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Abstract: Functional equations offer a tool for narrowing the models used to describe many phenomena. Recently,
a certain class of functional equations stems when obtaining the generating functions of queueing systems dis-
tributions. This paper has been motivated by an issue considered by L. Flatto and S. Hahn in [SIAM Journal on
Applied Mathematics 44(5), (1984), 1041–1053]. The functional equation obtained there has been converted into
a set of conditions on the two-unknowns, which in turn lead to the determination of the main unknown. Another
motivation of solving such functional equation comes from the fact that the underlying queueing system has ap-
plications in the inventory control of database systems. Unfortunately that solution seems to be a bit too general
with many technical assumptions. In this paper we introduce a solution using boundary value problem approach.
Our solution is validated, obtained by assuming full symmetry on the system under study, and by the reduction to
a Riemann-Hilbert boundary value problem.

Key–Words: Queueing systems, Functional equations, Boundary value problems, Inventory control of database
systems.

1 Introduction

Functional equations (FEs) are defined as the equa-
tions where the unknowns are functions rather than
simple variables [1, 2, 3, 4, 5, 6, 7]. They are more
than 200 years old subject of mathematics, but their
theory has flourished principally through the work of
the prolific mathematician J. Aczél [7, 9, 10, 11, 12]
who identified many of their classes, illustrating effi-
cient methods for their solutions as well as criteria for
the existence and uniqueness of those solutions [8].
FEs arise abundantly in models of various fields, such
as population ethics [13], astronomy [14], neural net-
works [15], economics [32], digital filtering [33], and
the experimental sciences [16].

Specifically, each of these models can be formu-
lated so as to eventually lead to an FE that can yield
precise quantitative relationships. FEs can be in one
variable or two variables, depending on whether the
underlying model is one-dimensional or two dimen-
sional. There is no universal solution technique for
these FEs, but rather almost each equation is solved
differently than the others. The problem of finding
some performance measures to some communication,
and networks systems comes with a certain interesting

class of functional equations.
In general using the literature there are many ap-

proaches available to solve such problem e.g., experi-
mental approach, numerical approach, simulation ap-
proach, and the analytical approach see [17]. It is
the right place to state that Malyshev [28] pioneered
the approach of solving functional equations using the
theory of boundary value problems in early 1970s.

The idea of reducing functional equations for the
generating function to a standard Riemann-Hilbert
boundary value problem stems from the work of Fay-
olle and Iasnogorodski [19] on two parallel M/M/1
queues with coupled processors. Extensive treatments
of the boundary value technique for functional equa-
tions can be found in Cohen and Boxma [20] and Fay-
olle et al. [21]. In particular, the following general
class of two-variable functional equations

C1(x, y)P (x, y) = C2(x, y)P (x, 0) + C3(x, y)P (0, y)

+C4(x, y)P (0, 0), (1)

where Ci(x, y), i = 1, 2, 3, 4 are given polynomials
in two complex variables x, y, arises from different
communication and networks systems. The unknown
functions P (x, y), P (x, 0), P (0, y) are defined as fol-
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lows

P (x, y) =
∞∑

m,n=0

pm,nx
myn, |x| ≤ 1, |y| ≤ 1

P (x, 0) =

∞∑
m=0

pm,0x
m, |x| ≤ 1,

and

P (0, y) =

∞∑
n=0

p0,ny
n, |y| ≤ 1

for some sequences of interest pm,n, pm,0, p0,n respec-
tively.

Similar equations appears in [22, 23, 24] such
equations have been solved by using the theory of
boundary value problems [20]. A simple but simi-
lar equation appears in [25] has been solved by us-
ing Rouchés theorem, and applying the normalization
condition. A whole class of similar functional equa-
tions are given in [26]. One more form of the above
functional equation has appeared in [27] in the context
of analyzing a multiprogrammed computer. The tech-
nique used there is that of analytic continuation. A
survey paper [29] gives an array of similar functional
equations and techniques for their solution.

As an application of such queues the authors
mentioned the inventory control of data base sys-
tems. A common inaccuracy problem, which stems in
such systems is the deviation of the number of items
recorded in the data base from the number of items
present in stock. The deviation is due to the fact that
the updating in the system may be made at times dif-
ferent from those when an item is actually added or re-
moved from stock. If the deviation is due to removals
only, then the actual and recorded number of items
may be treated as two parallel queues created by the
same arrival process, each having its own servicing
time distribution.

This article is mainly concerned with a solution
of a two-variable FE arising from a double queue
model originally published in [18] using boundary
value problem. The sequel of the paper is laid as
follows: In the next section we recall the functional
equation from the original article [18] together with
the solution as originally given in [18] but in brief,
in section (3) we solve the equation by reduction to
Riemann-Hilbert boundary value problem, in section
(4) we compute some expectation using the corre-
sponding generating function, and in section (5) we
conclude our work.
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database items--

-

-
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��α
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Figure 1: queueing system arising in the inventory
control of database systems

2 The functional equation
This equation arises [18] from a double queue model,
illustrated in Figure (1), where the arriving customers
simultaneously place two demands handled indepen-
dently by two servers. The arrivals are assumed to
be a Poisson process with unit mean, and the two
servers have exponential service times with rates α, β,
with the stability condition 1 < α ≤ β. The
probability generating function (PGF) P (x, y) of the
two-dimensional distribution characterizing the sys-
tem yields the two-variable FE

Q(x, y)P (x, y) = N(x, y), (2)

where

Q(x, y) = (1 + α+ β)xy − αy − βx− x2y2,

and

N(x, y) = βx(y − 1)P (x, 0) + αy(x− 1)P (0, y).

