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Abstract: In this paper, stochastic analysis of the behaviour of stock prices is considered using a proposed log-
normal distribution model. To test this model, stock prices for a period of 19 years were taken from the Nigerian
Stock Exchange (NSE) for simulation, and the results reveal that the proposed model is efficient for the prediction
of stock prices. Better accuracy of results via this model can be improved upon when the drift and the volatility
parameters are structured as stochastic functions of time instead of constants parameters.
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1 Introduction
The stock price is one of the highly volatile variables
in a stock exchange market. The unstable property
and other considerable factors such as liquidity on s-
tock return [1] call for concern on the part of investors,
since the sudden change in share prices occurs ran-
domly and frequently. Researchers are therefore pro-
pelled to look into the behavior of the unstable market
variable so as to advise investors and owners of coop-
eration who are looking for convenient ways to raise
money by issuing shares of stocks in their coopera-
tion.

The basis of this work lies in the observation of
the Scottish botanist Robert Brown in [2]. This is so
since the path of the stock price process can be linked
to his description of the random collision of some tiny
particles with the molecules of the liquid, he intro-
duced what is called Brownian motion. The “Arith-
metic” Brownian motion in the Bachelier’s model was
the first mathematical model of stock [2]. The stock
price model proposed by Bachelier assumed that the
discount rate is zero while the dynamics of the stock
satisfies the following stochastic differential equation
(SDE):

dS(t) = S0σdW (t) (1)

where S(t) is the spot price of the underlying assets at
time t, W (t) a standard Brownian motion, and σ the
volatility of the stock price.

As a result of the shortcoming of Bachelier’s
model which states that the hypothesis of the absolute
Brownian motion in (1) leads to a negative stock price

with positive probability, and ignores the discounting
which in reality is not visible, this model was refined
by Osborne model in [3], who stated that the log return
of the stock process should follow a normal distribu-
tion with mean zero and variance σ2τ for any small
τ > 0. Shortly, the geometric Brownian Motion was
introduced in [4], where the price of the risky stock
evolves according to the SDE:

dS(t) = µS(t)dt+ σS(t)dW (t) (2)

where µ is the expected rate of share price changes in
a given trading period, while other parameters are as
earlier defined.

In (2), there is an assumption that the option de-
rived from a stock has a constant expected rate of re-
turn µ. In [5, 6], Black and Schole contributed to the
world of finance via the introduction of Ito calculus
to financial mathematics, and also the Black-Scholes
formula. Brennan and Schwarz in [7] employed a fi-
nite difference method for pricing the American op-
tion for the Black-Schole model. This led to the one
dimensional parabolic partial differential inequality.

The main shortcoming of the Black-Schole mod-
el is its constant volatility assumption. Meanwhile,
statistical analysis of the stock market data shows that
the volatility of the stock is a time dependent quantity,
and also exhibits various random features. Stochastic
volatility of models like the Hull-white model in [8]
addressed the randomness by assuming that both the
stock price and the volatility are stochastic processes
affected by the different sources of risk.

The equation in a stochastic model for stock price
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volatility in financial engineering was combined with
the concept of potential energy in econophysics [9].
In the improved equation, random walk term in the
stochastic model was multiplied by the absolute val-
ue of the difference between the current price and the
price in the previous period divided by the square root
of a time step raised to the power of a certain value,
and then added to a term which is the price difference
multiplied by a coefficient.

McNicholas and Rzzo [10] applied the Geomet-
ric Brownian Motion (GBM) model to simulate future
market prices. Also, the Cox-ingersoll-Ross approach
was used by them to derive the integral interest gener-
ator and through stochastic simulation, the result was
a full array of price outcomes along with their respec-
tive probabilities. The model was used to forecast s-
tock prices of the sampled banks in the five weeks in
1999. Since, the stock prices fluctuate as quickly as
possible, a determination of an equilibrium price and
a dynamic stability is somewhat tasking. Osu [11] de-
termined the equilibrium price of a solution of the s-
tock pricing PDE which is the backward Black-Schole
PDE in one variable. This was with regard to differ-
ent values of the interest rate. For stochastic nature of
financial model; Edeki et al [12] considered the effect
of stochastic capital reserve on actuarial risk analysis.
Ugbebor et al [13] considered an empirical stochastic
model of stock price changes. Fama [14, 15] present-
ed random walks and stock behavior with respect to
stock market prices.

