The Least Norm Solution of the Linear System via a Quadratic Penalty Function

SULEYMAN SAFAK
Division of Mathematics,
Faculty of Engineering,
Dokuz Eylül University,
35160 Tinaztepe, Buca, Izmir,
TURKEY.
suleyman.safak@deu.edu.tr

Abstract: - In this paper, the linear system of m equations in n unknowns is formulated as a quadratic programming problem, and the least norm solution for the consistent or inconsistent system of the linear equations is investigated using the optimality conditions of the quadratic penalty function (QPF). In addition, several algebraic characterizations of the equivalent cases of the QPFs are given using the orthogonal decompositions and the generalized inverses of the coefficient matrices obtained from optimality conditions. It is seen that the least norm solution of the consistent or inconsistent system of the linear equations can be found with the penalty method. In addition, it is shown that the method can be applied to all systems of the linear equations to find the least norm solution. Numerical examples are presented by using the analytic results that were obtained.

Key-Words: - Least norm solution, Linear systems, Quadratic programming, Penalty function

1 Introduction

In this paper, the system of the linear equations $Ax = b$ is considered, where A is an $m \times n$ matrix and b is an $m \times 1$ vector. It is assumed that the elements of A and b are real. We consider the general case of a rectangular matrix with rank $r \leq n$, where the system $Ax = b$ is underdetermined ($m < n$), overdetermined ($m > n$) or square ($m = n$). The system of the linear equations is investigated depending on the rank of the coefficient matrix of the system. Since the linear system $Ax = b$ is consistent and the rank of the matrix A is $r < n$, the system has infinite solutions. In this case, the minimum Euclidian-norm solution of the system happens to be of great interest [2, 3, 4, 14, 15, 19, 27]. In addition, the system has a unique solution when $\text{rank}(A) = n$. If the system $Ax = b$ is inconsistent, then there is no solution for the system of the linear equations. We want to find the best approximate solution with minimum norm of the inconsistent system [3, 15, 27].

The least norm problem of the consistent linear system is formulated as an optimization problem and various methods and algorithms for obtaining minimum norm solution to the consistent linear system are developed by using the singular value decomposition, orthogonal decomposition, LU factorization and especially the generalized inverse of a matrix. [2, 3, 4, 8, 9, 19]. The optimal solution via QR factorization and Lagrange multipliers are investigated and the least norm solution of a consistent linear equation $Ax = b$ is given in the form a determinant, which reduces to Cramer’s rule if A is nonsingular [2, 9, 14, 30].

It has been known for many years that the best approximate solution with minimum norm of the inconsistent system of the linear equations $Ax \approx b$ is obtained by several methods using singular value decomposition of a matrix and the generalized inverses, especially the least squares and the regularization methods [3, 5, 7, 12, 13, 15, 16, 17, 21, 27]. Tikhonov regularization, which is the most popular regularization method, in its simplest form, replaces the linear system of $Ax = b$ by the minimization problem

$$\min_{x} \left\{ \|Ax - b\|^2 + \frac{1}{\mu} \|x\|^2 \right\},$$
The linear system and its formulation as a quadratic programming problem

We now consider the linear system $Ax = b$ for any $m \times n$ matrix A of rank r. A necessary and sufficient condition for the equation $Ax = b$ to have a solution is

$$AA^*b = b,$$ (2.1)

in this case, the general solution is

$$x = A^*b + (I - A^*A)y,$$ (2.2)

where y is arbitrary vector and the $n \times m$ matrix A^* is the generalized inverse of A [3, 15, 27].

If $Ax = b$ is a consistent linear system and $r = n$, then the unique solution of the system is

$$x = A^*b = (A^*A)^{-1}A^*b.$$ (2.3)

where A^T is the transpose of A. In this case, $\text{rank}(A) = \text{rank} \{A, b\}$ and the linear system $Ax = b$ is consistent, where $[A, b]$ augmented matrix by b.

