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Abstract: - Classical random number generators such as Linear Congruential Generators (LCGs) and Multiple 

Recursive Generators (MRGs) are commonly employed for modern simulation studies. LCGs have a too short 

period and a too coarse structure to be used as reliable random number generators. Most Matrix Congruential 

Generators (MCGs) are less applicable due to the inefficiency and the difficulty of deciding the too many 

coefficients. We propose a class of Efficient Matrix Congruent Generators (EMCGs) including EMCG-1, 

EMCG-2, EMCG-D and EMCG-G that simultaneously combine k LCGs to form the multiplier matrix of 

MCGs. We can easily derive the multiple-matrices for all four EMCGs from the corresponding full fixed 

minimal primitive characteristic polynomials. This makes them easy to implement the results from MRGs 

without any restrictions on the dimension of a multiple-matrix. We also provide the portable and efficient 

MAPLE algorithms without using any matrix multiplications for generating the four EMCGs with some selected 

coefficients that can achieve the high-dimensional uniformity with extreme long cycles. 

 

Key-words: Linear Congruential Generators, Multiple Recursive Generators, Matrix Congruential Generators, 

Fast Matrix Congruential Generators. 

 

1 Introduction 

Random number generators are employed in 

various areas in the modern world; not only in the 

scientific experiments, but also for the huge 

simulation data in the real life.  For example, in a 

747 aircraft, we randomly draw 10% of passengers 

(40 in 400) to check for security. Therefore there will 

be about 1.9×10
55

 different combination which is 

further beyond the period of a common used Linear 

Congruential Generators (LCGs).  In the modern 

era, high dimensions and superior effectiveness huge 

periodical uniform random number generators are 

heavily required in scientific researches and the 

simulation studies by Claudia et al., Li & Zhao, and 

Myszor & Cyran [1, 11, 15].   

Deng and Xu suggested that a superior random 

number generator should have the following 

properties: High-dimensional uniformity, Efficiency, 

Long cycle, and Portability (HELP) [4]. 

In Section 2, we review some important results of 

the commonly used random number generators such 

as LCGs, Multiple Recursive Generators (MRGs), 

and Matrix Congruential Generators (MCGs). 

In Section 3, we propose a system of special 

efficient MCGs, called EMCG generators that 

simultaneously combine k LCGs to form the 

multiplier matrix of MCGs. This special designed 

multiplier matrix of the MCG can achieve the 

maximum period, 1kp  with the given 

characteristic polynomial corresponding to any 

minimal primitive polynomial modulo p.  By using 

GMP efficient algorithm introduced by this study, 
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we provide all parameters of the four EMCGs 

including EMCG-1, EMCG-2, EMCG-G and 

EMCG-D of some selected dimension k and prime 

modulo p . These four generators have the 

properties of HELP that are recommended for high 

dimensional extreme long period simulations. 

In Section 4, we provide users the maple EMCGs 

algorithms to efficiently generate the random 

numbers for a high dimensional, uniform, extremely 

long period simulation used. 

In Section 5, we compare the four EMCGs by 

calculating process and required memory spaces, 

and give more coefficients of EMCG-D for practical 

uses. 

 

2 Related reference paper 

Linear Congruential Generators (LCGs) was first 

proposed by Lehmer [10]. The recursive formula is 

as follows: 

   )( 1 cxx ii    mod m, ,,3,2,1 i    (1) 

where is a multiple, c is an increment, m is a 

modulus, and 0x  is an initial seed. Let c, m and 0x  

be nonnegative integers. Once 0x  is given, the 

recursive formula can produce a sequence of random 

numbers. When 0xxi  for some integer i, this 

recursive begin to generate the duplicate sequence of 

random numbers. The length of the non-repeat 

sequence is called the period. 

Knuth pointed out LCG generator to produce a 

sequence with period less or equal to modulus m [9]. 

These LCGs have a too short period and a too 

coarse structure; therefore, they cannot be used as 

reliable random number generators. 