In modeling stock prices, Dmouj [16], construct-
ed the GBM and studied the accuracy of the model
with detailed analysis of simulated data. Exponential
Levy model for application in finance was considered
in [17]. On the aspect of parameter estimation and
model prediction in stock prices, much work has been
done, Sorin [18]. In a similar manner, other aspects of
applied and managerial sciences have been attracting
the attention of researchers with regard to predictive
models [19, 20].

The structure of the remaining part of the paper
is as follows: section 2 is on the mathematical for-
mulation of the problem, stock price expected value
and model simulation, and parameters estimation - the
volatility and the drift; section 3 is on data analysis
and application of results; while section 4 deals with
discussion of results and concluding remarks.

2 Mathematical Formulation

Let S(t) be the stock price of some assets at a speci-
fied time t, and µ, an expected rate of returns on the
stock, and dt as the return or relative change in the
price during the period of time.

The dynamics of the stock price is:

dSt = µStdt+ σStdWt (3)

where µStdt and σStdWt are the predictable and the
unpredictable parts (respectively) of the stock return.

Theorem 1 Ito formula Let (Ω, β, µ, F (β)) be a fil-
tered probability space, X = {Xi, t ≥ 0} be an adap-
tive stochastic process on (Ω, β, µ, F (β)) possessing
a quadratic variation ⟨X⟩ with an SDE defined as:

dX(t) = g(t,X(t))dt+ f(t,X(t))dW (t), (4)

t ∈ IR+, and for u = u(t,X(t)) ∈ C1×2(
∏

×IR).
Then

du(t,X(t)) =

[
∂u

∂t
+

g∂u

∂x
+

1

2
f2∂

2u

∂x2

]
dτ

+f
∂u

∂x
dW (t) (5)

Equation (5) whose proof can be found in [6] is
a stochastic differential equation (SDE) that can be
solved by semi-analytical methods [21, 22] when con-
verted to non SDE of differential type (ODE or PDE).
Thus, since the price S(t) of a risky asset such as stock
evolves according to the SDE in (4), where W (t) is
a standard Brownian motion on the probability space
(Ω, β, µ), β = σ is the algebra generated by W (t),
t ≥ 0, µ > 0 the drift, and σ the volatility of the
stock.

Applying Theorem 1 to (3) solves the SDE with
the solution as:

S(t) = S0e
(µ−σ2

2
)t+σW (t) (6)

According to the properties of standard Brownian mo-
tion process for n ≥ 1 and any sequence of time
0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, therefore by Euler’s method
of discretization of the SDE, we have:

lnSt− lnSt−1 = (µ− σ2

2
)△t+σ(Wt−Wt−1) (7)

Remark 2 The random variables W1 −Wt−1 are in-
dependent and have the standard normal distribution
with mean zero and variance one. Thus, for:

y = lnSt − lnSt−1, ξ = Wt −Wt−1 and △t = 1.

Eq. (7) becomes:

yt = µ− 1

2
σ2 + σξt (8)
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In this work, we shall estimate the drift µ, and the
volatility σ, in the next section.
Combining (7) and (8) yields:

lnSt = lnSt−1 + (µ− σ2

2
)△t+ σξ(

√
dt) (9)

Eq. (9) has the solution given by:

St = St−1e
(µ−σ2

2
)△t+σξ(

√
dt) (10)

Equation (10) shall be used in this work to develop the
simulation of 100 random paths for the stock price for
each respective year using the volatility and the drift
each stock year.

Eq. (10) is thus referred to as the geometric Brow-
nian motion model (GBMM) of the future stock price
St from the initial value S0. Thus, for the time period
t, when dt = t, (10) will therefore become:

St = S0e
(µ−σ2

2
)t+σξ(

√
t) (11)

2.1 Stock price expected value and simula-
tion model

Let St denote the (random) price of the stock at time
t ≥ 0. Then St has a normal distribution if y = lnSt

is normally distributed.
Suppose that y ∼ N(µ, σ2), then the pdf of y is

given as,

f(y) =
1√
2πσ2

e
−1
2 ( y−µ

σ )
2

, y ∈ (−∞,∞),

µ ∈ (−∞,∞), σ > 0
(12)

