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Abstract: - In this paper, we discuss how to approximate the conditional expectation of a random variable Y 
given a random variable X, i.e. E(Y|X).  We propose and compare two different non parametric methodologies 
to approximate E(Y|X). The first approach (namely the OLP method) is based on a suitable approximation of 
the σ-algebra generated by X. A second procedure is based on the well known kernel non-parametric regression 
method. We analyze the convergence properties of the OLP estimator and we compare the two approaches with 
a simulation study. 
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1 Introduction 
This paper discusses different methods to estimate 
the conditional expected value. Let � be a random 
variable with finite mean, and let � be some other 
random variable defined on the same probability 
space. The conditional expectation ���|�� is a 
random variable and it is a function of �. In 
particular, ���|�� can be intuitively interpreted as 
the function of � that “best” approximates �, in that 
it represents the best approximation as to the value 
of �, given the only value of the random variable �. 
On the one hand, several well known methods are 
aimed at estimating the regression function ��	� =���|� = 	�, which represents just a realization of ���|��, namely: parametric regression methods, 
semi-parametric and non-parametric regression 
methods such as kernel regression [1],[2], 
smoothing splines [3], or various generalizations of 
these models, see e.g. [4]. On the other hand, in 
many real world problems (see e.g.[5]) we are 
interested in approximating the random variable ���� = ���|��, and estimating its distribution 
function. Provided that ���� has a density with 
respect to the Lebesgue measure, a method to 
estimate the density function of ���� have been 
recently introduced in the literature by Steckey and 
Henderson [6] (see also [7]). In particular, this 
method is based on a sort of conditional sampling 
which consists in i) sample �; and ii) sample � 
from the conditional distribution of � given � = 	. 

Then, it is possible to estimate the density of ���� 
with the kernel method. Nevertheless, we observe 
that in several situations it would not be possible to 
satisfy these sampling assumption, as we only have 
available a bivariate random sample from ��, ��. 
Therefore, in this paper we attempt to estimate the 
distribution of ���� simply using a random sample 
of independent observations  �	�, ��, … , �	�, �� 
from the bi-dimensional variable ��, ��. Obviously, 
if we had available a sample of independent and 
identically distributed random variables from ����, 
then it would be trivial to estimate the distribution 
of ����. Hence, our idea is that we can use the 
observations �	�, ��, … , �	�, �� form ��, �� in 
order to generate vector of outcomes ���, … , ���, 
which approximate the realizations of ����. For 
this aim, we propose to use two different methods, 
namely the OLP method, recently introduced by [8], 
and the well known kernel method, as recently 
suggested by [9]. The OLP method consists in 
approximating the sigma algebra generated by � 
(denoted by ����) with a sigma algebra generated 
by a suitable partition of the sample space, 
according to a given number (� − 1) of percentiles 
of �. Hence, by averaging the observed values of � 
over the above defined intervals, we can 
approximate the random variable ���� and thereby 
its distribution function. Differently, the kernel non-
parametric regression (see [1] and [2]) allows to 
estimate ���|� = 	� as a locally weighted 
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average, based on the choice of an appropriate 
kernel function. Therefore, by applying the kernel 
method to each observation of � (� = 	�, � = 	�, 
etc.), we obtain n outcomes, which can be similarly 
used to estimate the distribution of the random 
variable ����. In this paper we compare the two 
methods with a simulation analysis. Then we study 
the properties of the OLP estimator and propose 
some practical rules to enhance its performance. In 
particular, while it is well known that the kernel 
method depends on the choice of the kernel function 
and the bandwidth parameter, the OLP method 
depends on the choice of the number of intervals �, 
used for approximating ����. The choice of � is 
crucial in order to obtain an accurate approximation. 
First, we propose a rule for determining � under 
general assumptions, and then we compare the 
kernel and OLP methods with a simulation study, 
under assumption of normality. Indeed, if we know 
the joint distribution of ��, �� and the true 
distribution � of ���|�� (which, for instance, can 
be easily computed in the Gaussian case), then we 
can generate a bivariate random sample from ��, ��, and finally investigate which estimated 
distribution better fits to �. In the Gaussian case, the 
performance of the kernel method can be optimized 
quite easily (in terms of kernel density function and 
bandwidth parameter). Thus, we compare the 
“optimal” kernel method with the OLP method, 
where the number of intervals � is determined 
without using any information on the joint 
distribution. The results show that, even in this 
“adverse” situation for the OLP method, the two 
methods provide comparable outputs. In the last 
section we study further properties the OLP 
estimator in the Gaussian case.  In particular, we 
argue that the performance of the OLP estimator can 
be further enhanced if the number of intervals used 
for approximating ���� is determined according to 
the correlation between the variables. In the last 
section we briefly summarize the paper and we 
propose some possible financial applications.  

 

 

2 Problem Formulation 
Let � be an integrable random variable on the 
probability space �Ω, ℑ, �� and let ℑ′ be a sub-
sigma-algebra of ℑ (i.e. ℑ′ ⊆ ℑ�. The conditional 
expectation of � given ℑ′ is the unique (P a.s.) 
random variable ���|ℑ′� such that: 

i) ���|ℑ′� is ℑ′-measurable; 

ii)  ∀� ∈ ℑ�, � ���|ℑ′� �! = � � �! .  