 

2.1 Multiple Recursive Generators 

A Multiple Recursive Generator (MRG) is an 

extension of LCG with a k-terms polynomial. Its 

recursive formula is as follows: 

    )...( 11 kikii xxx     mod p,      (2) 

where k  is the positive integer, p  is the prime 

modulus, k ,,, 21  are integer multipliers 

between 0 to ,p 1  0k  and at least one other 

.0j Given k initial nonzero seeds 

),,,,( 110 kxxx   it follows by the recursive 

formula to produce a sequence of random numbers. 

Knuth defined the recursive formula with its 

corresponding characteristic polynomial as [9]: 

   .)( 1

1 k

kk xxxf           (3) 

When )x(f is a minimal primitive polynomial 

modulo ,p  the MRG in equation (2) can achieve the 

maximum period, .1kp  Knuth, Lidl and 

Niederreiter confirmed that a maximum period MRG 

of order k  enjoys a nice equi-distribution property 

up to k  dimensions [9, 12]. 

These MRGs usually need many multiplications 

and additions in the recursive formula, and hence 

they are less efficient for producing random numbers.  

Marsaglia took all the nonzero multiplier 'si  

equal to the same constant   for improving the 

efficiency [14].   

Deng et al. considered a class of DL-k generators 

with all nonzero multipliers equal, equation (4) or 

alternately negate equal, equation (5) as the 

following two recursive formulas [6]: 

kikiiii xxxxx    121   mod p;  (4) 

kikiiii xxxxx    121   mod p.  (5) 

These two generators with corresponding 

characteristic polynomials carry out in the following 

forms: 

.)( 21

1    xxxxxf kkk    (6) 

Such generators can be implemented efficiently. 
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Deng et al. recommended another more efficient 

MRG called DT generators, which have all nonzero 

multiples with geometric weights [5]: 

kikii

k

i

k

i xxxxx 



   1

2

2

1

1  mod p. (7) 

The corresponding characteristic polynomials are 

achieved in the following forms 

 

   xxxxxf kkkkk 2211 ...)( . (8) 

 

DT generators can be efficiently implemented by the 

(k+1)-order equation below: 

    ))(( 11

1



  kii

k

i xxx   mod p,    (9) 

where )( 1 kD   
mod p can be pre-computed 

and . mod 21 pp    DT generators compared 

with DX-K-s and DL generators are the most 

efficient with better empirical statistical testing 

results. 

 

2.2 Matrix Congruential Generators 

Franklin, Grothe and Niederreiter suggested a 

recursive formula involving matrix multiplications 

and name them Matrix Congruential Generators 

(MCGs) as follows [7, 8, 16, 17]: 

          1 ii Axx  mod p.             (10) 

Here 
1 k

i Fx is a positive integer vector (F is a 

finite field) and 
kkFA   is a kk  multiplier 

matrix. Select p as a prime modulus, and 0x  as a 

nonzero k  dimensional vector. A MCG produces a 

vector sequence with maximal period .pk 1   To 

compute the next vector of the MCG, kk  

integer’s size memory is needed for storing the 

matrix coefficients in addition to memory for storing 

two seed vectors ( ix and 1ix ) of k  integers. 

Determining the coefficients for the multiplier 

matrix ,A is very computing intensive. 

To improve the efficiency of MCGs, Deng and Lin 

designed a special multiplier-matrix A  and named 

it Fast Matrix Congruential Generators (FMCGs) [3].  

This matrix with a recursive formula is given as 

equation (11).  

(11)   . mod 
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Wikramaratna propose that a special ACORN 

matrix generator sharing the same set of multipliers 

of any MRG with minimal primitive polynomial 

still achieves the maximal period [19]. The 

multiplier matrix is defined as following: 

(12)    
a

   
0

0000

0000

0010

G

121









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
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
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








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





I

k

T

kk

k




 

Here 
T0


 is a column vector of )1( k  zeroes; I  

represents the )1( k by )1( k  identity matrix; 

 121     a  


 kk is a row vector. 

Tang proposes that a MCG using the inverse of 

the above kG  matrix as the multiplier matrix still 

achieve the maximal period [18].  