If the rank of A is less than n, the matrix A^TA is not invertible and x is not uniquely determined by $Ax = b$. Then, we have to choose one with the minimum norm of those many vectors that satisfy $Ax = b$. Furthermore, this problem known as the least norm solution of the consistent system $Ax = b$ is formulated as a quadratic programming problem:

$$\min_x \{ x^Tx \mid Ax = b \},$$ (2.4)

where $\|x\| = \sqrt{x^Tx}$.

In addition, if A is right-invertible matrix, then

$$x = A^T(AA^T)^{-1}b$$

is the optimal solution of the least norm problem (2.4), where $\text{rank}(A) = m = \text{Min}(m, n)$ and $A^* = A^T(AA^T)^{-1}$ is the right g-inverse of the matrix A. Otherwise if $\text{rank}(A) < m = \text{Min}(m, n)$, x is not uniquely determined by $Ax = b$ [3, 5, 15, 27].

Now, let an inconsistent system of m equations in n unknowns be $Ax = b$, where $\text{rank}(A) \neq \text{rank} \{A, b\}$. The least squares solution

$$x = A^+b,$$

is the solution with minimum norm of those m vectors that satisfy $Ax = b$. Here, A^+ is the generalized inverse of A. In this case, the general solution is

$$x = A^+b + (I - AA^+)y,$$

where y is arbitrary vector and the $n \times m$ matrix A^+ is the generalized inverse of A [3, 15, 27].

In addition, several algebraic characterizations of the equivalent cases of the QPF are given using the orthogonal decompositions of the coefficient matrices obtained from optimality conditions.
(LSS) to the inconsistent linear system \(Ax = b \) satisfies

\[
A^T Ax = A^T b, \quad (5.2)
\]

which is known as the normal equation of the linear system \([3, 5, 15, 27]\). If the rank of \(A \) is \(n \), then the solution defined in (2.3) is the unique LSS. Note that the solution defined in (2.3) is known as the approximate solution of the inconsistent system.

If the rank of \(A \) is less than \(n \), the matrix \(A^T A \) is not invertible and \(x \) is not uniquely determined by \(A^T Ax = A^T b \). Then, this system of the normal equations has infinitely many solutions, but we have to seek the solution such that \(\| x \| \) is minimized.

The optimal solution, among all solutions of \(A^T Ax = A^T b \), is the one that has the minimum length of errors \(\| Ax - b \| \). This solution is also called the best approximate LSS of any inconsistent linear system \(Ax = b \) \([3, 5, 7, 12, 13, 16 - 21]\). Furthermore, the minimum norm solution problem of the inconsistent linear system \(Ax = b \) can be expressed as the following quadratic problem:

\[
\min_x \{ x^T Ax = A^T b \}. \quad (6.2)
\]

Note that the quadratic programming problems (2.4) and (2.6) have the consistent linear constraints and common algebraic characterizations. When the system of \(Ax = b \) is consistent, the problems (2.4) and (2.6) are equivalent and have the same solution. It is well known that if the system of \(Ax = b \) is inconsistent, the solution of the problem (2.6) is the best approximate solution with minimum norm of the system. In section 3, we present the QPFs of the problems defined in (2.4) and (2.6) and give the main results using their optimality conditions. Numerical examples are given in the forthcoming sections of the study and calculated with the use of the results obtained.

3 The least norm solution via a quadratic penalty function

Many efficient methods have been developed for solving the quadratic programming problems \([1, 11, 18, 22, 29]\), one of which is the penalty method. In this class of methods we replace the original constrained problem with unconstrained problem that minimizes the penalty function \([1, 10, 11, 22, 28]\).

We assume that the quadratic programming problems (2.4), (2.6) have feasible solutions. To find the least norm solution for the consistent system of the linear equations, the QPF of the problem (2.4) can be defined as

\[
f(x) = \frac{1}{2} x^T x + \frac{1}{2} q \| Ax - b \|^2, \quad (3.1)
\]

where the scalar quantity \(q \) is the penalty parameter.