Let �: # → ℝ and �: # → ℝ be integrable random 
variables in the probability space �#, ℑ, ��. When ℑ� = ���� is the sigma algebra generated by X we 
write ���|����� = ���|�� = ����. Generally, the 
distribution of ���� is unknown, unless the joint 
distribution of the random vector ��, �� follows 
some special distribution, e.g. the Gaussian 
distribution or the multivariate t distribution (note 
that, except for trivial text book examples, an exact 
expression for ���� is rare). However, if we assume 
that � and � are jointly normally distributed, i.e. ��, ��~'�(, Σ�, (where obviously ( = �(*, (+� is 
the vector of the means, and Σ = ,��*�, -*+�*�+�, �-*+�*�+, �+�� . is the 
variance-covariance matrix1) we can obtain the 
distribution of the random variable ���|�� quite 
easily. Indeed, it is well known that ��	� =���|� = 	� = (+ + -*+ 0102 �	 − (*�,   and thus,   

���|�� = (+ + -*+ 0102 �� − (*�      (1) 

is still Gaussian distributed with mean (+  and 
variance  -*+� �+� . Clearly, when the correlation of a 
couple of random variables (X,Y) is  -*+ = ±1, then � = (+ + -*+ 0102 �� − (*�  P almost surely and 

equation (1) holds for any joint distribution of the 
vector (X,Y). Equation (1) holds also for joint 
Student’s t bivariate vector, as pointed out by [10].  

Basically, if the bivariate random vector ��, �� is 
Gaussian or t-distributed, we also know the general 
form of the distribution of ����, and therefore we 
can estimate it quite easily. For instance, we could 
approximate ���� by estimating the unknown 
parameters (+, �*+ and �*� respectively with the 
sample mean, the sample covariance coefficient and 
the sample variance. 
Unfortunately, in most of the cases we do not know 
the form of  the distribution of ����, thus we cannot 
estimate it with parametric methods. Moreover, we 
cannot even use non parametric methods, unless 
having available a random sample drawn from the 
random variable ����, which is surely uncommon 
and difficult to obtain. For these reasons, the aim of 
this paper is to provide a method for estimating ���� and its distribution using a “standard” 
bivariate random sample �	�, ��, … , �	�, �� of 
independent observations from the bi-dimensional 

                                                 
1 For simplicity, in this paper we write, with a little abuse of 

notation, the dispersion matrix of  (X,Y) as: 

Σ = 4�*� �*+�+* �+�5 = ,��*�, �*+�, ��+* , �+�� .. 
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variable ��, ��. For this purpose, we use two 
different methods, namely the OLP method, recently 
introduced by [8], and the kernel non parametric 
regression method. 

 
 
2.1 The OLP Method 
The OLP method has been recently introduced by 
[8] (see also [11]) to approximate the conditional 
expectation, based on an appropriate partition of the 
sample space. The method, as defined in [8], 
requires the knowledge of the probability measure �: in this paper we do not rely on this assumption 
and we propose an “estimator” for the random 
variable ����. 
Define by ���� the σ-algebra generated by X (that 
is, ���� = �6��ℬ� = {�6��9�: 9 ∈ ℬ}, where ℬ is 
the Borel σ-algebra on ℝ). Observe that the 
regression function is just a “pointwise” realization 
of the random variable ���|�(�)). The following 
methodology is aimed at approximating �(�|�) 
rather than estimating �(	). The σ-algebra �(�) can 
be approximated by a σ-algebra generated by a 
suitable partition of Ω. In particular, for any � ∈ ℕ, 

we consider the partition <�=>?@�A = {��, … , �A} of Ω in � subsets, described as follows: �� = BC: �(C) ≤ �*6� E�AFG, �H = BC: �*6� EH6�A F < �(C) ≤ �*6� EHAFG ,JKL ℎ = 2, … , � − 1  �A = Ω − O �=A6�?@� = {C: �(C) > �*6� EA6�A F}. 
The partition <�=>?@�A

 is practically determined by a 

number (� − 1) of percentiles of �. Furthermore, 
note that, by definition of percentile, each interval �= have equal probability, that is, �(�=) = 1/�, for R = 1, … , �. Starting with the trivial sigma algebra ℑ� = {∅, Ω}, we can obtain a sequence of sigma 
algebras generated by these partitions, for different 
values of k. Generally:  

ℑA = � E<�=>?@�A F , � ∈ ℕ.                  (2) 

Hence, it is possible to approximate the random 
variable �(�|ℑ*) by 

�(�|ℑA)(C) =  U 1!V(C)�(�=)A
=@� W � �!V = 

= ∑ �(�|�=)1!V(C)A=@� ,                      (3) 

where 1!(C) = B1   C ∈ �0   C ∉ �[. Indeed, by definition of 

the conditional expectation, observe that �(�|ℑA) is 
a ℑA-measurable function such that, for any set � ∈ ℑA, (that can be seen as a union of disjoint sets, 
in particular � = O �=)!V⊆!  we obtain the equality 

