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Abstract: The aim of this paper is to show how to simply define paraconsistent tableaus by liberalization of con-
struction of complete tableaus. The presented notions allow us to list all tableau inconsistencies that appear in a
complete tableau. Then we can easily choose these inconsistencies that are effects of interactions between premises
and a conclusion, simultaneously excluding other inconsistencies. A general technique we describe is presented
here for the case of modal logic, as one of the most interesting, and with many applications in communication the-
ory and data mining. In case we have an inconsistent set of information and apply a logic that includes classically
accepted patterns of reasoning, we may correctly conclude any arbitrary proposition. To avoid this we propose
paraconsistent tableau proofs that list all relevant premises which guarantee truth of conclusion under considera-
tion, but at the same time are consistent.
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1 Introduction

It is a well-known property that any system of logic
that is superclassical contains a law of explosion
(ex falso quodlibet, ”from a falsehood, anything fol-
lows”). It means that when we have an inconsistent
set of premises X (for example X = {A,¬A}, where
¬ is a classical negation) we can correctly draw any
conclusion: X |= B, for any B in a language of con-
sidered logic. Of course, we usually accept most of
classical arguments, but in case we have an inconsis-
tent set of propositions, we would not like to accept
an arbitrary conclusion. It is a specially striking fact
in data mining and analysis of communication, where
very often there appear inconsistent parts of informa-
tion among other pieces that seems quite reliable.

There exist many attempts of modifications of
classical logic to prevent from a law of explosion.
They are usually quite complicate and sophisticated.
Unlike to them we propose an clear and simple
method of defining a subsystems of modal logics
that do not have the property of law of explosion.
Our starting point are suitable tableau counterparts
od modal systems, but the goals are paraconsistent
tableau subsystems.

Usually tableau methods are at the same time ef-
fective and non-formal. Although we prepared a for-
mal theory of tableaus [3] that prevents from a jejune
way of applications of tableau rules, so — for exam-

ple – rules cannot be applied to inconsistent branches,
here we define rules as blind. It means that tableau
inconsistencies that occur in tableaus do not stop de-
veloping of a given tableau. When we decompose all
expressions, we stop a proof. It is because in the case
of paraconsistent arguments we look for a special kind
of inconsistency, that follows from incompatibility of
premises and a negated conclusion. In order to iden-
tify suitable inconsistencies in a tableau, we need to
decompose all formulas to the level of literals in such
a way that it gives an answer whether there is a colli-
sion between premises and a negated conclusion.

In the paper we describe a mechanism of build-
ing such tableaus and choosing suitable inconsisten-
cies. In further part we analyze some metatheoretical
properties of this proposal. This type of approach can
be used for other logics, being generalized as long as
tableau rules are defined in the proposed style.

2 Basic notions
First we remind some semantical notions for modal
logic and tableau notions we require to formulate and
prove facts about paraconsistent tableaus.

2.1 Semantics
Let For be the set of all formulas build finitely over
the following alphabet: V ar = {p, q, r, p1,q1,r1, . . . }
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and Con = {¬,�,♦,∧,∨,→,↔}, where¬,� and♦
are unary and ∧, ∨,→,↔ are binary connectives. It is
a language of modal logic, expressions with Boolean
connectives we read normally, expressions of the form
�A and ♦B we read, respectively, it is necessary that
A and it is possible that A (or differently, if we have
epistemic, temporal or other intention).

A model M (or modal model) for the set For is a
quadruple 〈W,R, V,w〉, where W is any set (called
usually a set of possible worlds), R is a binary re-
lation defined on W × W (so R ⊆ W × W , R is
usually called accessibility relation), V is a function
from W × For into the set of logical values {1, 0}
(called a valuation in possible worlds), such that any
A, B ∈ For and any u ∈W satisfies conditions:

V (u,¬A) = 1 iff V (u,A) = 0

V (u,A ∧B) = 1 iff V (u,A) = 1 and V (u,B) = 1

V (u,A ∨B) = 1 iff V (u,A) = 1 or V (u,B) = 1

V (u,A→ B) = 1 iff V (u,A) = 0 or V (u,B) = 1

V (u,A↔ B) = 1 iff V (u,A) = V (u,B).
V (u,�A) = 1 iff ∀z∈W (uRz =⇒ V (z,A) = 1)

V (u,A) = 1 iff ∃z∈W (uRz & V (z,A) = 1),

and w ∈W (so W is non-empty).
Let M = 〈W,R, V,w〉 be a model. For any for-

mula A and any set of formulas X we define:

A is true in M (in short: M |= A) iff V (w,A) = 1

A is false in M (in short: M 6|= A) iff V (w,A) = 0

X is true in M (in short: M |= X) iff M |= B, for all
B ∈ X

X is false in M (in short: M 6|= X) iff M 6|= B, for
some B ∈ X .

