Das, S., Kar, M. B. and Kar, S., Group
multi-criteria decision making using intuition-
istic multi-fuzzy sets, Journal of Uncertainty
Analysis and Applications, Vol.1, No.10, 2013,
pp.1-16.

[5] Deng, Hepu and Wibowo, Santoso, Multi-
criteria group decision making for evaluating
the performance of e-waste recycling program-
s under uncertainty, Waste Management, Vol.40,
2015, pp. 127-135.

[6] Ding, J. F., Applying an Integrated Fuzzy M-
CDM Method to Select Hub Location for Glob-
al Shipping Carrier-Based Logistics Service
Providers, WSEAS Transactions on Information
Science and Applications, Vol. 10, Issue 2, 2013,
pp. 47-57.

[7] Dou, Y. A Multi-Criteria Fuzzy Decision-
Making Method to QoS Multi-Constraints Rout-
ing Based on Vague Sets, International Jour-
nal of Advancements in Computing Technology,
2012, Vol. 4 Issue 5, pp.58-67

[8] Dubois, D. and Prade, H., Fuzzy Sets and Sys-
tems: Theory and applications, New York: Aca-
demic Press, 1980.

[9] Dymova, L. and Sevastjanov, P., Operations on
Intuitionistic Fuzzy Values in Multiple Criteri-
a Decision Making, Scientific Research of the
Institute of Mathematics and Computer Science,
Vol. 10, Issue 1, 2011, pp. 41-48.

[10] Dymova, L., Sevastjanov, P. and Tikhonenko,
A New Approach to Comparing Intuitionistic
Fuzzy Values, A., Scientific Research of the In-
stitute of Mathematics and Computer Science,
2011, Volume 10, Issue 2, pp. 57-64.

[11] Fan, H., Research on the Physical Education
Teaching Effectiveness of the Higher Colleges
and Universities with Intuitionistic Fuzzy In-
formation, Journal of Convergence Information
Technology, 2012, Vol. 7 No. 15, pp463-469.

[12] Gau, W. L. and Buehrer, D. J., Vague Sets, IEEE
Transactions on Systems, Man and Cybernetics,
Vol.23, No.2, 1993, pp.610-614.

[13] Goyal, M., Yadav, D. and Tripathi, A., An
Intuitionistic Fuzzy Approach to Classify the
User Based on an Assessment of the Learn-
er’s Knowledge Level in E-Learning Decision-
Making, Forthcoming Online First Paper , pub-
lished on May 21, 2015 in Journal of Informa-
tion Processing Systems.

[14] Hajeeh, M. A., Water Desalination Plants Per-
formance Using Fuzzy Multi-Criteria Deci-
sion Making, WSEAS Transactions on Systems,
Vol.9, Issue, 2010, pp. 422-431.

[15] Hong, D. H. and Choi C. H., Multi-Criteria
Fuzzy Decision-Making Problems Based on
Vague Set Theory, Fuzzy Sets and Systems,
Vol.114, No.1, 2000, pp.103-113.

[16] Hui, M. L. and Abdullah, L., Ranking of Ser-
vice Quality using Intuitionistic Fuzzy Weight-
ed Entropy: A Case of Vehicle Insurance Com-
panies, Advances in Applied Economics and Fi-
nance, Vol. 1, No. 1, 2012, pp. 49-53.

[17] Jiang X., Zheng B. and Wang L., The Cou-
pled Method Fuzzy-AHP Applys to Solve Multi-
Criteria Decision Making Problems, WSEAS
Transactions on Mathematics, Vol. 8, issue 11,
2009, pp. 657–666.

[18] Klir, G. J. and Folger, T. A., Fuzzy Sets, Un-
certainty, and Information, Englewood Cliffs:
Prentice-Hall, 1988.

[19] Li, F. and Rao, Y., Weighted Methods of Multi-
Criteria Fuzzy Decision Making Based on Vague
Sets, Computer Science, Vol.5, 2001, pp.103-
109.

[20] Li, F., Lu, Z. H. and Cai, L. J., The Entropy of
Vague Sets Based on Fuzzy Sets, Journal of
Huazhong University of Science and Technolo-
gy (Nature Science Edition), Vol.1, No.31, 2003,
pp. l-3.

[21] Lin, Z. G., Xu, L. Z. and Wang, J. Y., Multicri-
teria Fusion Decision-Making Based on Vague
Sets, Computer Engineering, Vol.31, 2005,
pp.11-13.

WSEAS TRANSACTIONS on MATHEMATICS Kuo-Sui Lin

E-ISSN: 2224-2880 11 Volume 15, 2016



[22] Liu, H. W. and Wang, G. J., Multi-Criteria
Decision-Making Methods Based on Intuitionis-
tic Fuzzy Sets, European Journal of Operational
Research, Vol.179, 2007, pp.220- 233.