� �(�|ℑA) �! = � �(C) �! (C).          (4) 

It is proved in [8] that �(�|ℑA(H)) converges almost 
certainly to the random variable �(�|�), that is: 

limA→_ �(�|ℑA) = �(�|�) a.s..            (5) 

Hence, if we approximate �(�|ℑA), then we also 
approximate �(�), for sufficiently large k. 
However, in practical situations, we do not know the 
probability measure � used to approximate �(�|�=) 
in (3). Hence, in this paper, we propose to 
approximate the random variable �(�|ℑA), which in 
turns approximates �(�|�), based on the 
observations of a random sample. Let (	�, �), (	�, �), … , (	�, �) be a random sample of 
independent observations from the bi-dimensional 
variable (�, �). First, as we generally do not know 
the marginal distribution of �, we can determine the 

partition <�̀=>?@�A
 using the percentiles of the 

empirical distribution, obtained from the 
observations (	�, … , 	�). The number of intervals � 
should be basically an increasing function of the 
number of observations a, as discussed below. 
Then, if we assume to know the probability bc, 
corresponding to the i-th outcome c, we obtain: 

�(�|�̀=) = ∑ cbcde∈!fV �(�̀=)⁄ .                (6) 

Otherwise, we can give uniform weight to each 
observation, and thus we can use the following 
estimator of �(�|�=): 

hi= = ��jkV ∑ cde∈!fV ,                        (7) 

where a!V is the number of observations in �̀=, that 

is, a!V = #{	c: 	c ∈ �=, m = 1, . . , a} ≅ a/� (to 

clarify the explanation, for � = 4 we obtain the 
three quartiles, and therefore a!V ≅ �p and similarly �(�=) can be estimated by 

�p). Note that, fixed �, as 

the number of observations n grows, �,�̀=. �→_qrrs �(�=) = 1/� and hi= is an asymptotically unbiased 
estimator of �(�|�=): 
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��hi=� = 1a!fV U ���cc 1*e∈!fV� = 

= � t2∈jkV uv
�/A �→_qrrs ���|�=).          (8) 

Therefore, we are always able to approximate �(�|ℑA), and thereby the conditional expectation �(�|�), by using the following estimator : 

�iwxv(�) = U 1*∈!fV U cde∈!fV
1a!fV

A
=@� = 

= ∑ 1*∈!fVA=@� hi=.                       (9) 

where X is assumed independent from the i.i.d. 
observations (	c , c). Note that �iwxv is a simple ℑA  measurable function, and it is conceptually 
different from the classical estimators, which are 
generally aimed at estimating an unknown 
parameter rather than a random variable. A further 
property of the OLP estimator is that �(�iwxv(�)) =�(�): 

�(�iwxv(�)) = U � E1*∈!fVhi=FA
=@� =

= �(�̀=) U �,hi=.A
=@� = 

= �,�̀=. ∑ �(�|�̀=) = �(�)A=@� ,     (10) 

 
because it satisfies the basic properties of the 
conditional expectation, that is, �(�(�|ℑA)) =�(�). 
Observe that, given a bivariate sample of size a, the 
OLP estimator yields � distinct values for �iwxv(	c),, i.e. the hi=’s, where each one has 
frequency a!fV ≅ a/�, for R = 1, … , �. These 

outcomes can be used to estimate the unknown 
distribution function of �(�).  
 
 
2.2 The Kernel Method 
The kernel method, typically used to estimate the 
probability density of an unknown random variable 
(see, for instance, [11]), can also be applied to 
estimate the regression function �(	) =�(�|� = 	). In particular,  if we do not know the 
general form of �(	), except that it is a continuous 
and smooth function, then we can consider the 
following kernel estimator: 

�i�(	) = ∑ te�E���e�(�)F�e��∑ �E���e�(�) F�e�� ,                    (11) 

 

where �(	), denoted by kernel, is a density function 
(typically unimodal and symmetric around zero) 
such that i) �(	) < � < ∞; ii) lim�→±_ |	�(	)| =0 (see, among others, [1] and [2]). Moreover, ℎ(a) 
is the smoothing parameter, often referred to as the 
bandwidth of the kernel, and it is a positive number 
such that ℎ(a) → 0 when a → ∞. When the kernel � is the probability density function of a standard 
normal distribution, then the bandwidth is the 
standard deviation. It was proved in [1] that if � is 
quadratically integrable (see also [12]) then �i�(	) is 
a consistent estimator for �(	). In particular, 
observe that, if we denote by J(	, ) the joint 
density of (�, �), the denominator of (11) converges 
to the marginal density of �,  while the numerator 

converges to � � �( 	,  ){*@d}_6_ . As a 

consequence, we know that �i�(�) →�.�. �(�). 
From a practical point of view, if we apply the 
kernel estimator to the bi-variate random sample (	�, �), … , (	�, �) we obtain the vector (��, … , ��) = (�i�(	�), . . , �i�(	�)). In other words, 
each value �c is a weighted average of kernels, 
centered at each sample observation 	c. Since we 
know that �c → �(�|� = 	c) when a → ∞, then we 
can also estimate the distribution function (say �(	) = �(�(�) ≤ 	)) of �(�) with any parametric 
or non-parametric method, based on the outcomes (��, … , ��).  
 
