

Efficient Class Matrix Congruential Generator Easily Implemented

From Multiple Recursive Generators

GWEI-HUNG TSAI
*
, DER-JIN CHEN, CHIOU-HUA LIN

Department of Applied Statistics and Information Science

Ming Chuan University, Taoyuan County

No.5, Deming Rd., Gueishan Dist., Taoyuan City 33348,

TAIWAN, ROC

herbtsai@mail.mcu.edu.tw

Abstract: - Classical random number generators such as Linear Congruential Generators (LCGs) and Multiple

Recursive Generators (MRGs) are commonly employed for modern simulation studies. LCGs have a too short

period and a too coarse structure to be used as reliable random number generators. Most Matrix Congruential

Generators (MCGs) are less applicable due to the inefficiency and the difficulty of deciding the too many

coefficients. We propose a class of Efficient Matrix Congruent Generators (EMCGs) including EMCG-1,

EMCG-2, EMCG-D and EMCG-G that simultaneously combine k LCGs to form the multiplier matrix of

MCGs. We can easily derive the multiple-matrices for all four EMCGs from the corresponding full fixed

minimal primitive characteristic polynomials. This makes them easy to implement the results from MRGs

without any restrictions on the dimension of a multiple-matrix. We also provide the portable and efficient

MAPLE algorithms without using any matrix multiplications for generating the four EMCGs with some selected

coefficients that can achieve the high-dimensional uniformity with extreme long cycles.

Key-words: Linear Congruential Generators, Multiple Recursive Generators, Matrix Congruential Generators,

Fast Matrix Congruential Generators.

1 Introduction

Random number generators are employed in

various areas in the modern world; not only in the

scientific experiments, but also for the huge

simulation data in the real life. For example, in a

747 aircraft, we randomly draw 10% of passengers

(40 in 400) to check for security. Therefore there will

be about 1.9×10
55

 different combination which is

further beyond the period of a common used Linear

Congruential Generators (LCGs). In the modern

era, high dimensions and superior effectiveness huge

periodical uniform random number generators are

heavily required in scientific researches and the

simulation studies by Claudia et al., Li & Zhao, and

Myszor & Cyran [1, 11, 15].

Deng and Xu suggested that a superior random

number generator should have the following

properties: High-dimensional uniformity, Efficiency,

Long cycle, and Portability (HELP) [4].

In Section 2, we review some important results of

the commonly used random number generators such

as LCGs, Multiple Recursive Generators (MRGs),

and Matrix Congruential Generators (MCGs).

In Section 3, we propose a system of special

efficient MCGs, called EMCG generators that

simultaneously combine k LCGs to form the

multiplier matrix of MCGs. This special designed

multiplier matrix of the MCG can achieve the

maximum period, 1kp with the given

characteristic polynomial corresponding to any

minimal primitive polynomial modulo p. By using

GMP efficient algorithm introduced by this study,

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 324 Volume 14, 2015

mailto:herbtsai@mail.mcu.edu.tw

we provide all parameters of the four EMCGs

including EMCG-1, EMCG-2, EMCG-G and

EMCG-D of some selected dimension k and prime

modulo p . These four generators have the

properties of HELP that are recommended for high

dimensional extreme long period simulations.

In Section 4, we provide users the maple EMCGs

algorithms to efficiently generate the random

numbers for a high dimensional, uniform, extremely

long period simulation used.

In Section 5, we compare the four EMCGs by

calculating process and required memory spaces,

and give more coefficients of EMCG-D for practical

uses.

2 Related reference paper

Linear Congruential Generators (LCGs) was first

proposed by Lehmer [10]. The recursive formula is

as follows:

)(1 cxx ii   mod m, ,,3,2,1 i (1)

where is a multiple, c is an increment, m is a

modulus, and 0x is an initial seed. Let c, m and 0x

be nonnegative integers. Once 0x is given, the

recursive formula can produce a sequence of random

numbers. When 0xxi  for some integer i, this

recursive begin to generate the duplicate sequence of

random numbers. The length of the non-repeat

sequence is called the period.