From the first order necessary conditions for the unconstrained minimum of the QPF defined in (3.1), we obtain

\[
\nabla f(x) = x + qA^T Ax - q A^T b = 0. \quad (3.2)
\]

We also obtain the Hessian matrix of (3.1), which represents the sufficient condition as

\[
H(x) = I + qA^T A, \quad (3.3)
\]

where

\[
\nabla f(x) = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right]^T \quad \text{and} \quad H(x) = \left[\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right]_{i, j = 1, 2, \ldots, n}
\]

Corollary 3.1. The Hessian matrix \(H(x) = I + qA^T A \) of the QPF defined in (3.1) is positive definite.

Proof. Let eigenvalues be \(\lambda_1, \lambda_2, \ldots, \lambda_n \) of the \(n \times n \) matrix \(A^T A \). It is clear that eigenvalues of the matrix \(A^T A \) are \(\lambda_i \geq 0 \) for \(i = 1, 2, \ldots, n \). The eigenvalues of the Hessian matrix \(H(x) \) are \(1 + q\lambda_i > 0 \), where the penalty parameter \(q > 0 \). So the Hessian matrix is positive definite.

Now we can establish the following theorem for the least norm solution of the consistent linear system \(Ax = b \).

Theorem 3.1. Let the system of the linear equations \(Ax = b \) be consistent. Then the solution with minimum norm of \(Ax = b \) is

\[
x = \lim_{q \to \infty} \left(\frac{1}{q} I + A^T A \right)^{-1} A^T b, \quad (3.4)
\]
where $\det\left(\frac{1}{q}I + A^T A\right) \neq 0$ for large number $q > 0$ and rank$(A) \leq n$.

Proof. From (3.2), we obtain

$$\left(\frac{1}{q}I + A^T A\right)x = A^T b.$$

Using $\det\left(\frac{1}{q}I + A^T A\right) \neq 0$ for $q \neq 0$ and applying (2.2), we get

$$x = \left(\frac{1}{q}I + A^T A\right)^{-1}A^T b.$$

This vector is the solution with minimum norm of the QPF (3.1) and its Hessian matrix H is positive definite. Using (2.3), we see that

$$\lim_{q \to \infty} \left(\frac{1}{q}I + A^T A\right)^{-1} = \left(A^T A\right)^\dagger$$

and

$$x = \left(A^T A\right)^\dagger A^T b = A^*b.$$

In addition, let the orthogonal decomposition of the matrix $A^T A$ be

$$A^T A = V D V^{-1},$$

where $V = [v_1, v_2, \ldots, v_n], D = \text{diag}\{\lambda_1, \lambda_2, \ldots, \lambda_n\}$ and v_i are eigenvectors corresponding to eigenvalues λ_i of the matrix $A^T A$. Using the decomposition of $A^T A$, the solution (3.4) can be expressed as

$$x = \lim_{q \to \infty} V \left(\frac{1}{q}I + D\right)^{-1} V^{-1} A^T b,$$

where

$$\frac{1}{q}I + D = \text{diag}\left\{\lambda_1 + \frac{1}{q}, \lambda_2 + \frac{1}{q}, \ldots, \lambda_n + \frac{1}{q}\right\}.$$

From (3.6), we see that

$$\left(A^T A\right)^\dagger = \lim_{q \to \infty} V \left(\frac{1}{q}I + D\right)^{-1} V^{-1} = V D^* V^{-1},$$

where D^* is the generalized inverse of D and $D^* = D^{-1}$ when rank$(A) = n$. Then the proof is completed.

The formula of the least norm solution of the consistent system given in Theorem 3.1 is the same formula with the best approximate solution of the inconsistent system obtained by Safak [28]. This result shows that the same formula can be applied to all systems which are either consistent or inconsistent.

We can calculate the solution with the minimum norm correct to desired decimal places of the consistent linear system $Ax = b$ using

$$x_k = \left(\frac{1}{q_k}I + A^T A\right)^{-1} A^T b,$$

where $q_k = 10^k$ for $k = 0, 1, 2, \ldots$.