 

3 A Simulation Comparison 
 In this section, we compare the OLP and the 
Kernel method with a simulation study. It is worth 
noting that the comparison between these methods 
is not really balanced. Indeed, the main difference 
between the two procedures is that the OLP method 
generates � distinct outputs, each one with 
frequency a/�, while the kernel method generally 
yields a different outputs, one for each observation 
of �. Hence, if the kernel density and the bandwidth 
parameter are suitably chosen, then the kernel 
method should outperform the OLP method in terms 
of accuracy. On the other hand, the OLP estimator 
yields a set of distinct outputs (��, … , �A) where 
each value �= is a conditional average over the set �̀=. Therefore, the values �=’s are generally robust 
estimates.  
As pointed out in section 2, if we know that the 
random vector (�, �) is jointly Gaussian (or t-
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distributed), then we also know the true distribution 
of ����. The main motivation of this study is that, if 
we show that a method provides a good estimate in 
the normal case, when ���� is known, then we 
argue that it can provide similar results in many 
other cases, when the distribution of ���� is 
unknown. This is especially true for the OLP 
method, which does not depend on any particular 
specification except from the choice of the number 
of intervals �. Hence, assuming that ��, ��~'�(, Σ�, (where ( = �(* , (+�  and Σ =,��*�, -�*�+�, �-�*�+, �+�� .) we propose to 
simulate a bivariate random sample from ��, �� and 
to apply the OLP and the Kernel methods to the 
observed data, just as described in section 2, in 
order to evaluate which method yields a better 
approximation of the distribution of ����. Indeed, 
in both cases we obtain n outcomes ���, … , ���, 
which are used to estimate the probability 
distribution ��	� = ������ ≤ 	� of the r.v. ���� 
(i.e. the Gaussian distribution  '�(+, |-|�+)  in this 
particular case). For this purpose, we simply apply 
the empirical distribution function to the vector (��, … , ��). The empirical distribution is actually 
the natural consistent estimator of � (see e.g. [13]), 
and it is defined by  

 �f�(	) = �� ∑ 1{�e�d}�c@� ,                  (12) 

where  1! is the indicator function for the set �. In 
this paper we propose to use �f� as a non-parametric 
estimator for the distribution of �(�). Obviously, 
according to how the outcomes (��, … , ��) are 
generated (OLP or Kernel) we obtain two different 
empirical distributions �f�’s, which approximate the 
true distribution, given by '((+, |-|�+). Then, in 
order to evaluate which method provides the best 
fitting distribution, we compute two different 
descriptive measures of fit based on probability 
distances, namely the Kolmogorov-Smirnov (or 
uniform) metric, defined by  

�,�f�, �. = supd∈ℝ |�f�(	) − �(	)|,        (13) 

and the Kantorovich metric [14] (i.e. the ��  metric 
for distribution functions), defined by 

�,�f�, �. = � |�f�(	) − �(	)| 	_6_ .         (14) 

Generally, provided that both methods can capture 
the shape of �, we would expect that the kernel 
method yields a better fit, because of its larger 
number of distinct outcomes �c’s. Indeed, a 

continuous distribution is typically better estimated 
by a large number of distinct observations. 
However, it should be stressed that the OLP method 
has several other advantages compared to the Kernel 
method. While the OLP method only requires that � 
is an integrable random variable, the kernel method 
is suitable only for continuous random variables and 
requires also the assumption of finite variance. 
Moreover, for the OLP method we only need to 
specify how to determine the number of intervals k, 
while, for the kernel method, we have to choose the 
“best” kernel density and bandwidth parameter. In 
particular, for the proposed analysis we used the 
following specifications. 

i) OLP - number of intervals 
Obviously, the selected number of intervals k 
can vary between 1 and n and, in order to 
improve the accuracy of the estimate it must 
generally be an increasing function of n (we 
shall discuss this point in the next section). 
Note that, for � = 1 we approximate the 
random variable �(�) with a number, i.e. the 
sample mean �, which is obviously not 
appropriate. On the other hand, for � = a  we 
approximate �(�) with the marginal 
distribution of �, given by �, . . , �, which is 
also generally inappropriate. Hence, in order to 
maximize i) the number of intervals, and ii) the 
number of observations in each interval (a!fV), 
in this analysis we propose to use: � = �√a�,                     (15) 
where �	� is the integer part of 	. By doing so, 
we obtain � intervals containing 
(approximately) � observations. If we do not 
have any information about the dependence 
between � and �, this method is actually the 
most robust, in that it provides the largest 
possible number of conditional averages hi=, 
where each hi= is computed based on the largest 
possible number of values (a!fV). In the next 

section we prove that the rule identified by (14) 
is actually appropriate and yields a consistent 
estimator. Moreover, in section 4 we propose a 
new rule for the choice of �, based on the 
correlation value between � and �, that might 
further enhance the performance of the OLP 
estimator. 