Now we define a central notion of any logic, a
consequence relation. Let M be a set of models. Let
A be a formula and X be a set of formulas. A is a
consequence of X modulo M (in short: X |=M A) iff
∀M∈M (if M |= X then M |= A).1

As we know we can determine various classes of
models by imposing constraints on accessibility rela-
tion R, for example, taking models — among others
— with the conditions:

Reflexivity ∀u∈WuRu

Symmetry ∀u,z∈W (uRz ⇒ zRu)

Transitivity ∀u,z,x∈W (uRz & zRx⇒ zRx).

Each of the conditions and more similar ones (and
of course possible combinations of them) define some
classes of models: MRef , MSym, MTrans, etc., and so
some modal logics that can be identified with suitable
consequence relations |=MRef

, |=MSym , |=MTrans etc.

1By those conditions we have defined here so called normal
modal logics [2].

Now we define a notion of inconsistent set of for-
mulas. A set X of formulas is inconsistent iff there
is no model M such that M |= X .2 A special kind
of inconsistent set of formulas is a set that contains
formulas A, ¬A, for some formula A.

As a corollary by definition of |=M we have:

Corollary 1 Let M be a set of models. Let X be an
inconsistent set of formulas. Then X |=M A, for any
formula A.

The corollary 1 expresses a fact that all normal
modal logics explode in case we have inconsistent
premises. Of course, a paraconsistent logic should not
have the above property.

2.2 Tableau systems for modal logics
In works [4] and especially in [3] we presented a for-
mal theory of tableau systems for a class of logics de-
fined by some syntactical and semantical conditions3.
Hence, we have precise tableau notions that incor-
porate standard, intuitive notions. The precise no-
tions (of a tableau rule and various kinds of branches,
tableaus) with a notion of tableau system are neces-
sary, when we generalize results, looking for some
abstract properties of tableau methods.

However, here we dealt with tableaus for modal
language, so we just use well-known intuitive tableau
notions presented for example in [1] or [2]. We re-
mind them in turns, giving a handful of definitions.

First of all tableaus are defined on some extended
language, we call it a set of expressions and denote
by Ex. Let N be the set of natural numbers. Ex is a
union of the sets:

For × N,
{irj : i, j ∈ N},
{∼ irj : i, j ∈ N},
{i = j : i, j ∈ N},
{∼ i = j : i, j ∈ N},

that respectively denote formulas in possible worlds
(〈A, i〉, we will write them as pairs A, i), accessabil-
ity/inaccessability between possible worlds (irj, ∼
irj ), identity/non-identity of possible worlds (i = j,
∼ i = j).

Having a set of formulas X and a number i, by
〈X, i〉 we denote a set of expressions {〈A, i〉 : A ∈
X}, or just shortly X, i.

2We use a word inconsistent instead — for example — contra-
dictory, since it enables us a direct transition between semantical
and tableau notions.

3We mean such logics that are logics of terms or propositions,
and are two–valued.
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We assume that a set of expressions X is t-
inconsistent iff for some A ∈ For and some i ∈ N, X
contains 〈A, i〉 and 〈¬A, i〉, or for some i, j ∈ N, irj
and ∼ irj ∈ X , or i = j and ∼ i = j ∈ X . A set of
expresions X is t-consistent iff X is not t-inconsistent.

By R we denote a set of rules for a given tableau
system. It always contains three kinds of tableau
rules: a) all standard tableau rules for Boolean con-
nectives — we have nine rules in R, four positive rules
(for ∧, ∨,→,↔) and five negative (for ¬¬, ¬∧, ¬∨,
¬→, ¬↔); b) moreover, we have rules for � and ♦
as well as for ¬� and ¬♦; c) the last rules we men-
tion are rules for properties of relation of accessibility
that depends on a given class of models (this subset
may be empty, if we do not impose any conditions).
These of those rules rules we remind in the next sec-
tion where we modify them to obtain paraconsistent
tools.