 

 

3 Main result 

In this study we simultaneously combine k LCGs 

with the selected multipliers putting in the matrix 

A in equation (10) to design a new class of MCG 

where the multiplier matrix kA E is such that 
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(13)        .
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Here 0


is a row vector with 1k  zeroes, I is an 

(k-1) by (k-1) identity matrix; Ta


 

 T121       kk is a column vector of 1k  

selected multipliers. Note that the matrix kE is the 

transpose of matrix .Gk  The corresponding k  

recursive equations can be expressed as: 

pxx k,ik,i  mod 11                  

pxxx ,ik,ik,i   mod   11112           

        pxxx ,ik,ik,i   mod   21123           


                              

       pxxx kikiki   mod   1,1,11,        (14) 

Theorem 3.1: The designed matrix kE as in 

equation (13) of the MCG can achieve the 

maximum period, 1kp  and the corresponding 

characteristic polynomial of kE  is as follows: 

kk

kkk xxxxxf   



1

2

2

1

12 ...)(   (15) 

Proof: kE  is the transpose matrix of .Gk  

Hence both kE and .Gk share the same 

characteristic polynomial as equation (15). 

Considering the following matrix multiplication 

with suitable partition, we let

  
(16)    

V
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 Here P is a (k-1) by (k-1) matrix, Q is a (k-1) by 1 

matrix, R is a 1 by (k-1) matrix, and s is a 

number for the pre-multiplier matrix F.  T= 

 T0  1 0  is a (k-1) elements column vector, 0 is 

a number,  1100 V  is a (k-1) 

elements row vector, and U is a (k-1) by (k-1) 

matrix as following, 

(17)                . 
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Now we can get the following 4 simultaneous 

equations as: 

 
(19)                            a

(18)                        0 
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

QPIU

QPT k
T
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(21)                             a

(20)                         00
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T
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Then we can find out the solutions as following: 

i.  s = 0,  

ii.  Q =  Tk 0   0 1 , 

iii.  R = V,  

and finally the )1( k  by )1( k  matrix P= 
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 (22) 

The multiplier matrix F does exist. Consider the 

equation for the determinant, 

.GGG F kkkkk EF  
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We have .F 1  Hence F is nonsingular, the 

kernel is the set of 0 vector, and it is one to one.  

Now suppose the period of MCG with multiplier 

matrix kG achieves maximal period, 1kp , so 

does MCG with the given multiplier matrix kE using 

the same set of multipliers.  

 

In this way, we can easily select the multiplier 

matrix of MCG with characteristic polynomial 

corresponding to any given minimal primitive 

polynomial modulo p.  

By carefully selecting the entries of the last 

column of multiplier-matrix ,A  we can easily 

generate a non-repeated vector sequence with 

maximal period, .pk 1   Our special design of 

choosing the entries of A with a prime dimension 

k will achieve highly efficiency for matrix 

multiplication in recursive computing processes. 

Example 3.1: We first consider the MCG derived 

from the DL generators, named here as EMCG-1 and 

EMCG-2, respectively, with the multiplier-matrix A1 

and A2 corresponding characteristic polynomials 

shown in equation (6). The multiplier-matrices with 

an odd prime order k  are as following :  

  and  vector,     theis a where

 1,-for EMCG ,  
a
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  . vector          theis a where

 2,-for EMCG , 
a
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For an efficient calculation, we can store the 

results k,ia xt 1   for later recursively use.  We 

should also consider the special structure of the 

multiplier matrix by using the reverse order of index 

to calculate the seed vector.  We first calculate the 

seed vector element k,ix , then get 1k,ix ,…, 3,ix , 

2,ix  consequently, and finally obtain the 1,ix  

which is the previously stored .xt k,ia 1  By this 

rotating algorithm, we only need one seed vector for 

both vectors ix and 1ix . This first index, i is no 

longer needed. This generator produce the next 

k-tube vector seed using only one multiplication and 

(k-1) additions.  The actually computational process 

is given as following:  

1.   it. store and   mod   Calculate pxt ]k[a   

2.   ptxx a]k[]k[  mod   1     

3.   ptxx a]k[]k[  mod   21    


   

k.   ptxx a][][   mod   12     

k+1.  1 a][ tx                          (23) 