Equation (2) has been solved using the analytic con-
tinuation. First it can be rewritten as follows

((1 + α+ β)xy − αy − βx− x2y2)P (x, y)

= βx(y − 1)P (x, 0) + αy(x− 1)P (0, y). (3)

It is obvious that the above equation is a special case
of the general class of equations given by (1) where

C4(x, y) = 0,

C1(x, y) = ((1 + α+ β)xy − αy − βx− x2y2),

C2(x, y) = βx(y − 1),

and
C3(x, y) = αy(x− 1).

The authors in [18] solved (3) by parameterizing the
curve defined by Q(x, y) = 0 by a pair of elliptic
functions x = x(t), y = y(t). The functional equa-
tion for P (x, y) is converted into a set of conditions
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on P (x(t), 0), P (0, y(t)), which in turn leads to the
determination of P (x, y) in the form

P (x, 0) =
β − 1

β

A(x)

A(1)
|x| ≤ 1,

where the function A(x) is given by

A(x) =

√
a3 − x+

√
a3 − 1

[
√
a3 − x+

√
a3 − α/β][

√
a3 − x−

√
a3 − α]

,

where a3 is some real number greater than one, and
the other unknown is given by

P (0, y) =
α− 1

α

B(y)

B(1)
|y| ≤ 1,

where the function B(y) is given by

B(y) =

√
a
′
3 − y +

√
a
′
3 − 1

[
√
á3 − y +

√
á3 − β/α][

√
á3 − y +

√
á3 − β]

,

where á3 is some real number greater than one, for
α = β the solution is given by

P (x, 0) = P (0, x) =
(α− 1)3/2

α(α− x)1/2

3 The Boundary Value Problem
Model of Eq.(2) and its Solution

In order to solve equation (2), the main idea stems
from the fact that the main unknown function P (x, y)
is an analytic function in the unit disk, this means that
if theQ(x, y) is zero then also the right hand side con-
taining the other unknowns must be zero. Let

Q(x, y) := (1+α+β)xy−αy−βx−x2y2 = 0 (4)

then also

βx(y − 1)P (x, 0) + αy(x− 1)P (0, y) = 0, (5)

The solution of the original functional equation (2) is
now reduced to the solution of the functional equation
(5). Assume full symmetry in the system under study,
i.e., let α = β so that equation (5) can be rewritten as
follows

αx(y − 1)P (x, 0) + αy(x− 1)P (0, y) = 0, (6)

dividing the above equation by (x− 1)(y − 1) 6= 0 to
get

αx

x− 1
P (x, 0) +

αy

y − 1
P (0, y) = 0. (7)

Introduce the function

g(x) :=
αx

x− 1
P (x, 0),

then equation (7) can be rewritten as

g(x) + g(y) = 0, (8)

where the function g(.) is an analytic function except
for a simple pole at 1.
Now we reduced the solution of the main functional
equation to the solution of (8) in {(x, y) : Q(x, y) =
0}. But Q(x, y) = 0 offers a very large number of
ordered pairs, in our symmetric case it is natural to
consider the set:

M∗ := {(x, x̃) : Q(x, x̃) = 0},

where x̃ is the complex conjugate of x. Using this
special set we can rewrite equation (8) in the form

g(x) + g(x̃) = 0→ <g(x) = 0, (9)

where< sands or the real part of the complex variable.
Now we have a boundary value problem: The problem
of determining a function g(.) which satisfies:
◦ Analytic everywhere except for a simple pole at 1

◦ <g(.) = 0 on M \ {1}

◦ lim
x→1

(x− 1)g(x) = α− 1

In order to solve the boundary value problem con-
structed, let φ, with inverse ψ, be the conformal map-
ping of the unit disk onto the region bounded by M∗
with normalization conditions φ(0) = K, φ(1) = 1
for some real number K. This mapping exists by the
Riemann mapping theorem see [30], the curve M∗ is
simply connected only for large values of α. Define
h(w) := g(φ(w)). We then obtain a relatively simple
Riemann Hilbert boundary value problem with a pole,
for h(.) on the unit circle D (actually, it is a Dirichlet
problem with a pole see [20]):
◦ <h(w) = 0, on w ∈ D \ {1}

◦ lim
w→1

(w − 1)h(w) = α−1
φ́(1)

, where φ́(.) = dφ
dx

with h(.) analytic on D, continuous on D \ {1}. The
solution of this boundary value problem is

h(w) =
1

2

α− 1

φ́(1)

w + 1

w − 1
, w ∈ D

which determines

g(x) = h(ψ(x)) =
1

2

α− 1

φ́(1)