ii)  Kernel – density and bandwidth 
Generally, the choice of the kernel density and 
especially the bandwidth parameter can be 
really troublesome and this could be a 
drawback of the method. Indeed, there are 
several sophisticated techniques to choose the 
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optimal bandwidth, which is still an open 
problem in the literature (see e.g. [15]). Since 
we know that ��, �� is jointly normally 
distributed, we simply use the normal kernel, 
which is obviously the most appropriate choice 
in this particular case. As for the bandwidth 
parameter, we can use the Sturge’s or the 
Scott’s rule (see [16] and [17]) which are 
especially suitable under normality assumptions 
(see also [18]). In particular, in what follows we 
shall show just the results obtained by applying 
the Scott’s rule, because it provided better 
approximations of � in our analyses. We recall 
that the optimal bandwidth, according to the 
Scott’s rule, is given by 3.5�*a6�/�. 

Note that, in the Gaussian case, the distribution of 
the conditional expectation, that is, ����~'�(+, |-|�+), mainly depends on the 
correlation between the variables. Hence, we 
generated several random samples of different sizes 
from (�, �)~'((, Σ) (where we assume the 
marginals be standard normal random variables, 
i.e., (* = (+ = 0,  �* = �+ = 1), for different 
(positive) values of -, and analyzed the results 
accordingly. The Table 1 shows the results in terms 
of the probability metrics defined above. First, note 
that the K-S distance is quite high (about 0.5) for - = 0. The obvious reason is that - = 0 yields �(�) =u �(�), which is a degenerate distribution 
(at 0, in this case) and therefore the Kolomogorov-
Smirnov metric �,�f�, 1{d��}. is generally close to 
0.5, while the Kantorovich metric, which is based 
on the area between the functions, better captures 
the distance between the distributions in this 
particular case. Note also that the consistency of 
both methods is apparent from tables 1 and 2, in that 
increasing the sample size (from a = 500 in Table 1 
to a = 10� in Table 2) the distance between the true 
and the estimated distribution approaches zero, for 
any fixed value of - (except for the Kolomogorov-
Smirnov distance at - = 0, as explained above). 
However, we observe that the kernel method 
generally outperforms the OLP method. Although in 
several cases the results are similar (the OLP 
method is better only in some rare cases), as 
expected and discussed above. In particular, note 
that the kernel method generally provides more 
accurate estimates than the OLP for small or large 
values of -: indeed, the value of - will be critical 
for the optimal choice of �, as discussed in the next 
section. Nevertheless, if we consider that the kernel 
method has been calibrated just to provide the best 
possible estimates under assumption of normality, 

the results of the OLP method are surprisingly 
valiant.  
 

 Kernel OLP - D K D K 

0 0.784 0.059 0.565 0.207 
0.09 0.894 0.070 0.609 0.203 
0.18 0.255 0.044 0.284 0.088 
0.27 0.227 0.073 0.122 0.060 
0.36 0.225 0.105 0.177 0.085 
0.45 0.059 0.031 0.118 0.085 
0.54 0.076 0.057 0.111 0.069 
0.63 0.111 0.103 0.169 0.122 
0.72 0.103 0.106 0.072 0.078 
0.81 0.098 0.129 0.094 0.091 
0.9 0.067 0.132 0.077 0.082 

Table 1: simulations with a = 500 from a multivariate 
normal distribution 

 
 

 Kernel OLP - D K D K 

0 0.601 0.009 0.502 0.045 
0.09 0.067 0.008 0.062 0.015 
0.18 0.038 0.011 0.030 0.009 
0.27 0.034 0.013 0.033 0.011 
0.36 0.017 0.008 0.029 0.010 
0.45 0.017 0.009 0.017 0.010 
0.54 0.012 0.010 0.017 0.013 
0.63 0.013 0.010 0.015 0.013 
0.72 0.009 0.010 0.014 0.012 
0.81 0.007 0.009 0.015 0.013 
0.9 0.005 0.008 0.014 0.014 
Table 2: simulations with a = 10� from a multivariate 

normal distribution 
 
Similarly, we performed a simulation analysis also 
for the Student’s t distribution. We generated 
several random samples of different sizes from (�, �)~��((, �, 4) (with ( = (0,2) and  �+ = �+ =1): in this case, we know that �(�|�)~��(0, |-|, 4). 
The results confirms what discussed above, as 
shown in Table 3, for a = 10�. In particular, 
observe that the OLP estimator outperforms the 
kernel estimator for values of - between  0.18 and 
0.45, but in the other cases the kernel estimator is 
more accurate. 
Finally, Fig. 1 and Fig. 2 show that the OLP 
estimator well captures the shape of the distribution 
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but approximates it with a simple function which 
has an inferior number of addends. Differently in 
Fig.3 we observe that the kernel method yields more 
accurate results for small values of -. 
 