 

Example 3.2: As example 3.1, we change the last 

column coefficients of the multiplier-matrix of A1 to 

an arithmetic series with common difference  d  to 

increase its variation and name it EMCG-D.  The 

recursive formula with the multiplier-matrix is as 

follows: 

  . vector )1(    2  

 theis a   where
a
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The corresponding characteristic polynomial of 

the multiplier-matrix now becomes  

(24)        11
3 .)d(x...)d)k((xx)x(f kk   

 

For an efficient calculation, we can store the results 

k,ia xt 1   and k,id xdt 1   for later recursively 

used.  The same reason as example 3.1, we should 

use reverse order to calculate so that two seed 
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vectors ix and 1ix  become one x . The first index, 

i is no longer needed. We then use another tempo- 

rarily stored variable ptt)k(t adv  mod 1   for 

later recursively used. The ][]k[]k[ x,x,x 21   can 

then be obtained in order by: 

, mod   ]1[][ ptxx vjj    

then update pttt dvv  mod  , 

and finally obtain the 1,ix  which is the previously 

stored .ta  This EMCG-D generator will apply 

)1(2  k  additions and only 3 multiplications to 

produce the next seed vector.  

 

Example 3.3: Now if we apply the corresponding 

characteristic polynomial, equation (8), results from 

DT generators, the multiplier matrix A  and the 

recursive formula with the multiplier-matrix is given 

as follows: 

  . vector       

 is a   where
a
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We name this Generator as EMCG-G, for the 

multiplier matrix with the last column coefficients 

becoming to a geometric series the first term and 

the common ratio .  The same reason as example 

3.1, we should use reverse order to calculate so that 

two seed vectors ix and 1ix  become one and we 

can omit the first index. We then introduce another 

varying stored variable pxat k
v  mod [k]  for later 

recursively used. The ][]k[]k[ x,x,x 21   can then 

be obtained in order by the ptxx v]j[]j[  mod   1    

then update patt vv  mod 1 , and finally obtain 

the 1,ix . This procedure will require to find the 

pak  mod  and papa p  mod  mod 21   which 

should be calculated in the initial procedure once the 

  is selected. This EMCG-G generator will apply 

)1( k  additions and only k  multiplications to 

produce the next seed vector.  EMCG-Gs have good 

variations to improve the empirical property. 

 

In this study we first select a fixed prime number 

term k  and choose the largest prime modulus p less 

than 2
31

 satisfying the Generalized Mersenne Prime 

(GMP) condition: )p/()p()p,k(R k 11   

defined by Deng [2].  By using GMP efficient 

algorithm, we obtain the following coefficients of 

 for EMCG-1, EMCG-2, EMCG-G;   and d  

for EMCG-D of various dimensions k  as shown in 

Table 1.  The parameters include prime rank of 

multiplier matrix (k), prime modulus ,)( p multiplier 

)(  and a common difference (d) for EMCG-D, 

k and 1 for EMCG-G. 

 

 Table 1: The Used Parameters for All Generators  

 Rank (K), Modulus ( p ), Multiplier ( ), (d) for EMCG-D, k and 1 for EMCG-G

Generator k  p    d k  
1  

EMCG-1 97 2147482621 1048148    

EMCG-2 97 2147482621 1048501    

EMCG-D 199 2147481173 1048575 10005   

EMCG-G 907 2143082759 2361  1323649103 561867102 
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4 EMCG MAPLE programs 

Note that the coefficients of the last column of the 

multiplier matrix kE of equation (13) can be 

selected from any previously obtained minimal 

primitive polynomial modulo p. For example, 

consider the MRG of order 7 with all nonzero 

coefficients in L’Ecuyer et al. [13].  The 

characteristic polynomial with p=2
31

-1 is as follows: 

(25)                                       1428037821             

15136453341658907683             

451413575433188390             

8755402391975938786

2

34

567

.-

 x-x-

 x- x-

 x- x-xf(x)

 

In this case, we will need more memory space to 

store all the different coefficients which is not 

suggested compared with all the predefined four 

EMCGs. 