[23] Liu, Y., Wang, G., and Lin, F., A General Mod-
el for Transforming Vague Sets into Fuzzy Sets,
Transactions on Computational Science, Vol.2,
2008, pp.133-144.

[24] Lu, A. and Ng, W., Vague Sets or Intuitionis-
tic Fuzzy Sets for Handling Vague Data: Which
One Is Better? Lecture Notes in Computer Sci-
ence, Vol.3716, 2005, pp.401-416.

[25] Prabjot Kaur and Sanjay Kumar, An Intuition-
istic Fuzzy Simple Additive Weighting Method
for Selection of Vendor, Journal of Business and
Management, Vol. 15, Issue 2, 2013, pp. 78-81.

[26] Priya, H. and Supriya, R., Implementation
of Vague-Fuzzification Using Vague Sets, In-
ternational Journal of Computer Applications,
Vol.87, No.11, 2014, pp.14-17.

[27] Qahri Saremi, H. and Montazer, Gh. A., An Ap-
plication of Type-2 Fuzzy Notions in Website
Structures Selection: Utilizing Extended TOP-
SIS Method, WSEAS Transactions on Comput-
ers, Vol.1, Issue 7, 2008, pp. 8-15.

[28] Solairaju, A, Robinson, P. J. and Lenin, T.,
Applications Of Transforming Vague Sets into
Fuzzy Sets for Knowledge Management, Inter-
national Journal of Computing Algorithm, Vol.2,
No.2, 2013, pp.430-439.

[29] Solairaju, A., Robinson, P. J. and Lenin T.,
MADM Problems for Interval Vague Sets Us-
ing a New TOPSIS Method, International Jour-
nal of Information Science and Intelligent Sys-
tem, Vol.3, No.2, 2014, pp. 91-100.

[30] Wang, J., Zhang, J. and Liu, S. Y., A New Score
Function for Fuzzy MCDM Based on Vague Set
Theory, International Journal of Computational
Cognition, Vol.4, No.1, 2006, pp.44-48.

[31] Wang, J. Q. and Li, J. J., Multi-Criteria Fuzzy
Decision-Making Method Based on Cross En-
tropy and Score Functions, Expert Systems with
Applications, Vol.38, 2011, pp.1031-1038.

[32] Xu, Z., Choquet Integrals of Weighted Intuition-
istic Fuzzy Information, Information Sciences,
Vol.180, No.5, 2010, pp.726-736.

[33] Xu, Z., Intuitionistic Preference Relations and
Their Application in Group Decision Making,
Information Sciences, Vol.177, No.5, 2007,
pp.2363-2379.

[34] Xu, Z. S. and Yager Y. R. R., Some Geomet-
ric Aggregation Operators Based on Intuitionis-
tic Fuzzy Sets, International Journal of General
Systems, Vol.35, No.4, 2006, pp.417-433.

[35] Yager, R. R., A Procedure for Ordering Fuzzy
Subsets of the Unit Interval, Information Sci-
ence, Vol.24, No.2, 1981, pp.143-161.

[36] Ye, J., Improved Method of Multicriteria Fuzzy
Decision-Making Based on Vague Sets, Com-
puter Aided Design, Vol.39, No.2, 2007, pp.164-
169.

[37] Ye, J., Using an Improved Measure Func-
tion of Vague Sets for Multicriteria Fuzzy
Decision-Making, Expert Systems with Applica-
tions, Vol.37, No.6, 2010, pp.4706-4709.

[38] Zadeh, L. A., The Fuzzy Concept of A Linguis-
tic Variable and Its Application to Approximate
Reasoning-I, Information Science, Vol.8, No.3,
1975, pp.199-249.

[39] Zamri, N., Abdullah, L., Hitam, M. S., Noor,
M., Maizura, N. and Jusoh, A., A Novel Hy-
brid Fuzzy Weighted Average for MCDM with
Interval Triangular Type-2 Fuzzy Sets, WSEAS
Transactions on Systems, Vol.12, Issue 4, 2013,
pp. 212-228

[40] Zhu, M, Hu, H. Y., Wang. J. and Zheng Z. W.,
A Vague Set Based Model for Regional Blood
Supply and Demand Balance Adjustment, Jour-
nal of Biomimetics Biomaterials and Tissue En-
gineering, Vol. 19, Issue 1, 2014, pp. 1-5.

WSEAS TRANSACTIONS on MATHEMATICS Kuo-Sui Lin

E-ISSN: 2224-2880 12 Volume 15, 2016