The further tableau notions are shortly as follows.
A root is a set of expressions that contains premises
and a negation of conclusion with the same number.
A branch is a sequence of expressions that starts from
a root. The rest of the branch contains results of ap-
plying of rules to former expressions. A branch is
complete iff all applicable tableau rules were used 4.
A branch is incomplete iff it is not complete. Branches
can be also closed or open. A branch is closed iff it
contains t-incosistent set of expressions; it is open iff
is not closed.

Tableau can be treated as sets of branches with
the same roots. Tableaus that include all suitable and
only complete branches are called complete. Com-
plete tableaus can be closed or open. A tableau is
closed iff it is complete and all branches that includes
are closed; it is open iff is not closed.

Let R be a set of tableau rules for some modal,
normal logic. Now, for any set of formulas X and a
formula A we define a tableau consequence relation
BR, by putting:

Definition 2 X BR A iff there exist a finite subset Y
of X and a closed tableau with a root 〈Y ∪ {¬A}, i〉,
for some i ∈ N.

Of course, the relation BR is fully determined by
tableau rules of R. So, by 〈For,BR〉 we understand a
tableau system determined by tableau rules R.

4Generally, we divide complete branches into open and closed
ones, since in our formal theory of tableau methods in [3] our aim
is always to complete a branch, so a branch itself is just a techni-
cal concept. At the same time an occurrence of a t-inconsistency
completes a branch. In the paper we change our point of view a
bit: applying of rules is allowed as far as it is possible, ignoring
any t-inconsistency — later we will come back to the idea, when
explaining exactly what we mean by ‘blind rules’.

If a class of models M and a set of tableau rules
R fit each others then a relation BR is equal to |=M,
which means that a suitable adequateness theorem
holds:5

Theorem 3 For all X ⊆ For, A ∈ For:
X BR A iff X |=M A.

From the corollary 1 and the theorem 3 we have a con-
clusion:

Corollary 4 For all X ⊆ For, if BR=|=M and X is
an inconsistent set of formulas then for all A ∈ For
X BR A.

The corollary says that within an adequate tableau
system when starting from an inconsistent set of pre-
misses we can built a closed tableau for any conclu-
sion A. So this is a syntactical, tableau counterpart of
law of explosion.

As we said our aim is to define a paraconsis-
tent tableau inference that defines some paraconsistent
subrelation of classical propositional consequence re-
lation. However, firstly we introduce some auxiliary
notions.

3 Paraconistent tableaus
Let P (N) be the powerset of the set of natural num-
bers. Its members we call indexes. The subsetes will
serve as superscripts of expressions.

By P (N)′ we mean a set {{x} : {x} ∈ P (N),
x 6= 0}— so a set of all singletons without {0}. We
distinguish an index — the singleton {0} for conclu-
sions of tableau proofs.

Next, we define a set of expressions indexed by
superscripts: Ex′ = {AΦ : A ∈ Ex,Φ ∈ P (N)}
— the expressions from Ex′ will represent formulas
from Ex in tableau proofs — and we define its subset
Ex′′ = {AΦ : A ∈ Ex,Φ ∈ P (N)′}— they will rep-
resent expressions in a root. Notice that any formula
in Ex′′ neither has a superscript ∅, nor a superscript
containing {0}.

By the function • : Ex′ −→ P (N), defined with
the condition •(AΦ) = Φ, we can choose superscripts
that occur in expressions from Ex′.

Let X be a subset of Ex. By X(x) we mean such
a non-empty subset of powerset of Ex′′ that for all
Y ∈ X(x) and all A,B ∈ Ex the conditions are ful-
filled:

1. A ∈ X iff for some Φ ∈ P (N)′, AΦ ∈ Y

5A general mechanism for proving adequateness theorem for
tableau systems of normal modal logics can be found in [4].
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2. for any Φ,Ψ ∈ P (N)′, if AΦ, BΨ ∈ Y then one
of the below conditions holds:

(a) A 6= B and Φ ∩Ψ = ∅
(b) A = B and Φ = Ψ.

Of course, for a set of expressions X there are
usually many sets satisfying X(x)–conditions, so
writing Y ∈ X(x) we mean some arbitrary, but fixed
set from X(x) that we take into consideration.