ψ(x) + 1

ψ(x)− 1
,
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inside the curve M ; Substitution in the original equa-
tion finally yields

P (x, y) = (α− 1)ψ
′
(1) (x−1)(y−1)

(ψ(x)−1)(ψ(y)−1) ×
ψ(x)ψ(y)−1

(1+2α)xy−αy−αx−x2y2 (10)

The above equation represents a possible solution to
the original equation, noting that we validate that it
is a possible solution because it satisfies the normal-
ization condition P (1, 1) = 1 through applying the
L’Hôpital’s rule. In the subsequent subsections we in-
vestigate the conformal mappingψ(.), and the contour
M∗ respectively.

3.1 The function ψ(.)
In order to find an explicit form to the function ψ, we
compare our solution with the solution obtained in the
original paper [18] to get:
The original one P (x, 0) for α = β is given by:

P (x, 0) =
(α− 1)3/2

α(α− x)1/2
. (11)

Using our solution (10), the function P (x, 0) for α =
β is given by:

P (x, 0) = (α− 1)ψ́(1) (x−1)(−1)
(ψ(x)−1)(ψ(0)−1) ×

ψ(x)ψ(0)−1
−αx . (12)

If we equate the two solutions we get that√
α−1
α−x = ψ́(1) (x−1)

(ψ(x)−1)(ψ(0)−1) ×
ψ(x)ψ(0)−1

x ,

solving for ψ(x) to get in the final form

ψ(x) =
x
√

α−1
α−x(ψ(0)− 1)− ψ́(1)(x− 1)

x
√

α−1
α−x(ψ(0)− 1)− ψ(0)ψ́(1)(x− 1)

.

3.2 The curve M∗

The curve defined by M∗ := {(x, x̃) : Q(x, x̃) = 0},
can be rewritten as follows

Q(x, x̃) = (1 + 2α)xx̃− αx̃− αx− x2(x̃)2 = 0,

which can be rewritten as

Q(x, x̃) = (1 + 2α)|x|2 − 2α(<x)− (|x|2)2 = 0.

If we assume that x = a+ ib the curve can be written
as

a4 +b4 +2a2b2−(1+2α)a2−(1+2α)b2 +2αa = 0,

whenever α is large enough the curve M∗ describes a
simply connected domain. So it is possible to map the
interior of the curve M∗ conformally to the unit disk
in the case that α is large enough.

Figure 2: The expected number of database items vs.
the service rate

4 Expectations
In this section we find the expected number of files
in the database in one of the queues using the corre-
sponding generating functions. It is easy to see using
(3) that the generating function of the number of files
in the first queue is given by

P (x, 1) =
∑∞

m=0 P (N1 = m)xm

= α(x−1)P (0,1)
((1+α+β)x−α−βx−x2)

, (13)

where N1 is the number of files in the first queue. Us-
ing the normalization condition P (1, 1) = 1 in the
above equation to find P (0, 1) after some nontrivial
manipulations including applying l’Hospitals rule to
get

P (0, 1) =
α− 1

α
.

From (13) we will compute the expected number of
files in queue 1. It is well known see e.g. [31] that the
expected number of packets in queue 1 is given by

E[N1] = ∂
∂xP (x, 1) |x=1

= P (0, 1) ∂
∂x

α(x−1)
((1+α+β)x−α−βx−x2)

= 0
0 ,

therefore by applying the L’Hôpital’s rule we get

E[N1] =
1

α− 1
. (14)

The above equation represents the expected number
of database items in one of the queues. It is clear
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from (14) that the higher the service rate the lower the
expected number of items will be in the first queue
which clearly makes perfect sense. By symmetry we
can compute the expected number of database items
in the second queue using the same procedure. In
figure (2) we plot the expected number of database
items E[N1] versus the service rate α. It is clear
from the figure that when the service rate is large
enough then the expected number of waiting items in
the queue will be sufficiently small which practically
makes sense.

5 Conclusion
In this article, we managed to introduce a solution
of a two-variable functional equation arising from a
queueing model. This is done by considering the fully
symmetric case on the underlying system and by re-
duction to a boundary value problem. Another contri-
bution is using generating functions to find some ex-
pectations of interest. Possible extension of this work
could be to use boundary value problems to find a so-
lution to the asymmetric case. Another extension is to
find a general solution methodology to such interest-
ing class of equations.
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pp. 190–200.

[32] W. Gehrig, Functional equation methods applied
to economic problems: some examples, Func-
tional Equations: History, Applications and
Theory, Springer, 1985, pp. 33–52.

[33] P.–K. Sahoo, and L. Székelyhidi, On a functional
equation related to digital filtering, aequationes
mathematicae, 62, 2001, pp. 280–285.

WSEAS TRANSACTIONS on MATHEMATICS El-Sayed El-Hady, Wolfgang Förg-Rob, Mohamed Mahmoud

E-ISSN: 2224-2880 270 Volume 14, 2015