We obtain the lognormal probability density func-
tion (pdf) of the stock price St considering the fact
that for equal probabilities under the normal and log-
normal pdfs, their respective increment areas should
be equal.

f(y)dy = g(St)dSt

=⇒ g(St) =
f(y)dy

dSt
(13)

Substituting y = lnSt & dy =
dSt

St
in (13) defines

the pdf of St:

g(St) =
1

Stσ
√
2π

e
−1
2

(
lnSt−µ

σ

)2

(14)

2.2 The Expected value of the stock

After determining the volatility (σ) and the drift (µ)
of the stock price of the company, the expected stock
price E(St) is thus defined and denoted as:

E(St) = exp

(
lnS0 +

(
µ− σ2

2

)
t+ σ2t

)
= exp(lnS0) exp

(
µ+

σ2

2

)
t

So

E(St) = S0 exp

(
µ+

σ2

2

)
t. (15)

Eq (15) holds since,

lnSt −N(lnS0 +

(
µ− σ2

2

)
t, σ

√
t).

Definition 3 The Random walk process. For an inte-
ger n, n > 0 we define the Random Walk process at
the time t, {Wn(t), t > 0} as follows:

i. The initial value of the process is:
Wn(0) = 0

ii. The layer spacing between two successive jumps
is equal to 1

n ;

iii. The “Up” and “down” jumps are equal and of

size,
1√
n

with equal probability.

The value of the random walk at the i-th step is de-
fined recursively as follows:

Wn

(
i

n

)
=

(
i− 1

n

)
+

Xi√
n
, ∀ i ≥ 1 (16)

For given constants µ and σ the process has the fol-
lowing form:

Bt = µt+ σWt (17)
where t represents time and Wt is a random walk pro-
cess as described in (17), it can also be expressed as:

Wt = ε
√
t (18)

where ξ is a random number drawn from a standard
normal distribution.

2.3 Parameter Estimation (volatility σ and
drift µ)

In the course of developing the random walk algorith-
m, two parameters have to be estimated; the volatility
(σ) and the drift (µ) of the stock price for the selected
company. Also, for the purpose of the research, the
unit of time is chosen to be one day with which both
parameters will be calculated. The formulae for the
volatility and the drift of the stock price are explained
as follows.
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2.3.1 The Volatility, σ

Let Si be the stock price at the end of i-th trading pe-
riod, τ = t, −ti−1, i ≥ 1, the length of time interval
between two consecutive trading periods, µi the log-
arithm of the daily return on the stock over the short
time interval, τ such that:

µi = ln

(
Si

Si−1

)
(19)

Then the following are defined:

ū =
1

n

n∑
i=1

ui (20)

ν =

√√√√ 1

n− 1

n∑
i=1

(ui − ū)2 (21)

σ =
ν√
τ

(22)

where ū is the unbiased estimator of the log return,
ui, ν is the standard deviation of the ui’s and σ the
volatility of the daily stock return.

2.3.2 The Drift parameter, µ

The drift on the other hand is the expected annual rate
of return and is determined from the value of the un-
biased estimator as follows.

ū =

(
µ− 1

2
σ2

)
τ =⇒ µ =

ū

τ
+

1

2
σ2 (23)

3 Data Analysis and Result

The data used for the purpose of this research was
from a company listed under the Nigerian Stock Ex-
change (NSE); available on a web platform [23].
These consist of historical stock data of 4555 clos-
ing stock prices from April 12, 1996 to May 16, 2014.
The whole data was subdivided into nineteen smaller
data samples - each sample containing stock price da-
ta for a year each with an average of 240 stock trading
days with a minimum and maximum of 96 and 252
days respectively.

It is observed from Table 1 that the trading days
for the year 1996 is 183; that of 1997, and 2008 is 253;
that of 1998, 1999, 2000, 2002, 2003, 2004, 2005,
2009, 2010, 2011 and 2013 is 252; that of 2001 is
248 and that of 2014 is 96. The trading days can be
observed on the first column of Table 1.