Now we give a notion of a particular kind of t-
inconsistency. We mean an inconsistency that is a re-
sult of expressions with some fixed indexes. Surely,
this notion is based on a usual notion of inconsistency
(defined here 2.2), so it is still about a set of expres-
sions that is normally inconsistent, but additionally
both inconsistent expressions should have indexes of
some kind.

Formally, let i, j ∈ N and X ⊆ Ex′. X is ti,j-
inconsistent iff for some A,B:

1. {A,B} ⊆ X

2. {A,B} is a t-inconsistent set of expressions

3. i ∈ •(A) and j ∈ •(B).

It is a particular kind of t-inconsistency, because it
refers to some superscripts omitting t-inconsistencies
with other superscripts. Hence, a set Y of expres-
sions with superscripts can be t-inconsistent, but not
ti,j-inconsistent, for some i, j ∈ N, since no pair of t-
inconsistent expressions in Y contains in superscripts
i, j. On the other hand, the opposite relationship
holds: if a set is ti,j-inconsistent, for some i, j ∈ N,
it is also just t-inconsistent. As we see the expres-
sions collect numbers in superscripts. Those collec-
tions trace an origin of expressions. This will be more
clear, when we introduce modified tableau rules.

Let R be a set of tableau rules for some modal
logic. So now, we reformulate the tableau rules of
R. A new set of rules R′ is defined on Ex′. For all
i, j ∈ N and all Φ,Ψ ∈ P (N) the schemas of new
rules are as below:

(a) tableau rules for classical Boolean connectives

R∧ :
(A∧B)Φ,i
AΦi;BΦ,i R∨ :

(A∨B)Φ,i
AΦ,i||BΦ,i

R→ :
(A→B)Φ,i
¬AΦ,i||BΦ,i R↔ :

(A↔B)Φ,i
AΦ,i;BΦ,i||¬AΦ,i;¬BΦ,i

R¬¬ :
¬¬AΦ,i
AΦ,i R¬∧ :

¬(A∧B)Φ,i
¬AΦ,i||¬BΦ,i

R¬∨ :
¬(A∨B)Φ,i
¬AΦ,i;¬BΦ,i R¬→ :

¬(A→B)Φ,i
AΦ,i;¬BΦ,i

R¬↔ :
¬(A↔B)Φ,i

¬AΦ,i;BΦ,i||AΦ,i;¬BΦ,i

(b) tableau rules for modal connectives

R� :
�AΦ,i; irjΨ

AΦ∪Ψ,j

R♦ :
♦AΦ,i

irkΦ;AΦ,k , where k is a new number on a branch

R¬� :
¬�AΦ,i
♦¬AΦ,i

R¬♦ :
¬♦AΦ,i
�¬AΦ,i

(c) tableau rules for properties of accessability relation
(here we have only examples, since a reformulation of
this kind of rules essentially depends on which rules
are in R).

RRef :
iri∅

, where i occurs on a branch

RSym :
irjΦ

jriΦ

RTrans :
irjΦ,jrkΨ

irkΦ∪Ψ

The tableau rules in R′ have such a property that
they preserve superscripts. For example, when we de-
compose an expression ¬¬pΦ, i by rule for ¬¬, we
obtain pΦ, i; if we decompose an expression (p →
q)Φ, i by rule for →, we obtain on the left branch
¬pΦ, i and on the right branch qΦ, i etc., for any sub-
set of natural numbers Φ and any number i. The
technique allows us to trace a process of decompo-
sition of expressions and find out the origin of t-
inconsistencies. But the rules need some comments.

In all given tableau rules a conclusion of a rule in-
herits a set of indexes that is a superscript of premises,
and then we still know where it comes from. In a case
we have a more-than-one-premise rule a conclusion
inherits a union of all superscripts, since it comes from
more than one expression (like in rule R� or RTrans).

We do not write all possible rules for accessabil-
ity relation, but only some examples. As we know
here we construct paraconsistent tableau systems for
these modal tableau systems that are adequate to some
semantically determined modal logic (theorem 3), so
tableau rules for a given modal logic must be sep-
arately reformulated according to described mecha-
nism and given examples of tableau rules.