Knuth pointed out LCG generator to produce a

sequence with period less or equal to modulus m [9].

These LCGs have a too short period and a too

coarse structure; therefore, they cannot be used as

reliable random number generators.

2.1 Multiple Recursive Generators

A Multiple Recursive Generator (MRG) is an

extension of LCG with a k-terms polynomial. Its

recursive formula is as follows:

)...(11 kikii xxx    mod p, (2)

where k is the positive integer, p is the prime

modulus, k ,,, 21  are integer multipliers

between 0 to ,p 1 0k and at least one other

.0j Given k initial nonzero seeds

),,,,(110 kxxx  it follows by the recursive

formula to produce a sequence of random numbers.

Knuth defined the recursive formula with its

corresponding characteristic polynomial as [9]:

 .)(1

1 k

kk xxxf     (3)

When)x(f is a minimal primitive polynomial

modulo ,p the MRG in equation (2) can achieve the

maximum period, .1kp Knuth, Lidl and

Niederreiter confirmed that a maximum period MRG

of order k enjoys a nice equi-distribution property

up to k dimensions [9, 12].

These MRGs usually need many multiplications

and additions in the recursive formula, and hence

they are less efficient for producing random numbers.

Marsaglia took all the nonzero multiplier 'si

equal to the same constant  for improving the

efficiency [14].

Deng et al. considered a class of DL-k generators

with all nonzero multipliers equal, equation (4) or

alternately negate equal, equation (5) as the

following two recursive formulas [6]:

kikiiii xxxxx    121  mod p; (4)

kikiiii xxxxx    121  mod p. (5)

These two generators with corresponding

characteristic polynomials carry out in the following

forms:

.)(21

1    xxxxxf kkk  (6)

Such generators can be implemented efficiently.

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 325 Volume 14, 2015

Deng et al. recommended another more efficient

MRG called DT generators, which have all nonzero

multiples with geometric weights [5]:

kikii

k

i

k

i xxxxx 



   1

2

2

1

1  mod p. (7)

The corresponding characteristic polynomials are

achieved in the following forms

   xxxxxf kkkkk 2211 ...)(. (8)

DT generators can be efficiently implemented by the

(k+1)-order equation below:

))((11

1



  kii

k

i xxx  mod p, (9)

where)(1 kD   
mod p can be pre-computed

and . mod 21 pp  DT generators compared

with DX-K-s and DL generators are the most

efficient with better empirical statistical testing

results.

2.2 Matrix Congruential Generators

Franklin, Grothe and Niederreiter suggested a

recursive formula involving matrix multiplications

and name them Matrix Congruential Generators

(MCGs) as follows [7, 8, 16, 17]:

 1 ii Axx mod p. (10)

Here
1 k

i Fx is a positive integer vector (F is a

finite field) and
kkFA  is a kk multiplier

matrix. Select p as a prime modulus, and 0x as a

nonzero k dimensional vector. A MCG produces a

vector sequence with maximal period .pk 1 To

compute the next vector of the MCG, kk

integer’s size memory is needed for storing the

matrix coefficients in addition to memory for storing

two seed vectors (ix and 1ix) of k integers.

Determining the coefficients for the multiplier

matrix ,A is very computing intensive.

To improve the efficiency of MCGs, Deng and Lin

designed a special multiplier-matrix A and named

it Fast Matrix Congruential Generators (FMCGs) [3].

This matrix with a recursive formula is given as

equation (11).

(11) . mod

01

100

00

01

,1

1,1

2,1

1,1

2

1

,

1,

2,

1,

p

x

x

x

x

x

x

x

x

ki

ki

i

i

kki

ki

i

i









































































































Wikramaratna propose that a special ACORN

matrix generator sharing the same set of multipliers

of any MRG with minimal primitive polynomial

still achieves the maximal period [19]. The

multiplier matrix is defined as following:

(12)
a

0

0000

0000

0010

G

121






















































I

k

T

kk

k




Here
T0


 is a column vector of)1(k zeroes; I

represents the)1(k by)1(k identity matrix;

 121 a  


 kk is a row vector.