For the purpose of this study, the generalized ran-
dom walk (Brownian motion with drift) model was

Table 1. Stock Price list from April 1996 till May
2014

Date Stock Price Volume Adjusted
Close

Open High Low Close
12-04-96 25.25 43 24.5 33 409000000 1.38
15-04-96 35.75 36 30 32.25 79219200 1.34
16-04-96 32.25 32.25 28 28.75 48016000 1.2
17-04-96 28.25 28.25 24.75 27 42816000 1.12
18-04-96 30.13 30.13 28 29.25 27268800 1.22
19-04-96 30.13 30.75 28.75 28.87 12913600 1.2
22-04-96 29 29 27.5 28.25 8041600 1.18
23-04-96 28.75 29 28 28 4297600 1.17
24-04-96 28.5 29.12 27.75 29 7795200 1.21
25-04-96 30 32.25 29 31.25 19478400 1.3
26-04-96 32 32.25 31.25 31.75 7561600 1.32
29-04-96 31.5 32 30.5 31 5928000 1.29
30-04-96 31.25 31.5 29.5 29.75 5003200 1.24
01-05-96 30.25 31.75 30 31.63 4881600 1.32
02-05-96 31.5 33.25 31.5 32.87 9731200 1.37
03-05-96 32.25 32.5 31.25 32 6116800 1.33
06-05-96 32.5 32.5 29.38 30.13 8214400 1.26
07-05-96 30 30.75 29.75 30.37 5569600 1.27
08-05-96 30.5 30.75 29.12 30.25 6288000 1.26
09-05-96 30 30.75 29.75 30.75 4032000 1.28

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
29-04-14 34.37 35.89 34.12 35.83 28720000 35.83
30-04-14 35.89 36.44 35.25 35.95 23315600 35.95
01-05-14 36.26 36.69 36 36.51 19474700 36.51
02-05-14 36.59 37.12 36.21 36.87 22437600 36.87
05-05-14 36.68 37.05 36.3 36.91 13117400 36.91
06-05-14 36.94 37.17 36.48 36.49 19084100 36.49
07-05-14 35.99 35.99 33.67 34.07 66039200 34.07
08-05-14 33.88 34.57 33.61 33.92 30407700 33.92
09-05-14 34.01 34.1 33.41 33.76 20280700 33.76
12-05-14 33.99 34.6 33.87 34.45 22520600 34.45
13-05-14 34.43 34.69 34.17 34.4 12472200 34.4
14-05-14 34.48 34.65 33.98 34.17 17039000 34.17
15-05-14 34.18 34.19 33.4 33.8 18826600 33.8
16-05-14 33.66 33.66 33.1 33.41 18847100 33.41

used in developing the model for the stock price be-
tween the years 1997 to the remaining 196 days in
2014 using the volatility and the stock of the previous
year from 1996 to 2014 respectively.

Using the values of the volatility and the drift of
the stock price of the year 1996; the value of the s-
tock price for the year 1997 will be determined, with
that of 1997 used to determine the stock price for the
year 1998 etc. Finally, the value of the volatility and
the drift for the year 2014 will be used to predict the
value of the stock for the remaining days in 2014. All
simulations in the work are done using MATLAB.

3.1 Analysis and Result of Parameters

The volatility and drift were calculated for each year
using the stock returns over a period of one year each
(see Table 2). Although, the unit period time has an
average of 240 days per stock year-each respective
year was allocated its own unit period given the num-
ber of days stated for the stock year; for example a
stock year of 252 days will have a period, τ = 1

252
years. Hence, the values of the volatility and drift of
each respective year was determined.
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Figure 1: Stock price distributions for the year 1996

Figure 2: Stock price distributions for the year 1997

3.1.1 Results of volatility, σ

According to Table 2; the distribution of the daily
volatility of each stock is stated in the 7th column for
the years 1996 till 2014. The highest volatility was
observed for the year 1998 with a value of 66% while
other years range between 0.2% for 2013, 2% for the
years 2005, 2007, 2010, 2011 and 2014, 3% for the
years 2003, 2006 and 2009, 4% for the year 1996; 5%
for the years 2002 and 2008; 6% for the years 1997
and 2001 and 7% for the years 1998 and 1999 (see
Fig 7 for the plot of the volatility).

3.1.2 Results of the drift, µ

According to the data shown in Table 2, the distribu-
tion of the daily drift for the stock price stated for the
period of 1996 till 2014 is stated in 3rd column. The
drift which is defined as the daily expected rate of re-
turn of the stock for each year shows a varying dis-
tribution of the return rate. The highest drift was ob-
served for the years 2013, 1998, 1999 and 2003 with
a value of 70%, 184%, 123% and 102% respectively
(see Fig 6).