An interesting case of such a rule is RRef , The
rule can introduce an expression iri∅ to a proof for
any i that has already occurred on a branch. Clearly,
because the expression is from “nothing” — the logic
has just models with a reflexive relation of accessabil-
ity — so it does not provide any track of origin — that
is why we have empty set as a superscript.
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As we already said we resign here from inter-
nal mechanism nested in rules that blocks applying
rules to branches including t-inconsistencies (it was
one of distinguishing features of our last works [3],
[4]). Here, we want to develop branches as long as
it is possible in order to get all t-inconsistencies that a
branch can generate. Now it is clear why we call these
rules ‘blind’ — they just do not see that a branch is
closed, which normally is a sufficient fact to stop ap-
plying rules.

Moreover, we assume all definitions for tableaus
for modal logics — obviously, now the notions de-
pend on the new set of tableau rules R′, for any normal
modal logic that is defined by some set of tableau rules
R. However, we add one more definition for testing a
property of paraconsistency.

3.1 Paraconsistent tableau consequence rela-
tion

Therefore we define a notion of paraconsistently
closed tableau to capture some inferences we like, ex-
clude some inferences we do not like (various forms
of law of explosion), and at the same time get intu-
itive semantics for new paraconsistent consequence
relations we study.

Definition 5 Let X ⊆ For × {i} and B, i ∈ For ×
{i}, for some i ∈ N. Let Y ∈ X(x). A tableau T with
a root Y ∪ {¬B{0}, i} is paraconsistently closed iff:

1. T is complete

2. there exists such a subset Z ⊆ Y that:

(a) for any branch b in T there are such in-
dexes i, j ∈

⋃
•(Z ∪ {¬B{0}}) that ti,j-

inconsistent set of expressions belongs to b.

(b) there is a branch b in T that for any pair of
indexes i, j ∈

⋃
•(Z) no ti,j-inconsistent

set of expressions belongs to b.

Now, we explain the conditions in definition 5 one
by one. Firstly, we have some set of formulas X and
a formula B that is supposed to follow from X — all
of them are with index i, for some i ∈ N.

We do not assume that X is a finite set, since
defining a suitable tableau consequence relation we
will impose a constraint that there must exist a finite
set as a root for some closed tableau (like in the case
of normal modal tableau consequence relation 2), so
below we give examples only for finite cases.

We take a set Y ∈ X(x), so Y contains all and
only expressions from X , each one with a different
superscript that is a singleton {x}, for some x ∈ N.

Next we build a complete tableau with the root Y ∪
{¬B{0}, i}.

There should exist a subset Z ⊆ Y such that any
branch in the tableau contains ti,j-inconsistent subset
of expressions for some i, j ∈

⋃
•(Z ∪ {¬B{0}}),

although on some branch in the tableau for no i, j ∈⋃
•(Z) the branch contains ti,j-inconsistent subset of

expressions. Hence some subset of premisses must be
inconsistent with a negation of conclusion, but simul-
taneously consistent itself.

Now we present few simple examples of paracon-
sistently closed tableaus (according to our last defini-
tion 5) for some key cases.

Example 6 Consider a set of premises X = {p∧¬p}
and a possible conclusion q. We take a root {(p ∧
¬p){1}, 1; ¬q{0}, 1} and draw a complete tableau, us-
ing only rules for Boolean connectives, exactly the
rule for ∧.

{( p ∧ ¬p){1}, 1; ¬q{0}, 1}

p{1}, 1

¬p{1}, 1

It is a classically closed tableau, but — accord-
ing to definition 5 — as we see it is not a paraconsis-
tently closed tableau. In any branch (there is of course
only one branch) there is ti,i-inconsistency, for an in-
dex i ∈

⋃
•({(p ∧ ¬p){1}, 1}). Admittedly, we have

a t-inconsistent set {p{1}, 1; ¬p{1}, 1} in any branch.
On the other hand the branch does not contain a t0,0-
inconsistency. The example shows that a consequence
relation completely determined by the notion of para-
consistently closed tableau 5 is robust to unlimited ex
falso quodlibet.

Another positive point of the presented approach
is that we can of course infer any tautology. Formula
�p → p is a tautology of modal logic with reflexive
relation of accessability.

Example 7 Consider a set of premises X = ∅ and
a possible conclusion �p → p. We take a root
{¬(�p→ p){0}, 1} and draw a complete tableau, us-
ing rules for negation of→, RRef and R�.

{¬(�p→ p){0}}, 1

�p{0}, 1

¬p{0}, 1

1r1∅

p{0}, 1
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As we see it is a paraconsistently closed tableau
by definition 5. In any branch (there is of course only
one branch) there is ti,0-inconsistency, for some index
i. Admittedly, we have a t-inconsistent set {p{0}, 1;

¬p{0}, 1}, but for a set of premises ∅ we have a branch
without any such ti,j-inconsistency that i, j ∈ •(∅), so
subset Z = ∅.