Tang proposes that a MCG using the inverse of

the above kG matrix as the multiplier matrix still

achieve the maximal period [18].

3 Main result

In this study we simultaneously combine k LCGs

with the selected multipliers putting in the matrix

A in equation (10) to design a new class of MCG

where the multiplier matrix kA E is such that

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 326 Volume 14, 2015

(13) .
a

0

1000

0100

0010

0001

0000

E
T

1

2

2

1
























































kk

k

k

k
I













Here 0


is a row vector with 1k zeroes, I is an

(k-1) by (k-1) identity matrix; Ta


 T121   kk is a column vector of 1k

selected multipliers. Note that the matrix kE is the

transpose of matrix .Gk The corresponding k

recursive equations can be expressed as:

pxx k,ik,i mod 11 

pxxx ,ik,ik,i mod 11112  

 pxxx ,ik,ik,i mod 21123  



 pxxx kikiki mod 1,1,11,   (14)

Theorem 3.1: The designed matrix kE as in

equation (13) of the MCG can achieve the

maximum period, 1kp and the corresponding

characteristic polynomial of kE is as follows:

kk

kkk xxxxxf   



1

2

2

1

12 ...)((15)

Proof: kE is the transpose matrix of .Gk

Hence both kE and .Gk share the same

characteristic polynomial as equation (15).

Considering the following matrix multiplication

with suitable partition, we let

(16)

V

0

a

0
G F .E

UTI

sR

QP
k

k

T

k 




























 





 Here P is a (k-1) by (k-1) matrix, Q is a (k-1) by 1

matrix, R is a 1 by (k-1) matrix, and s is a

number for the pre-multiplier matrix F. T=

 T0 1 0  is a (k-1) elements column vector, 0 is

a number,  1100 V is a (k-1)

elements row vector, and U is a (k-1) by (k-1)

matrix as following,

(17) .

0100

0010

0001

0000

0000

2

3

2

1
























































k

k

k

k

U

Now we can get the following 4 simultaneous

equations as:

(19) a

(18) 0




QPIU

QPT k
T



 

(21) a

(20) 00




sRIV

sR k
T



 

Then we can find out the solutions as following:

i. s = 0,

ii. Q =  Tk 0 0 1 ,

iii. R = V,

and finally the)1(k by)1(k matrix P=






































2

3

2

1

1

2321

0100

0010

0001

0000








































k

k

k

k

kkk

k

k

k

k

 (22)

The multiplier matrix F does exist. Consider the

equation for the determinant,

.GGG F kkkkk EF  

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 327 Volume 14, 2015

We have .F 1 Hence F is nonsingular, the

kernel is the set of 0 vector, and it is one to one.

Now suppose the period of MCG with multiplier

matrix kG achieves maximal period, 1kp , so

does MCG with the given multiplier matrix kE using

the same set of multipliers.

In this way, we can easily select the multiplier

matrix of MCG with characteristic polynomial

corresponding to any given minimal primitive

polynomial modulo p.

By carefully selecting the entries of the last

column of multiplier-matrix ,A we can easily

generate a non-repeated vector sequence with

maximal period, .pk 1 Our special design of

choosing the entries of A with a prime dimension

k will achieve highly efficiency for matrix

multiplication in recursive computing processes.

Example 3.1: We first consider the MCG derived

from the DL generators, named here as EMCG-1 and

EMCG-2, respectively, with the multiplier-matrix A1

and A2 corresponding characteristic polynomials

shown in equation (6). The multiplier-matrices with

an odd prime order k are as following :

  and vector, theis a where

 1,-for EMCG ,
a

0

T

1






















I
A

  . vector theis a where

 2,-for EMCG ,
a

0

T

2
























I
A

For an efficient calculation, we can store the

results k,ia xt 1  for later recursively use. We

should also consider the special structure of the

multiplier matrix by using the reverse order of index

to calculate the seed vector. We first calculate the

seed vector element k,ix , then get 1k,ix ,…, 3,ix ,

2,ix consequently, and finally obtain the 1,ix

which is the previously stored .xt k,ia 1  By this

rotating algorithm, we only need one seed vector for

both vectors ix and 1ix . This first index, i is no

longer needed. This generator produce the next

k-tube vector seed using only one multiplication and

(k-1) additions. The actually computational process

is given as following:

1. it. store and mod Calculate pxt]k[a 

2. ptxx a]k[]k[mod 1  

3. ptxx a]k[]k[mod 21  



k. ptxx a][][mod 12 

k+1. 1 a][tx  (23)

Example 3.2: As example 3.1, we change the last

column coefficients of the multiplier-matrix of A1 to

an arithmetic series with common difference d to

increase its variation and name it EMCG-D. The

recursive formula with the multiplier-matrix is as

follows:

  . vector)1(2

 theis a where
a

0

T

3

dkdd

I
A
























The corresponding characteristic polynomial of

the multiplier-matrix now becomes

(24) 11
3 .)d(x...)d)k((xx)x(f kk   

For an efficient calculation, we can store the results

k,ia xt 1  and k,id xdt 1  for later recursively

used. The same reason as example 3.1, we should

use reverse order to calculate so that two seed

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 328 Volume 14, 2015

vectors ix and 1ix become one x . The first index,

i is no longer needed. We then use another tempo-

rarily stored variable ptt)k(t adv mod 1  for

later recursively used. The][]k[]k[x,x,x 21  can

then be obtained in order by:

, mod]1[][ptxx vjj  

then update pttt dvv mod  ,

and finally obtain the 1,ix which is the previously

stored .ta This EMCG-D generator will apply

)1(2  k additions and only 3 multiplications to

produce the next seed vector.

Example 3.3: Now if we apply the corresponding

characteristic polynomial, equation (8), results from

DT generators, the multiplier matrix A and the

recursive formula with the multiplier-matrix is given

as follows:

  . vector

 is a where
a

0

T32

4

k

I
A






















We name this Generator as EMCG-G, for the

multiplier matrix with the last column coefficients

becoming to a geometric series the first term and

the common ratio . The same reason as example

3.1, we should use reverse order to calculate so that

two seed vectors ix and 1ix become one and we

can omit the first index. We then introduce another

varying stored variable pxat k
v mod [k] for later

recursively used. The][]k[]k[x,x,x 21  can then

be obtained in order by the ptxx v]j[]j[mod 1  

then update patt vv mod 1 , and finally obtain

the 1,ix . This procedure will require to find the

pak mod and papa p mod mod 21   which

should be calculated in the initial procedure once the

 is selected. This EMCG-G generator will apply

)1(k additions and only k multiplications to

produce the next seed vector. EMCG-Gs have good

variations to improve the empirical property.

In this study we first select a fixed prime number

term k and choose the largest prime modulus p less

than 2
31

 satisfying the Generalized Mersenne Prime

(GMP) condition:)p/()p()p,k(R k 11 

defined by Deng [2]. By using GMP efficient

algorithm, we obtain the following coefficients of

 for EMCG-1, EMCG-2, EMCG-G;  and d

for EMCG-D of various dimensions k as shown in

Table 1. The parameters include prime rank of

multiplier matrix (k), prime modulus ,)(p multiplier

)( and a common difference (d) for EMCG-D,

k and 1 for EMCG-G.

 Table 1: The Used Parameters for All Generators

 Rank (K), Modulus (p), Multiplier (), (d) for EMCG-D, k and 1 for EMCG-G

Generator k p  d k
1

EMCG-1 97 2147482621 1048148

EMCG-2 97 2147482621 1048501

EMCG-D 199 2147481173 1048575 10005

EMCG-G 907 2143082759 2361 1323649103 561867102

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 329 Volume 14, 2015

4 EMCG MAPLE programs

Note that the coefficients of the last column of the

multiplier matrix kE of equation (13) can be

selected from any previously obtained minimal

primitive polynomial modulo p. For example,

consider the MRG of order 7 with all nonzero

coefficients in L’Ecuyer et al. [13]. The

characteristic polynomial with p=2
31

-1 is as follows:

(25) 1428037821

15136453341658907683

451413575433188390

8755402391975938786

2

34

567

.-

 x-x-

 x- x-

 x- x-xf(x)

In this case, we will need more memory space to

store all the different coefficients which is not

suggested compared with all the predefined four

EMCGs.