The lowest drifts were also recorded for the year
2000 with a value of -212% followed by the years

Figure 3: 100-step random walk and its mean (starting
from zero)

Figure 4: 1000-step random walk in [0, 1] and its
mean

1996, 2006, 2008 and 2014 with a value of -49%, -
39%, -38% and -14.6% respectively. The remaining
years have drifts falling within the range of 2% and
4%.

The distribution of the remaining parameters
which were also used in determining the drift and the
volatility of the stock is shown in Fig 7 for the estima-
tor of standard deviation/volatility, v and Fig 8 for the
unbiased estimator, µ̄.

3.1.3 Results and discussion of the simulation of
the stock price for the period

For the simulation of the stock price of the year 1997;
the drift and volatility of the year 1996 (see Fig 1 for
the stock price of 1996) which had a value of -0.4908
and 0.593452 respectively were used in developing
the simulation of the 100 random walks for the year
1996 (see Fig 2). Majority of the simulated plots can
be observed to produce lower stock prices compared
to the actual stock price which shows an increased s-
tock distribution towards the end of the year.

For the simulation of the stock price of the year
1998; the drift and volatility of the year 1997 which
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Table 2: Values of the drift, volatility, standard deviation and unbiased estimator for each stock year

Year Trading Stock drift, Estimator for Time interval Volatility Std Unbiased
days µ Std.deviation,v τ (years) deviation,σ estimation,ū

1996 183 -0.49084601 0.04386924 0.005464481 0.593452079 -0.00364447
1997 253 1.7862 0.05698 0.003952569 0.906322383 0.00543687
1998 252 1.84288 0.66871 0.003968254 10.61544216 0.005077177
1999 252 1.232176388 0.073224139 0.003968 1.162434369 0.002208702
2000 252 -2.121176075 0.07228273 0.003968 1.147489486 -0.010996492
2001 248 0.111562421 0.061873163 0.003968 0.982237445 -0.001867521
2002 252 0.148347748 0.047091024 0.003968 0.747570754 -0.000520101
2003 252 1.028327383 0.025996734 0.003968 0.412698565 0.003742749
2004 252 0.120409721 0.049403982 0.003968 0.784288999 -0.00074256
2005 252 0.0683571 0.018344044 0.003984064 0.290624313 0.000103006
2006 251 -0.39056469 0.025631235 0.003984064 0.406075131 -0.001884515
2007 251 -0.028299874 0.023334203 0.003984064 0.3696833 -0.000184991
2008 253 -0.380322227 0.047648152 0.003952569 0.757890254 -0.002638423
2009 252 0.356700294 0.026546348 0.003968254 0.42141021 0.001063123
2010 252 0.015570308 0.018591583 0.003968 0.295141675 -0.000111037
2011 252 0.040694719 0.024970197 0.003968 0.396402274 -0.000150268
2012 251 0.22112019 0.012695823 0.003984064 0.201139664 0.000803889
2013 252 0.703864574 0.002789224 0.003968254 0.044277558 0.002789224
2014 96 -0.14594705 0.023333683 0.010416667 0.228622469 -0.00182496

Figure 5: Estimator of the standard deviation, ν of the
stock price for the year 1996 to 2014

Figure 6: Drift, µ of the stock price for the year 1996
to 2014

Figure 7: Volatility/standard deviation, σ of the stock
price for the year 1996 to 2014

Figure 8: Unbiased estimator, ū of the stock price for
the year 1996 to 2014
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has a value of 1.7862 and 0.906322 respectively were
used in developing the simulation of the 100 random
walks for the year 1998 (see Fig 9) using the initial
stock price of 66.25. This can be observed to be as
a result of the high volatility of 1998 with a value of
10.615442 the year with the highest volatility com-
pared to a volatility of 0.906322 for the year 1997.

For the simulation of the stock price of the year
1999; the drift and volatility of the year 1998 which
has a value of 1.8429 and 10.615442 respectively were
used in developing the simulation of the 100 random
walks for the year 1999 (see Fig 10) using the ini-
tial stock price of 24.80. The simulation of the stock
price for the year were out of place due to the differ-
ence in the volatility of the stock year with a value of
10.615442 for the previous year (1998) while that of
1999 is 1.162434. The simulation of the stock price
for the year 1999 was not a good interpretation of the
actual stock price for the year.