Example 8 Consider a set of premises X = {♦(p ∧
¬p)∨ q)} and a possible conclusion q. We take a root
{((p∧¬p)∨q)){1}, 1; ¬q{0}, 1} and draw a complete
tableau, using rules for ∨, R♦, and for ∧.

{(♦(p ∧ ¬p) ∨ q)){1}, 1; ¬q{0}, 1}

♦(p ∧ ¬p){1}, 1

1r2{1}

(p ∧ ¬p){1}, 2

p{1}, 2

¬p{1}, 2

q{1}, 1

The tableau is complete, since all possible rules
of decomposition were used. It is a classically closed
tableau, and — according to the definition 5 — it is a
paraconsistently closed tableau, since on all branches
we have some t-inconsistency, and at the same time
on the right branch we do not have t1,1-inconsistency,
and as a consequence the condition 2 of definition 5 is
satisfied. A subset Z of definition 5 is of course equal
to {((p ∧ ¬p) ∨ q)){1}, 1}.

In the end we present an example, where the men-
tioned liberalization of rules really works. We take a
modal logic with transitive relation of accessability.

Example 9 Consider a set of premises X = {�q, p∧
¬p} and a possible conclusion ��q. We take a root
{�q{1}, 1; (p ∧ ¬p){2}, 1; ¬��q{0}, 1} and draw a
tableau, using the rule for ∧.

{�q{1}, 1; (p ∧ ¬p){2}, 1; ¬��q{0}, 1}

p{2}, 1

¬p{2}, 1

Classically, this is a closed and complete tableau,
if we assume we cannot apply tableau rules to incon-
sistent sets of premisses. There is only one branch and
we have t2,2-inconsistency on it.

Moreover, it is not a paraconsistently closed
tableau, since on each branch there is ti,j-
inconsistency for indexes i, j ∈

⋃
•({�q{1}, 1; (p ∧

¬p){2}, 1). So there would seem there was no para-
consistently closed tableau for conclusion ��q. But
it is not true, we can still make the tableau longer and
obtain some interesting expressions as below. We use
the rules: R¬�, R♦, R�, and RTrans.

{�q{1}, 1; (p ∧ ¬p){2}, 1; ¬��q{0}, 1}

p{2}, 1

¬p{2}, 1

♦¬�q{0}, 1

1r2{0}

¬�q{0}, 2

q{0,1}, 2

♦¬q{0}, 2

2r3{0}

¬q{0}, 3

1r3{0}

q{0,1}, 3

As we see now it is a paraconsistently closed
tableau according to 5, because for a subset of pre-
misses {�q{1}, 1} we have a branch without t1,1-
inconsistency, while for {�q{1}, 1; ¬��q{0}, 1} we
have on all branches t1,0-inconsistency and the con-
ditions of the definition is satisfied.

The tableau we get, because we can apply tableau
rules, even if we have some t-inconsistency. We should
not worry about this, since as we have already said
we shall define a paraconsistent tableau consequence
relation in such a way that a formula A is a con-
sequence of X iff for some finite subset Y of X we
have a paraconsistently closed tableau. So although
the example is an example of paraconsistently closed
tableau, from the premisses it follows the conclusion,
one can built a paraconsistently tableau with a root
{�q{1}, 1; ¬��q{0}, 1}.

Now, we have an interesting and important corol-
lary about a relationship between classical and para-
consistent tableaus.
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Corollary 10 Let X ⊆ For× {i} and B, i ∈ For×
{i}, for some i ∈ N. Let Y ∈ X(x). A tableau T1 with
the root Y ∪ {¬B{0}, i} is paraconsistently closed iff
for some Z ⊆ X:

1. there is a closed tableau T3 with a root Z ∪
{¬B}, i.

2. there is a complete and open tableau T2 with a
root Z.

Proof: The proof is by conditions (a) and (b) of the
definition 5. ut

It means that we could replace definition 5 by
the statements 1 and 2 of the corollary 10 as defini-
tional conditions. Theoretically, it would be simpler.
However, practically it is difficult to choose a suit-
able subset of premises that generates complete and
open tableau, but with a negated conclusion gener-
ates a closed tableau. In the presented approach we
consider all possible decompositions, tracking super-
scripts and kinds of t-inconsistencies that appear, and
finally we can choose a suitable and consistent set of
premisses (if any exists) which in interactions with a
negated conclusion generates some t-inconsistency.