 Kernel OLP  - D K D K 

0 0.670 0.023 0.590 0.057 
0.09 0.079 0.015 0.069 0.017 
0.18 0.056 0.019 0.039 0.014 
0.27 0.025 0.019 0.027 0.016 
0.36 0.021 0.017 0.020 0.015 
0.45 0.019 0.018 0.021 0.017 
0.54 0.011 0.013 0.025 0.019 
0.63 0.014 0.018 0.017 0.024 
0.72 0.011 0.016 0.024 0.023 
0.81 0.005 0.010 0.012 0.022 
0.9 0.006 0.012 0.013 0.023 

Table 3: simulations with a = 10� from a multivariate t 
distribution 

 
 
 
 

 

 
Fig. 1. ��, ��~'�(, ��, ( = �0,2�, �+ = �+ = 1 and - = 0.8. Green=true dist ,Red= estimated dist (Kernel), 

Blue=estimated dist (OLP) 
 
 

 
Fig. 2. ��, ��~���(, �, 4�, ( = �0,2�, �+ = �+ = 1 and - = 0.5. n=10000, Green=true dist ,Red= estimated dist 

(Kernel), Blue=estimated dist (OLP) 
 
 

 
Fig. 3��, ��~���(, �, 4�, ( = �0,2�, �+ = �+ = 1  and - = 0.1. n=1000, Green=true dist ,Red= estimated dist 

(Kernel), Blue=estimated dist (OLP) 

 
 

4 On the Optimal Number of 
Intervals 
The simulation comparison in section 3 was 
apparently “rigged” in favor of the kernel method. 
Indeed, we used the information about the 
distributional assumptions (normality) to improve 
the results of the kernel method as much as possible, 
i.e. using the normal kernel and the optimal 
bandwidth. On the other hand, this information was 
not used also to enhance the performance of the 
OLP estimator. However, in this adverse situation, 
we obtained that the OLP estimator yields surprising 
results. Differently, in this section we propose to use 
the information about the joint distribution in order 
to further improve the OLP estimator, under some 
particular conditions.  
As discussed in section 3, the number of intervals k 
for the OLP method can vary between 1 and n. 
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However, if we assume that the random vector ��, �� is jointly normally distributed, then we know 
that, for - = 0, we obtain ���� =u ����, and 
therefore the distribution of ���� can be better 
estimated by a number, that is, the sample mean �. 
Hence, in this particular case, the optimal value of k 
is exactly 1, rather than �√a�. On the other hand, for 
|-| = 1 (i.e. � = h + ¡�), we obtain �(�) =�(h + ¡�|�) = h + ¡� = �, and therefore the 
distribution of �(�) can be estimated with the 
marginal observations of �, (�, … , �). Thus, when |-| = 1 the optimal value of k is exactly n: in this 
case we would get the maximum possible number 
(a ≥ �√a�) of distinct observations,  
From these considerations, we argue that, also in the 
case that - ∈ (0,1), the dependence between � and � should influence the choice of the number of 
intervals k. In particular, k should be chosen 
according to the mean-dependence structure 
between the random variables. We recall that 
generally stochastic independence implies mean-
independence, which in turn implies uncorrelation 
(nevertheless, if (�, �) is jointly Gaussian the three 
conditions are equivalent). In the following 
proposition we derive the formula of the mean 
squared error (MSE) between the OLP estimator 
and the conditional expectation �(�) in the 
Gaussian case. It should be stressed, that generally 
the MSE is intended as the expectation of the 
squared error between an estimator, that is, a 
random variable, and a number. Interestingly, in this 
special case the MSE is based on the difference 
between two random variables. We show that the 
MSE is a mathematical function of the correlation 
coefficient, and therefore we can provide a simple 
rule of thumb for determining the optimal number of 
intervals �, also in the case |-| ∈ (0,1). Without 
loss of generality, we focus on the special case that (�, �)~'(0, Σ) with �+ = �+ = 1,  to simplify the 
computation. Obviously, if - = 0 then �(�|�) = 0 
and � = 1 is the optimal choice, if |-| = 1 then �(�|�) = ±� = � and � = a is the optimal choice, 
as discussed above. For the proof of the following 
proposition we assume to know the true percentiles 
of � and thereby the true intervals �=. 
 
Proposition 1. Let (�, �) be a bivariate Gaussian 
vector, (�, �)~'(0, �) with  Σ = ,(1, -), (-, 1) . 
(i.e. �+ = �+ = 1 ), and let (	�, �), … , (	�, �) be a 
random sample of independent observations from (�, �). Assume to know the � − 1 percentiles �*6� E=AF of �, for R = 1, … , � − 1, and thereby the 

intervals �=, R = 1, … , �. Then, the mean squared 
error of the OLP estimator is given by: � £,�iwxv(�) − �(�).�¤ = 

= A� + -� ¥1 − � ∑ £J* ¦�*6� E=6�A F§ +A=@�
−J* ¦�*6� E=AF§¤� E1 + ��F¨,            (16) 

where J* is the (Gaussian) marginal density of X. 
 
Proof 
We know that: �(�|�) = -�~'(0, |-|). Moreover, 

 � £,�iwxv(�) − �(�).�¤ = �©(�iwxv(�) − -�)�ª == �(�iwxv(�))� + -� − 2-�(��iwxv(�)), where 

�(�iwxv(�))� = � «U 1*∈!Vhi=A
=@� ¬� =

= � «U 1*∈!V,hi=.�A
=@� ¬ =

= 1� U �,hi=�.A
=@�  

because ∑ hi=hi=1*∈!e∩!V =c®= 0. 
 