In addition, the generalized inverse of the matrix A is computed approximately by any q_k in (3.7) as follows:

$$A^* = \left(\frac{1}{q_k}I + A^T A\right)^{-1} A^T.$$

The solution x_k converges to the least norm solution x as $q_k \to \infty$. In matrix term, as $q_k \to \infty$

$$\left(\frac{1}{q_k}I + A^T A\right)^{-1} A^T \to A^*.$$

The following example is presented by using (3.7). First of all, the solution with minimum norm of the consistent system is calculated using (3.4) and secondly, the approximate solution correct to six decimal places of the given system is computed directly for $q_k = 10^6$. In addition, the generalized inverse of the matrix A is computed approximately by taking $q_k = 10^6$ in (3.8) as the following example.

Example 3.1. Let $Ax = b$ be a consistent system, where the matrix A of rank 2 and b are

$$A = \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

We computed that the least norm solution x for full row rank of the given system of the linear
equations using the right inverse of the coefficient matrix A as follows:

$$x = A^T (AA^T)^{-1} b = \begin{bmatrix} 1/4 & -1/4 & 1/4 \\ -1/4 & 1/4 & 1/4 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0.25 \\ 0.25 \\ 0.5 \end{bmatrix} \approx \begin{bmatrix} 0.25 \\ 0.25 \\ 0.5 \end{bmatrix}$$

By Theorem 3.1 and from (3.4), we computed as

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$x = \lim_{q \to \infty} \frac{2q^2 + q}{8q^2 + 6q + 1} \approx 0.25$$

$$A^+ = \lim_{q \to \infty} \begin{bmatrix} \frac{2q^2 + q}{8q^2 + 6q + 1} \\ \frac{2q^2 + q}{8q^2 + 6q + 1} \\ \frac{2q^2 + q}{8q^2 + 6q + 1} \end{bmatrix} \begin{bmatrix} \frac{1}{4} & -1/4 & 1/4 \\ -1/4 & 1/4 & 1/4 \\ 1/2 & 1/2 & 0 \end{bmatrix}$$

$$A^+ = \begin{bmatrix} 0.2499999 \\ 0.2499999 \\ 0.2499999 \end{bmatrix} \begin{bmatrix} -0.2499999 \\ -0.2499999 \\ 0.4999997 \end{bmatrix}$$

Using this matrix, we can compute the least norm solution correct to six decimal places of the given consistent system as

$$x^T = \begin{bmatrix} 0.2499999 \\ 0.2499999 \\ 0.4999997 \end{bmatrix}.$$
\textbf{Theorem 3.2.} Let the system of the linear equations $Ax = b$ be inconsistent. Then the best approximate solution of $Ax = b$ is

$$x = \lim_{q \to \infty} \left(\frac{1}{q} I + (A^T A)^2 \right)^{-1} (A^T A) A^T b,$$
(3.12)

where $\det \left(\frac{1}{q} I + (A^T A)^2 \right) \neq 0$ for large number $q > 0$ and $\text{rank}(A) \leq n$.

\textbf{Proof.} From (3.10), we obtain

$$\left(\frac{1}{q} I + (A^T A)^2 \right)x = (A^T A) A^T b.$$
(3.13)

Using $\det \left(\frac{1}{q} I + (A^T A)^2 \right) \neq 0$ for $q \neq 0$ and applying (2.2), we get

$$x = \left(\frac{1}{q} I + (A^T A)^2 \right)^{-1} (A^T A) A^T b.$$
(3.14)

This solution is the best approximate solution with minimum norm of the QPF (3.9) and its Hessian matrix H_x is positive definite. Using (2.3), we see that

$$x = \left[(A^T A)^T \right] (A^T A) A^T b = (A^T A)^T A^T b$$
and

$$\lim_{q \to \infty} \left(\frac{1}{q} I + (A^T A)^2 \right)^{-1} = \left[(A^T A)^T \right]^T.$$
(3.15)

Then the proof is completed.

Using the orthogonal decomposition of the matrix $A^T A$, we also express the matrix $\frac{1}{q} I + (A^T A)^2$ as

$$\frac{1}{q} I + (A^T A)^2 = V \left(\frac{1}{q} I + D^2 \right) V^{-1},$$
(3.16)

where

$$\frac{1}{q} I + D^2 = \text{diag} \left\{ \lambda_1^2 + \frac{1}{q}, \lambda_2^2 + \frac{1}{q}, \ldots, \lambda_n^2 + \frac{1}{q} \right\}.$$
(3.17)

We know that $\lambda_i = \lambda_i^2 + \frac{1}{q}$ are eigenvalues of the matrix $\frac{1}{q} I + (A^T A)^2$ when λ_i are eigenvalues of the matrix $A^T A$ for $i = 1, 2, \ldots, n$.