For the simulation of the stock price of the year
2000; the drift and volatility of the year 1999 which
has a value of 1.2322 and 1.162434 respectively were
used in developing the simulation of the 100 random
walks for the year 2000 (see Fig 11) using the ini-
tial stock price of 475. The volatility of the stock
shows almost equal values with 1.162434 for 1999
and 1.147489 for 2000.

For the simulation of the stock price of the year
2001; the drift and volatility of the year 2000 which
has a value of -2.1212 and 1.147489 respectively were
used in developing the simulation of the 100 random
walks for the year 2001 (see Fig 12) using the initial
stock price of 28.19. Although the volatility for the
years 2000 and 2001 are almost equal their drift shows
a significant difference - the stock return for the year
2001 is much larger than that of 2000 with a value
of 0.1112 a positive value unlike the negative value
observed for the year 2000 used in performing the 100
random paths.

4 Discussion of Result and Conclud-
ing Remark

This paper stochastically analyzes stock market prices
via a proposed lognormal model. To test this, stock
prices for a period of 19 years (from the nigerian s-
tock Exchange) were simulated. As indicated in Figs
13 to 24, the simulation of the annual stock price of
the years: 2002 to 2013 respectively with respect to
their initial prices is showed; for the simulation pur-
pose, the drift and volatility parameters of the previ-
ous years: 2001 to 2012 respectively were used. Sim-
ilarly, Fig 25 shows the simulation of the stock price

Table 3: Values of the initial stock price, drift, volatility and
trading days used in simulating the 100 random walks for

each year

Year (S0) Drift Volatility Trading
(µ) σ days, n

1997 17.50 -0.4908 0.593452 253
1998 66.25 1.7862 0.906322 252
1999 24.80 1.8429 10.615442 252
2000 475.00 1.2322 1.162434 252
2001 28.19 -2.1212 1.147489 252
2002 18.63 0.1112 0.982237 252
2003 17.60 0.1483 0.747571 252
2004 45.40 1.0283 0.412699 252
2005 36.18 0.1204 0.784289 252
2006 40.91 0.0684 0.290624 251
2007 25.61 -0.3906 0.406075 251
2008 23.72 -0.0283 0.369683 253
2009 12.85 -0.3803 0.75789 252
2010 17.10 0.3567 0.42141 252
2011 16.75 0.0156 0.295142 252
2012 16.29 0.0407 0.396402 251
2013 20.08 0.2211 0.20114 252
2014 39.59 0.7039 0.44278 96
2014

(remain)
33.41 -0.1459 0.228622 156

Figure 9: Simulation of 100 random walks for 1998
and actual stock price (blue)

Figure 10: Simulation of 100 random walks for 1999
and actual stock price (blue)
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Figure 11: Simulation of 100 random walks for 2000

Figure 12: Simulation of 100 random walks for 2001

for the first 96 days of 2014 using the drift and volatil-
ity of the year 2013 but the initial price of the stock
year of 2014 as at the beginning of the year. From
the diagram, it can be observed that the stock price for
the year 2014 - the actual plot lies within the range of
35 to 40 but most of the simulations of the 100 ran-
dom paths lie more in the range of 20 to 140. For the
first 20 days of simulation, it can be observed that the
random paths cluster around the actual stock but as
the simulation progresses further most of the random
paths tend to fall out of place with just a little percent-
age lying within the area of the actual stock price for
the year 2014.

For the simulation of the remaining 196 days of
the stock price for the year 2014; the drift and volatil-
ity of the year 2014 for the 96 days for which informa-
tion on the stock price is made available is determined
and used with the value of the stock price at the 96th

trading day as the initial stock price for the remaining
196 trading days of the year 2014.

100 random paths were simulated for the peri-
od and the simulations show a close resemblance to
the observed actual stock price for the first 96 trading
days. The trend shows that most of the 100 random
paths simulation of the expected stock price for the
remaining part of the year falls within the range of a
minimum drop to 15 and a maximum step to 45. This

Figure 13: Simulation of 100 random walks for 2002
and actual stock price (blue)

Figure 14: Simulation of 100 random walks for 2003
and actual stock price (blue)

behavior is almost acceptable since most of the stock
price for the early part of the year lie within the range
of a drop to 20 and step to 40.
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