Note that 

�(hi=�) = ¦�a§� � «4U �cc 1*∈!V5�¬
= ¦�a§� ¯ a� E�c �1*∈!VF +

+ U � £E�c1*∈!VF E�H1*∈!VF¤c®H
° =

= ¦�a§� ¦a� E��1*∈!VF + a(a − 1) £� E�1*∈!VF¤�§
= ��a ±

²³
� E��1*∈!VF +

+(a − 1) ´W J*(	) W  J*+(	, )J*(	)_
6_*∈!V   	µ�

¶
·̧

= ��a
±
²²²
²³

� E��1*∈!VF + (a − 1) ∙
∙

º»»
»»¼ -√2½ ±

²²³exp ¿− «�*6� ¦R − 1� §¬� /2À +
− exp ¿− «�*6� ¦R�§¬� /2À¶

··̧
ÁÂÂ
ÂÂÃ

�

¶
···
·̧

 

 
where  �  Ä21(d,t)Ä2(d)_6_   = �(�|�) = -�, 

W 	Å6dÆ� = − Å6dÆ� , 
and the equality � £E�c1*∈!VF E�H1*∈!VF¤ =
£� E�c1*∈!VF¤�

 holds for the independence between 

the observations. Observe also that 
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∑ � E��1*∈!VFA=@� = ∑ � �J+��*∈!V = Ç��� =A=@�1. Then: 1� U �,hi=�.A
=@� = 

= �a ¯1 + �a − 1� -�2½ U ´exp ¿− «�*6� ¦R − 1� §¬� /2ÀA
=@�

− exp ¿− «�*6� ¦R�§¬� /2Àµ�È. 
Furthermore, since 

��hi=� = �-√2½ Éexp ¿− «�*6� ¦R�§¬� /2À
− exp ¿− «�*6� ¦R + 1� §¬� /2ÀÈ, 

we obtain 

�,��iwxv���. = U �,hi=.A
=@� � E�1*∈!VF =

= �-2½ Éexp ¿− «�*6� ¦R�§¬� /2À
− exp ¿− «�*6� ¦R + 1� §¬� /2ÀÈ�, 

which yields the thesis. 
 
Obviously, in practical cases we do not know the 
true percentiles, but we estimate them with the 
empirical distribution: these estimates are 
consistent, that is, for fixed � and for a → ∞ the 
sample percentiles converge to the true ones (as an 
obvious consequence of the law of large numbers). 
Nevertheless, we also need that � → ∞ in order to 
obtain a consistent estimator of ����, therefore if 
the number of estimands grows as fast as a does, 
then the MSE of OLP method will not converge to 
0. In view of Proposition 1, it is apparent that, in the 
case |-| ≠ 1, the necessary and sufficient conditions 
for the convergence of the OLP estimator are: i) �(a) → ∞; iii) �/a → 0.  This is stated in the 
following corollary, which is a straightforward 
consequence of Proposition 1. 
 
Corollary 2. Let (�, �) be a bivariate Gaussian 
vector, i.e. (�, �)~'((, �), where |-| ∈ (0,1), and 
let (	�, �), … , (	�, �) be a random sample of 
independent observations from (�, �). A necessary 
and sufficient condition for Ë��,�iwxv(�). → 0 is 
that � → ∞ and �/a → 0. 
 
In other words, the general rule is that the number of 
percentiles (which have to be estimated) must grow 

slower than the number of observations. Corollary 1 
gives necessary and sufficient conditions for the 
consistency of the OLP estimator in the Gaussian 
case. We argue that the same rule holds also if the 
joint distribution is not normal. Obviously, the rule � = �a�� where h ∈ (0,1) (e.g. � = �a�.��, used in 
the simulation analysis) satisfies the conditions of 
Corollary 1. In order to further increase the 
convergence rate of the OLP estimator, we argue 
that, when |-| is close to 0 the exponent h should be 
close to 0, and when |-| is close to 1 the exponent h 
should be close to 1. Indeed, observe that the second 
term in the MSE expression approaches zero only as � tends to infinity, but it can be negligible for small 
values of |-|, while in this case the asymptotic 
behavior of the first term is critical. On the other 
hand, we obtain the exactly opposite situation when 
the variables are highly correlated, thus, in this case, 
a larger value of � would increase the convergence 
rate. Hence, as a rule of thumb, we propose to use � = �∗ = Ía|Î|Æ/ÏÐ                        (17) 

(where L is the value of the empirical correlation 
between the data) which yields � = 1 for |L| ≅ 0, � ≅ a for |L| ≅ 1, and ensures that Ë��,�iwxv(�). → 0 for any different value of -. 
The possible usefulness of this simple rule is well 
described by the following examples. 
 