We use the MAPLE software to carry out this

research due to the feature of symbolic programing

and efficiently calculating in finite field. We can

find out the papa p mod mod 21   and

pak mod without difficulty, and use it to easily

discover all the required coefficients of minimal

primitive polynomial. The program for EMCG-1 is

almost the same as the program for EMCG-2 except

the statement:

TA:=A_p - 1*TA;

Hence we do not provide this program in this

paper. The interested researchers can easily translate

these maple programs to other computer program

language. The MAPLE program of three generators,

EMCG-2, EMCG-D, and EMCG-G with the

coefficients shown in table 1 are given as follows:

#MAPLE program: Initial EMCG-2

initial_emcg2:=proc()

#initial the global variables for generating the random

numbers

global A_x, A_j, A_k, A_p, A_a;

#setup the parameters: A_k(dimension)、A_p(modulus)、

A_a(multiplier)

A_k:=97;A_a:=1048501;A_p:=2147482621;

#initial the index A_j

A_j:=A_k;

#initial the seed vector

A_x:=< seq(irem(rand(), A_p), i=1..A_k)>;

end proc;

EMCG-2 the Generator procedure

emcg2:=proc()

global A_x, A_j, A_k, A_p, A_a;

local R,TA, i;

#if all the k random numbers in seed vector are used

(A_j=A_k),we need to reset the seed vector

if A_j=A_k then

#calcullate the TA keep it as a temp variable

TA:=irem(A_a* A_x[A_k],A_p);

in reverse order, we need only one vector seed

for i from (A_k) to 2 by -1 do

A_x[i]:= irem(TA+A_x[i-1],A_p);

 TA:=A_p - 1*TA; # TA:= - 1*TA;

#omit this for EMCG-1

od;

#reset the index A_j to 0

A_x[1]:= TA; A_j:=0:

fi;

#to get a random number we increase the index and take

 one from the seed vector

A_j:=A_j+1:

R:=A_x [A_j]:

end proc;

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 330 Volume 14, 2015

#MAPLE program: Initial EMCG-D

initial_emcgD:=proc()

#initial the global variables for generating the random

numbers

global D_x,D_j,D_k,D_p, D_a, D_d;

#setup the parameters: D_k(dimension)、D_p(modulus)、

D_a(multiplier)

D_k:=199;D_a:=1048575;D_p:=2147481173;

#initial the index D_j and D_d(parameter for difference)

D_j:=D_k; D_d:=10573;

#initial the seed vector

D_x:= <seq(irem(rand(), D_p), i=1..D_k)>;

end proc;

EMCG-D the Generator procedure

emcgD:=proc()

global D_x,D_j,D_k,D_p, D_a, D_d;

local R,TA, TD, Tv, j;

#if all the k random numbers in seed vector are used

(D_j=D_k), # we need to reset the seed vector

if D_j=D_k then

#calcullate the TA ̧TD keep it as a temp variable

TA:=irem(D_a* D_x[D_k],D_p);

TD:= irem(D_d* D_x[D_k],D_p);

Tv:= irem((D_k-1)*TD+TA,D_p);

#To in reverse order, we need only one vector seed

for j from D_k to 2 by -1 do

D_x[j]:= irem(Tv+D_x[j-1],D_p);

Tv:=irem(D_p + Tv - TD, D_p);

od;

#reset the index D_j to 0

D_x[1]:= TA; D_j:=0:

fi;

#to get a random number we increase the index and take

one from the seed vector

D_j:=D_j+1: R:=D_x [D_j]:

end proc;

#MAPLE program: Initial EMCG-G

initial_emcgG:=proc()

#initial the global variables for generating the random

numbers

global G_x,G_j,G_k,G_p, G_a, G_a_k, G_a_inv;

#setup the parameters: G_k(dimension)、G_p(modulus)

、G_a(multiplier)

G_k:=907;G_a:=2361;G_p:=2143082759;