We use the MAPLE software to carry out this 

research due to the feature of symbolic programing 

and efficiently calculating in finite field.  We can 

find out the papa p  mod  mod 21   and 

pak  mod  without difficulty, and use it to easily 

discover all the required coefficients of minimal 

primitive polynomial. The program for EMCG-1 is 

almost the same as the program for EMCG-2 except 

the statement: 

TA:=A_p - 1*TA; 

Hence we do not provide this program in this 

paper. The interested researchers can easily translate 

these maple programs to other computer program 

language. The MAPLE program of three generators, 

EMCG-2, EMCG-D, and EMCG-G with the 

coefficients shown in table 1 are given as follows:

#MAPLE program: Initial EMCG-2 

initial_emcg2:=proc() 

#initial the global variables for generating the random 

numbers 

global A_x, A_j, A_k, A_p, A_a; 

#setup the parameters: A_k(dimension)、A_p(modulus)、 

A_a(multiplier) 

A_k:=97;A_a:=1048501;A_p:=2147482621; 

#initial the index A_j 

A_j:=A_k; 

#initial the seed vector 

A_x:=< seq( irem(rand(), A_p), i=1..A_k)>; 

end proc; 

# EMCG-2 the Generator procedure 

emcg2:=proc() 

global A_x, A_j, A_k, A_p, A_a; 

local R,TA, i; 

#if all the k random numbers in seed vector are used 

(A_j=A_k),we need to reset the seed vector 

if A_j=A_k then  

#calcullate the TA keep it as a temp variable 

TA:=irem(A_a* A_x[A_k],A_p);  

# in reverse order, we need only one vector seed 

for i from (A_k) to 2 by -1 do  

A_x[i]:= irem(TA+A_x[i-1],A_p);  

     TA:=A_p - 1*TA;   # TA:= - 1*TA; 

#omit this for EMCG-1 

od; 

#reset the index A_j to 0 

A_x[1]:= TA;   A_j:=0: 

fi; 

#to get a random number we increase the index and take 

 one from the seed vector 

A_j:=A_j+1: 

R:=A_x [A_j]: 

end proc; 
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#MAPLE program: Initial EMCG-D    

initial_emcgD:=proc() 

#initial the global variables for generating the random 

numbers 

global D_x,D_j,D_k,D_p, D_a, D_d; 

#setup the parameters: D_k(dimension)、D_p(modulus)、 

D_a(multiplier) 

D_k:=199;D_a:=1048575;D_p:=2147481173; 

#initial the index D_j and D_d(parameter for difference) 

D_j:=D_k; D_d:=10573; 

#initial the seed vector 

D_x:= <seq( irem(rand(), D_p), i=1..D_k)>; 

end proc; 

# EMCG-D the Generator procedure 

emcgD:=proc() 

global D_x,D_j,D_k,D_p, D_a, D_d; 

local R,TA, TD, Tv, j; 

#if all the k random numbers in seed vector are used  

(D_j=D_k), # we need to reset the seed vector 

if D_j=D_k then  

#calcullate the TA  ̧TD  keep it as a temp variable 

TA:=irem(D_a* D_x[D_k],D_p);   

TD:= irem(D_d* D_x[D_k],D_p); 

Tv:= irem((D_k-1)*TD+TA,D_p); 

#To in reverse order, we need only one vector seed 

for j from D_k to 2 by -1 do  

D_x[j]:= irem(Tv+D_x[j-1],D_p);  

Tv:=irem(D_p + Tv - TD, D_p); 

od; 

#reset the index D_j to 0 

D_x[1]:= TA;   D_j:=0: 

fi; 

#to get a random number we increase the index and take 

one from the seed vector 

D_j:=D_j+1:   R:=D_x [D_j]: 

end proc; 

#MAPLE program: Initial EMCG-G    

initial_emcgG:=proc() 

#initial the global variables for generating the random  

numbers 

global G_x,G_j,G_k,G_p, G_a, G_a_k,  G_a_inv; 

#setup the parameters: G_k(dimension)、G_p(modulus) 

、G_a(multiplier) 