This leads to the following theorem.

\textbf{Theorem 3.3.} Let be the eigenvectors v_1, v_2, \ldots, v_n corresponding to the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of the matrix $A^T A$, respectively. The best approximate solution of the inconsistent system $Ax = b$ is

$$x = V \lim_{q \to \infty} \left(\frac{1}{q} I + D^2 \right) V^{-1} A^T b$$
$$= (A^T A)^T A^T b$$
$$= A^* b,$$
(3.18)

where $D = \text{diag} \{ \lambda_1, \lambda_2, \ldots, \lambda_n \}$.

\textbf{Proof.} Applying Theorem 3.2 and using (3.15), we get

$$x = \lim_{q \to \infty} V \left(\frac{1}{q} I + D^2 \right) V^{-1} A^T b.$$
(3.19)

If $\text{rank} (A) = n$,

$$x = \lim_{q \to \infty} V \left[\begin{array}{cccc} -\frac{q}{q \lambda_1^2 + 1} & 0 & \cdots & 0 \\ 0 & -\frac{q}{q \lambda_2^2 + 1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -\frac{q}{q \lambda_n^2 + 1} \end{array} \right] \lambda V^{-1} A^T b$$
$$= \lim_{q \to \infty} V \left[\begin{array}{cccc} \frac{q \lambda_1}{q \lambda_1^2 + 1} & 0 & \cdots & 0 \\ 0 & \frac{q \lambda_2}{q \lambda_2^2 + 1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{q \lambda_n}{q \lambda_n^2 + 1} \end{array} \right] \lambda V^{-1} A^T b$$
$$= V D^{-1} V^{-1} A^T b = (A^T A)^{-1} A^T b = A^* b.$$
(3.20)
If \(\text{rank} (A) < n \),

\[
x = \lim_{q \to \infty} V^{-1} b = A^T b,
\]

where \(D = \text{diag} \{ \lambda_1, \lambda_2, \ldots, \lambda_n, 0, \ldots, 0 \} \) and

\[
\left(\frac{1}{q} I + D \right)^{-1} = \begin{bmatrix}
\frac{q}{q \lambda_1^2 + 1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & \frac{q}{q \lambda_2^2 + 1} & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \frac{q}{q \lambda_i^2 + 1} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & \frac{q}{q \lambda_{i+1}^2 + 1} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & \cdots & \frac{q}{q \lambda_{n-1}^2 + 1} \\
\end{bmatrix}
\]

Thus the proof is completed.

Here we establish the following corollary which is proved easily using the optimality conditions of the QPF defined in (3.9) and results on the generalized inverses of matrices.

Corollary 3.3. Let \(\lambda_i \) be eigenvalues of the matrix \(A^T A \) and let \(\mu_i = \lambda_i^2 + \frac{1}{q} \) be eigenvalues of the matrix \(\frac{1}{q} I + \left(A^T A\right)^2 \). A necessary and sufficient condition for the QPF defined in (3.9) to have a best approximate solution with minimum norm is

\[
\mu_i = \frac{\lambda_i^2 + \frac{1}{q}}{q > 0} , \text{ in which case the optimal solution is } x = A^T b.
\]

Proof. Since the Hessian matrix given in Corollary 3.2 is a positive definite matrix and eigenvalues of the matrix \(H_{ij}(x) \) are \(1 + q \lambda_i^2 > 0 \), then \(\mu_i = \lambda_i^2 + \frac{1}{q} > 0 \) and the QPF defined in (3.9) has a best approximate solution with minimum norm. From Theorem 3.3, we find the solution \(x = A^T b \). This completes the proof.

Corollary 3.4. Let any linear system of \(m \) equations in \(n \) unknowns be \(Ax = b \) and \(\text{rank}(A) \) be \(r \leq n \).