G_a_k (a^k mod p=1323649103), G_a_inv (a^(-1) mod

p=561867102)

G_a_k:= 1323649103; G_a_inv := 2143082759;

G_j:=G_k; #initial the index G_j

#initial the seed vector

G_x:=<seq(irem(rand(), G_p), i=1..G_k)>;

end proc;

EMCG-G the Generator procedure

emcgG:=proc()

global G_x,G_j,G_k,G_p, G_a, G_a_k, G_a_inv;

local R, TV, j;

#if all the k random numbers in seed vector are used

(G_j=G_k), we need to reset the seed vector

if G_j=G_k then

#calcullate the TV (a^k * X[i-1, k] mod p) keep it as

a temp variable

TV:= irem(G_a_k* G_x[G_k],G_p);

in reverse order, we need only one vector seed

for j from (G_k) to 2 by -1 do

G_x[j]:= irem(TV+G_x[j-1],G_p);

TV:=irem(TV*G_a_inv,G_p);

od;

G_x[1]:= TV; G_j:=0: #reset the index G_j to 0

fi;

#to get a random number we increase the index and take

 one from the seed vector

G_j:=G_j+1: R:=G_x [G_j]:

end proc;

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 331 Volume 14, 2015

5 Comparison and Suggestion

In this study all the proposed four efficient MCGs:

EMCG-1, EMCG-2, EMCG-D and EMCG-G are not

restricted by the matrix dimension. Table 2 shows

the summary resources used for the four EMCGs

such as the calculating processes including times of

multiplications, “” and additions, “+”, required

memory space for seed, multiplier and

modulus-MM, temporarily stored variables and

index-TI.

Table 2: The Summary for Comparing Generators

Generators

Name

k

Calculating

Process

required Memory Space

 + Seed MM TI

EMCG-1 k 1 k-1 k 3 4

EMCG-2 k 1 k-1 k 3 4

EMCG-G k k k k 4 6

EMCG-D k 3 2*(k-1) k 5 4

Considering to enhance the variations of

generating sequence, EMCG-D and EMCG-G are

recommended. In table 3, we provide some

 selected coefficients of EMCG-D for various prime

rank of multiplier matrix (k) with prime

modulus)(p , multiplier)( , and in each case we

offer five common difference (d) for practical uses.

Table 3: Several Practical Coefficients of EMCG-D

k p a Five d’s

47 2147479991 1048540 10027 10045 10114 10176 10308

97 2147482621 1048148 10069 10130 10377 10607 10648

199 2147481173 1048575 10005 10042 10573 10776 10805

293 2147475439 1048575 10008 10775 11895 12505 13544

397 2147472413 1048572 10533 11460 11758 12476 12492

6 Conclusion

In summary, we propose a system of EMCG

generators with the following desired properties:

high dimensional uniformity, efficiency, long cycle,

and portability. With selected parameters our

EMCGs will produce an uniformly in k dimension

distributed vector sequence with maximal period

.pk 1 The EMCGs are almost as efficient as the

LCG because only a single multiplication and an

addition in average are required to produce the next

vector. We provide the MAPLE algorithms not

involving any matrix multiplications so that one can

produce the same sequence on various platforms.

The MCG has postponed for quite a while due to the

complicate structure and calculations with quite a

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 332 Volume 14, 2015

few coefficients to be decided. FMCGs could be

similar faster random number generators, but are

with the indefinite characteristic polynomials

required to calculate with the multiplier matrices

case by case. After this study we could try to find

more patterns of multiplier matrix that can achieve

the maximal period. Since the obtained primitive

characteristic polynomials of the EMCG-D

multiplier-matrix are also suitable for the MRGs and

can be further explored for future study. The future

investigators can also apply some package such as

TESTU01 or DIEHARD to check the empirical

properties of the generated random vectors sequence

obtained from EMCGs.

References

[1] Claudia C., Concetta G., and Nicola P. (2010)

“Fluid flow modeling of a coastal fractured

karstic aquifer by means of a lumped arameter

approach”. Computers And Simulation In

Modern Science Volume III, ISBN:

978-960-474-256-1, ISSN: 1792-6882. pp.

473-482.

[2] Deng, L. Y. (2004). “Generalized Mersenne

Prime Number and Its Application to Random

Number Generation”. Monte Carlo and

Quasi-Monte Carlo Methods 2002.

Springer-Verlag, pp. 167-180.

[3] Deng, L. Y. and Lin, D. K. J. (2000). “Random

Number Generation for the New Century”.

American statistician, 54(2), pp. 145-150.

[4] Deng, L. Y. and Xu, H. Q. (2003). “A System of

High- dimensional, Efficient, Long-cycle and

Portable Uniform Random Number Generators”.

ACM transactions on modeling and computer

simulation, 13(4), pp. 299-309.

[5] Deng, L. Y., Shiau, J. J. H., and Tsai, G. H. (2009).

Parallel random number generators based on

large order multiple recursive generators. Monte

Carlo and Quasi-Monte Carlo Methods 2008,

Springer-Verlag. 289-296.

[6] Deng, L. Y., Li, H., Shiau, J. J. H., and Tsai, G. H.

(2008). “Design and Implementation of Efficient

and Portable Multiple Recursive Generators with

Few Zero Coefficients”. MCQMC 2006

Springer-Verlag. pp. 263-273.

[7] Franklin, J. N. (1964). “Equidistribution of

matrix - power residues modulo one”.

Mathematics of Computation, 18, pp. 560-568.

[8] Grothe, H. (1987). “Matrix generators for

pseudo-random vector generation”. Statistical

Papers, 28, pp. 233-238.

[9] Knuth, D. E. (1998). The Art of Computer

Programming. Vol.2: Seminumerical algorithms,

3rd ed. Addison-Wesley: Reading, MA.

[10] Lehmer, D. H. (1951). “Mathematical methods

in large-scale computing units”, proceeding of a

second symposium on large-scale digital

calculating machinery. Cambridge: Harvard

University Press, Vol. 26.

[11] Li, M. and Zhao W. (2009). “A Note on

Simulation of LRD Network Traffic”.

Proceedings of the 8th WSEAS International

Conference on Instrumentation, Measurement,

Circuits and Systems, ISBN: 978-960-474-

076-5, ISSN: 1790-5117, pp. 25-30.

[12] Lidl, R. and Niederreiter, H. (1994).

“Introduction to Finite Fields and Their

Applications”, revised edition. Cambridge

University Press, Cambridge, MA.

[13] L’Ecuyer, P., Blouin, F., Couture, R. (1993). A

Search for Good Multiple Recursive Random

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 333 Volume 14, 2015

Number Generators. ACM Transactions on

Modeling and Computer Simulation. 3(2), 87-98.

[14] Marsaglia, G. (1996). “The Marsaglia random

number CDROM including the DIEHAED

battery of tests of randomness”.

http://stat.fsu.edu/pub/diehard.

[15] Myszor D., Cyran K. A. (2010)

“Non-enzymatic template-directed RNA

recombination processes in Monte Carlo

simulation model of the RNA World”, LATEST

TRENDS on SYSTEMS Volume II, ISBN:

978-960-474-214-1, ISSN: 1792-4235, pp.

676-681.

[16] Niederreiter, H. (1986). “A pseudorandom

vector generator based on finite field arithmetic”.

Math. Japonica, 31, pp. 759-774.

[17] Niederreiter, H. (1995). “The multiple

-recursive matrix method for pseudorandom

number generation”. Finite Fields and their

Applications, 1, pp. 3-30.

[18] Tang, H. C. (2005), Reverse multiple recursive

random number generators, European Journal of

Operational Research, 164, pp. 402-405.

[19] Wikramaratna, R. C.(2008), Reverse multiple

recursive random number generators, Journal of

Computational and Applied Mathematics, 216,

pp. 371-387.

WSEAS TRANSACTIONS on MATHEMATICS Gwei-Hung Tsai, Der-Jin Chen, Chiou-Hua Lin

E-ISSN: 2224-2880 334 Volume 14, 2015

http://stat.fsu.edu/pub/diehard