G_k:=907;G_a:=2361;G_p:=2143082759; 

# G_a_k (a^k mod p=1323649103), G_a_inv (a^(-1) mod 

p=561867102 ) 

G_a_k:= 1323649103; G_a_inv := 2143082759; 

G_j:=G_k;   #initial the index G_j 

#initial the seed vector 

G_x:=<seq( irem(rand(), G_p), i=1..G_k)>; 

end proc; 

# EMCG-G the Generator procedure 

emcgG:=proc() 

global G_x,G_j,G_k,G_p, G_a, G_a_k, G_a_inv; 

local R, TV, j; 

#if all the k random numbers in seed vector are used 

(G_j=G_k), we need to reset the seed vector 

if G_j=G_k then  

#calcullate the TV (a^k * X[i-1, k] mod p) keep it as  

a temp variable 

TV:= irem(G_a_k* G_x[G_k],G_p);  

# in reverse order, we need only one vector seed 

for j from (G_k) to 2 by -1 do  

G_x[j]:= irem(TV+G_x[j-1],G_p);  

TV:=irem(TV*G_a_inv,G_p); 

od; 

G_x[1]:= TV; G_j:=0: #reset the index G_j to 0 

fi; 

#to get a random number we increase the index and take 

 one from the seed vector 

G_j:=G_j+1:  R:=G_x [G_j]: 

end proc; 
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5 Comparison and Suggestion 

In this study all the proposed four efficient MCGs: 

EMCG-1, EMCG-2, EMCG-D and EMCG-G are not 

restricted by the matrix dimension. Table 2 shows 

the summary resources used for the four EMCGs 

such as the calculating processes including times of 

multiplications, “” and additions, “+”, required 

memory space for seed, multiplier and 

modulus-MM, temporarily stored variables and 

index-TI.

Table 2: The Summary for Comparing Generators 

Generators 

Name 

k 

 

Calculating 

Process 

required Memory Space 

 + Seed MM TI 

EMCG-1 k 1 k-1 k 3 4 

EMCG-2 k 1 k-1 k 3 4 

EMCG-G k k k k 4 6 

EMCG-D k 3 2*(k-1) k 5 4 

 

Considering to enhance the variations of 

generating sequence, EMCG-D and EMCG-G are 

recommended.  In table 3, we provide some

 selected coefficients of EMCG-D for various prime 

rank of multiplier matrix (k) with prime 

modulus )( p , multiplier )( , and in each case we 

offer five common difference (d) for practical uses. 

Table 3: Several Practical Coefficients of EMCG-D 

k p a Five d’s 

47 2147479991 1048540 10027 10045 10114 10176 10308 

97 2147482621 1048148 10069 10130 10377 10607 10648 

199 2147481173 1048575 10005 10042 10573 10776 10805 

293 2147475439 1048575 10008 10775 11895 12505 13544 

397 2147472413 1048572 10533 11460 11758 12476 12492 

        

 

6 Conclusion 

In summary, we propose a system of EMCG 

generators with the following desired properties: 

high dimensional uniformity, efficiency, long cycle, 

and portability. With selected parameters our 

EMCGs will produce an uniformly in k  dimension 

distributed vector sequence with maximal period 

.pk 1 The EMCGs are almost as efficient as the 

 

 

LCG because only a single multiplication and an 

addition in average are required to produce the next 

vector. We provide the MAPLE algorithms not 

involving any matrix multiplications so that one can 

produce the same sequence on various platforms. 

The MCG has postponed for quite a while due to the 

complicate structure and calculations with quite a 
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few coefficients to be decided. FMCGs could be 

similar faster random number generators, but are 

with the indefinite characteristic polynomials 

required to calculate with the multiplier matrices 

case by case. After this study we could try to find 

more patterns of multiplier matrix that can achieve 

the maximal period. Since the obtained primitive 

characteristic polynomials of the EMCG-D 

multiplier-matrix are also suitable for the MRGs and 

can be further explored for future study. The future 

investigators can also apply some package such as 

TESTU01 or DIEHARD to check the empirical 

properties of the generated random vectors sequence 

obtained from EMCGs.    
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