Example 
Let (�, �)~'((, �) with  ( = (0,2), �+ = �+ = 1 
and - = 0.7, which yields that �(�)~'(2,0.7). We 
generate a bivariate sample of size 1000 from the 
random vector (�, �) and estimate the distribution 
function � of �(�) with the OLP method, using the 

following values of �: 1) � = �∗ = Ía|Î|Æ/ÏÐ = 223 

(where L = 0.69); 2) � = �a�.�� = 7; 3) � =�√a� = 31; and 4) � = �a�.Ô�� = 707. Fig. 4 below 
shows that the best performance of the OLP 
estimator is obtained for 1) � = �a|Î|�, as in this 
case the estimated distribution is incredibly well-
fitting to the true one. The other methods surely 
provide inferior performances. Indeed, the estimated 
distributions yielded by 2) and 3) seem to capture 
the shape of the reference distribution � (that is, '(2,0.7)) but approximate it with a “lower 
resolution”, in that the number of intervals (i.e. 
distinct values hi=) is quite poor (especially in case 
2)). Conversely,  in 4) we have a higher value of 
distinct values of hi= and consequently a “higher 
resolution” in the plot, but the estimated distribution 
has apparently a different shape from the true one. 
Nevertheless these results also confirm that with 
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� = �√a� we generally obtain a good compromise 
between closeness to the true distribution and 
number of distinct observations hi=. 
 

 
Fig. 4. Estimated (blue) and true (red) distribution 

functions for different values of k in the Gaussian case. 
 

Furthermore, we repeat the same experiment for a 
bivariate t distribution, that is ��, ��~���(, �, 5� 
with  ( = �0,2�, �+ = �+ = 1 and - = 0.3. In this 
case we obtain ����~���2,0.3,5�. We generate a 
bivariate sample of size 10000 from the random 
vector ��, �� and estimate the distribution function � of ���� with the OLP method, using the 
following values of �: 1) � = �∗ = 26 (where L = 0.32); 2) � = �a�.�� = 1; 3) � = �√a� = 100; 
and 4) � = �a�.Õ� = 125. Fig. 5. shows that in case 
1) and 3) we apparently obtain the best 
approximations. However, the Kantorovich metric 
(0.168 for case 1 and 0.18 for case 3) confirms that 
the best choice is  �∗. 
 

 
Fig. 5. Estimated (blue) and true (red) distribution 

functions for different values of k in the Student’s t case. 
 

We finally argue that the proposed rule can be 
appropriate for dealing with distributions which are 
approximately Gaussian, and therefore can be 
usefully applied to several kinds of data, because of 
the central limit theorem for random vectors. 
Indeed, the multidimensional central limit theorem 
states that the standardized sum of i.i.d random 
vectors (with finite variance) converges to 
a multivariate normal distribution. Therefore, just 
based on the assumption that ��, �� have a joint 
distribution (i.e. they are defined on the same 
probability space), we can generally use the 
empirical correlation between the observations of � 
and � in order to get information about the 
dependence between the variables, and thereby to 
determine the optimal number of intervals for the 
OLP estimator. 
 

5 Conclusion 
In this paper, we proposed two different procedures 
(OLP and kernel) to estimate the distribution 
function of a conditional expectation, based on a 
bivariate random sample. In particular, the 
properties of the OLP estimator have been studied 
thoroughly. It has been shown that the method can 
provide a consistent approximation of the random 
variable ���|��, based on a suitable choice of a 
parameter �. Both the OLP and kernel methods 
make it possible to estimate the distribution function 
of ���|�� non parametrically. Our simulation 
results show that the methods are comparable. 
However, it should be stressed that the OLP method 
presents several advantages compared to the kernel, 
in that it does not require any particular assumption 
in order to be applied. Conversely, the kernel 
method requires on many restrictive conditions, 
such as continuity and finite variance, and its 
performance depends on a suitable choice of the 
kernel function and bandwidth parameter. Finally, 
since the performance of the OLP estimator depends 
just on the chosen number of intervals �, we 
provided some general criteria for the choice of � 
under normal assumptions. Consequently, we 
proposed a practical rule in order to optimize the 
performance of the method. 
Both estimators (kernel and OLP) can be used in 
optimization procedures as required in several 
financial applications. In particular, we can use the 
conditional expectation estimators to i) order the 
investors’ choices or ii) evaluate and exercise 
arbitrage strategies in the market (see [10]). In the 
first case, we know that any non satiable risk averse 
investor prefers the future wealth WT at time T with 
respect the wealth Wt at time t (t<T), only if  
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��Ö×|ÖØ� ≤ ÖØ a. s.. Thus, by using the proposed 
approximation of the conditional expected value, we 
can attempt to order and optimize the choices of non 
satiable risk averse investors, as suggested by [8]. In 
the second case, as a consequence of the 
fundamental theorem of arbitrage, we know that 
there exists no arbitrage opportunity in the market if 
there exists a risk neutral martingale measure under 
which the discounted price process results to be a 
martingale. So, if we consider the augmented 
filtration {ℑ×}×�� associated to the Markov price 
process {�×}×��, then we obtain ∀Ù ≤ � that ���×|ℑ�)=  ���×|��). Therefore, the conditional 
expected value estimator and the fundamental 
theorem of arbitrage can be used to estimate the risk 
neutral measure and to optimize arbitrage strategies 
in the market.  
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