Now, having a tableau consequence relation BR,
for some set of tableau rules R, we can define a para-
consistent tableau consequence relation BR′ .

Definition 11 Let X ⊆ For and A ∈ For. X BR′ A
iff there exist a finite subset Y of X, i and a paracon-
sistently closed tableau with a root Z ∪ {¬A{0}, i},
for some Z ∈ Y (y) and i ∈ N.

A demanded fact is that the paraconsistent,
tableau consequence relation BR′ is a proper subre-
lation of a modal tableau consequence relation BR.

Corollary 12 BR′⊂BR.

Proof: Let X BR′ A, for some X ⊆ For and A ∈
For. Then by definition 11, there exist a finite subset
Y of X, i and a paraconsistently closed tableau with a
root Z ∪ {¬A{0}, i}, for some Z ∈ Y (y) and i ∈ N.

By corollary 10 there exist a finite subset U of
Y and a closed tableau with a root U ∪ {¬A, i}. So,
according to the definition 2, X BR A, and BR′⊆BR.

On the other hand, we have an example of a
closed tableau (example 6), that is not paraconsis-
tently closed. Hence, by definitions 2 and 11, we get
BR 6⊆BR′ . ut

Having a relation BR′ , we straightforwardly de-
termine a paraconsistent tableau system 〈For,BR′〉
of a sublogic of a suitable normal, modal logic de-
termined by tableau rules R.

4 Semantics
As quick as there appears a question about semantics
for 〈For,BR′〉, we get a natural answer. A natural and
commonsense approach to the problem of paraconsis-
tency in modal language is to define a paraconsistent
semantic relation of consequence by a class of models
M as follows:

Definition 13 For all X ⊆ For and A ∈ For,
X |=′

M A iff there is such Y ⊆ X that Y is a con-
sistent set of formulas and Y |=M A.

Surely, the relation |=′
M is identical to our relation

BR′ , when |=M=BR, so we have a theorem.

Theorem 14 Let R be a set of modal tableau rules.
Let M be a class of modal models. If |=M=BR, then
|=′

M=BR′ .

Proof: Let R be a set of modal tableau rules and M
be a class of modal models. We assume |=M=BR and
take some X ⊆ For, A ∈ For.

Firstly, we assume that X |=′
M A. Then, by def-

inition 13, there exists such Y ⊆ X that Y is a con-
sistent set of formulas, Y |=M A and Y is finite — by
compactness of |=M, since normal, modal logics are
compact.

By fact 3 we have Y B A, so there is a closed
tableau with a root Y ∪ {¬A}, i, for some i ∈ N. But
because Y is a consistent set, so there is a complete
and open tableau with a root Y, i.

As a consequence, by corollary 10, a tableau with
a root Z ∪ {¬A{0}, i}, for some Z ∈ U(u), where
U = Y, i, is paraconsistently closed. Hence, by 11,
X BR′ A.

Secondly, we assume that X BR′ A. By 11 there
exist a finite subset Y of X and a paraconsistently
closed tableau with a root Z ∪ {¬A{0}, i}, for some
i ∈ N and some Z ∈ U(u), where U = Y, i.

By corollary 10 Y is consistent, since there is a
complete and open tableau with a root Y, i, and Y BR′

A. Hence, Y BR A, by corollary 12, and Y |=M A,
by fact 3. As a consequence, since Y ⊆ X , Y is
consistent and Y |=M A, X |=′

M A. ut
By theorem 4 and corollary 12 we have some final

conclusion:

Corollary 15 Let R be a set of modal tableau rules.
Let M be a class of modal models. If |=M=BR, then
BR′ =BR∩{〈X,A〉 : 〈X,A〉 ⊆ 2For × For,∃Y ⊆
X , Y is consistent and Y |=M A}.
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5 Further applications
The presented mechanism can be used to other tableau
systems/logics. Through a formal theory of tableau
systems [3] we should aim at a general theorem:

if |==B, then |=′=B′

where |= and B are semantical and tableau conse-
quence relations of a given logic, while |=′ and B′ are
their paraconsistent tableau counterparts.
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