(i) If \(Ax = b \) is a consistent linear system, then the solution defined in (3.4)

\[
x = \lim_{q \to \infty} \left(\frac{1}{q} I + A^T A \right)^{-1} A^T b
\]

is the least norm solution of the consistent system.

(ii) If \(Ax = b \) is an inconsistent linear system, then the solution \(x \) is the best approximate solution with minimum norm of the inconsistent system.

Proof. From Theorem 3.1, Theorem 3.3, the corollary is easily proved.

The results show that the optimum solutions of the consistent and inconsistent system of linear equations can be computed with the same formula.

We can calculate the approximate solution with the minimum norm of the consistent or inconsistent linear systems \(Ax = b \) using (3.7) and

\[
x_k = \left(\frac{1}{q_k} I + \left(A^T A\right)^2 \right)^{-1} A^T b,
\]

where \(q_k = 10^k \) for \(k = 0, 1, 2, \ldots \).

Example 3.2. Suppose that the inconsistent system \(Ax = b \) is

\[
x_1 + x_2 = 2
\]
\[
2x_1 + 2x_2 = 2
\]
\[
3x_1 + 3x_2 = 3
\]

where \(\text{rank}(A) = 1 \) and the best approximate solution of the system computed by Graybill [15] is \(x_1 = x_2 = 15/28 \).
The following solution, which is obtained using (3.6) and (3.14), is the best approximate solution with minimum norm of the given system $Ax = b$.

\[x = A^+ b = \left(A^T A \right)^+ A^T b \]

\[
= \frac{1}{28} \begin{bmatrix} 15 \\ 15 \\ 15 \end{bmatrix} = \begin{bmatrix} 0.535714285714286 \\ 0.535714285714286 \end{bmatrix}
\]

where A^+ and $(A^T A)^+$ is computed using (3.6) and (3.14), respectively as

\[
A^+ = \lim_{\eta \to 0} \left[\begin{array}{ccc} q & 2q & 3q \\ 28q + 1 & 28q + 1 & 28q + 1 \\ 28q + 1 & 28q + 1 & 28q + 1 \end{array} \right]
\]

\[
= \frac{1}{28} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}
\]

and

\[
(A^T A)^+ A^T = \lim_{\eta \to 0} \left[\begin{array}{ccc} 28q & 56q & 84q \\ 28q & 56q & 84q \\ 28q + 1 & 28q + 1 & 28q + 1 \end{array} \right]
\]

\[
= \frac{1}{28} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}
\]

In Table 2 and 3, some values for the approximate solution using (3.17) are listed with seven decimals for $k = 0, 1, 2, \ldots, 4$.

\[
\begin{array}{|c|c|c|}
\hline
k & x_1 & x_2 \\
\hline
0 & 0.5350318 & 0.5350318 \\
1 & 0.5356459 & 0.5356459 \\
2 & 0.5357074 & 0.5357074 \\
3 & 0.5357136 & 0.5357136 \\
4 & 0.5357142 & 0.5357142 \\
5 & 0.5357142 & 0.5357142 \\
\hline
\end{array}
\]

Table 3 The best approximate solution of the example

It is clear that the optimal solution proves to be extremely close to approximate solution. From Table 2 and Table 3, we easily see that the approximate solution correct to seven decimal places of the given system is computed directly for q_1. If the penalty parameter q is taken big enough, the approximate solution correct to desired decimal places of the system can be calculated by using (3.6) and (3.17).

4 Conclusion

In this study, the consistent and inconsistent linear systems of m equations in n unknowns are formulated as a quadratic programming problem, and the least norm solution for the consistent or inconsistent system of the linear equations is investigated using the optimality conditions of the QPFs. Additionally, several algebraic characterizations of the equivalent cases of the QPF are given using the orthogonal decomposition of the coefficient matrices obtained from optimality conditions and the analytic results are compared with numerical examples. It is seen that the least norm solution of the consistent or inconsistent system of the linear equations can be found by the penalty method. The results show that the optimum solutions of the consistent and inconsistent system of linear equations can be computed with the same formula.

References:

