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Abstract: An algorithm of approximation for discrete initial numerical flow f by the first order splines, associ-
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different characteristics of regularity of initial flow. Limit characteristics of mentioned volumes are represented.
Difference representations for deviation of data flow from approximate flow are done. There are discussions for
pseudo-equidistant grid, grid of adaptive type and comparison of their effectiveness under condition of the same
approximation. The conditions, in which the algorithm is more affective than the analogous algorithm with equidis-
tant grid, are done.
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1 Introduction
The adaptive methods of numerical solutions of ap-
proximation problems are allowed to obtain effective
economy of computer resources (run time and stor-
age). They can be applied in BEM/FEM, spline or
wavelet approximations. Mentioned methods are con-
nected with choice of adaptive grid. Unless approx-
imated function (initial function) is defined on con-
tinuum (see [1, 2]), the selected grid can be varied
in mentioned continuum without difficult problems
(knots of the grid are freely chosen in the continuum).

Another situation arises if instead of the initial
function we have a discrete flow connected with pre-
assigned initial grid (i.e. we have a function defined
only on the mentioned grid). We have such situation
in different cases of transmission of data with links,
of storage of numerical tables, and of procedural rep-
resentations of usual functions in computer (all such
functions are defined only on a computer digital grid,
which is nonuniform if floating point is used). In this
situation an adaptive grid is an enlargement of the ini-
tial grid such that the adaptive grid is subset of the
initial grid. Such approach is actual but it imposes
the certain restrictions on the construction of adaptive
grid.

The aim of the paper is to offer a construction
of adaptive grid for approximation of numerical flow;
the evaluations are based on the special representa-
tion of approximation residual. Comparison of of-

fered method with previous methods shows that the
last ones deal with adaptive grids for functions defined
on continuum (see below). We discuss more general
situation (our functions defined only on initial grid);
therefore we need to choose adaptive grid as subset of
initial grid. That requires for compliance of additional
conditions. The idea of our discussions was blown to-
gether by a lot of papers, which we consider below
although they deal with functions defined on contin-
uum.

In particular the adaptive grids are used for en-
largement of accuracy for solution of problems of
mathematical physics (see [3–10]); their application
leads up to reduction of size of numerical information
flows.

There are a lot of brilliant methods of construct-
ing adaptive grids for approximations of different
functions defined on continuum. Some of them are
approximations by Taylor series or splines. In this sit-
uation it is possible to choose the grid of knots by ar-
bitrary way.

It is known that automatic element mesh genera-
tion techniques at this stage have become commonly
used tools for the analysis of complex real-world mod-
els in 1977 (see [11]).

Automatic methods of triangulations and FEM-
approximations for arbitrary differentiable manifolds
(and in particular, for smooth surfaces) were repre-
sented in 1994 (see [12], pp. 42-72).
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The Stretched Grid Method (SGM) allows the
obtaining of pseudo-regular meshes very easily and
quickly in a one-step solution (see [13]).

An adaptive finite difference scheme for the so-
lution of the discrete first order Hamilton-Jacobi-
Bellman equation was presented in the paper [14].

Spherical generalizations of the Delaunay con-
figuration B-spline (DCB-spline) were discussed and
adaptive method of new knot-insertion strategies was
considered in 2012 (see [15]).

Different adaptive schemes are also discussed in
[16], [17], [18] and [19].

The paper [20] was investigated the problem of
estimating the support of a structured sparse signal
from coordinate-wise observations under the adaptive
sensing paradigm.

Adaptive finite element simulation of sheet form-
ing operations using continuum elements is discussed
by Ahmed, M. (see [21]).

The paper [22] was presented a greedy search
method based on binary successive approximation-
evolutionary search (BSA-ES) strategy to design sta-
ble infinite impulse response (IIR) digital filter us-
ing L1 optimality criterion. A comparison has been
made with other design techniques, demonstrating
that BSA-ES obtains better results for designing digi-
tal IIR filters than the existing genetic algorithm (GA)
based methods.

An efficient error indicator with mesh smooth-
ing for mesh refinement were applied to Poisson and
Laplace problems (see [23]).

The another approach to treatment of information
flows is wavelet decomposition; the last one represent
the origin flow as a main flow and an auxiliary flow
(wavelet flow) such that it is able to use the main flow
instead of the origin flow. The essential property of
the decomposition is opportunity to restore the origin
flow if it’s necessary (see [28]).

Now there are algorithmic basis for construction
of spline-wavelets of Lagrange type associated with
irregular grids; therefore the union of the both ap-
proaches becomes actual thing. Some variants of
adaptive grids (with a’priori fixed quantity of used
knots) for Lagrange splines are proposed previously
(see [29]).

In the offered paper the algorithm of approxima-
tion for discrete function u by first order splines as-
sociated with the adaptive grid is proposed. The con-
ditions, in which the algorithm is more affective than
the analogous algorithm with pseudo-equidistant grid,
are done.

2 Auxiliary statements

We discuss the grid Ξ on real interval (α, β),

Ξ : . . . < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 . . . ,

lim
i→−∞

ξi = α, lim
i→+∞

ξi = β.

Let f(t) be function defined for t ∈ Ξ, and there is
positive c such that

f(t) ≥ c > 0 ∀t ∈ Ξ. (1)

If a ∈ Ξ, then a = ξi for some integer i. By definition,
put a− def

== ξi−1, a+ def
== ξi+1.

Suppose a, b ∈ Ξ, a+ < b−. Consider the set
⟨a, b⟩ def

== {ξs | a ≤ ξs ≤ b, s is a integer number }
named by grid segment. We discuss a linear space
C⟨a, b⟩ that is the set of functions u(t) defined on the
grid Ξ:

∥u∥
C⟨a, b⟩

def
== max

t∈⟨a,b⟩
|u(t)|.

Assume that

ε ∈ (ε∗, ε∗∗), (2)

where

ε∗
def
== max

ξ∈⟨a, b−⟩
max

t∈{ξ,ξ+}
f(t)(ξ+ − ξ),

ε∗∗
def
==(b− a)∥f∥C⟨a,b⟩. (3)

Lemma 1. If conditions (1), (2) – (3) are true,
then there exist the unique positive integer K =
K(f, ε,Ξ) and the unique grid

X̃ = X̃(f, ε,Ξ) :

a = x̃0 < x̃1 < . . . < x̃K ≤ x̃K+1 = b (4)

such that

max
t∈⟨x̃s, x̃s+1⟩

f(t)(x̃s+1 − x̃s) ≤ ε <

< max
t∈⟨x̃s, x̃

+
s+1⟩

f(t)(x̃+s+1 − x̃s) (5)

∀s ∈ {0, 1, . . . ,K − 1},

max
t∈⟨x̃K , b⟩

f(t)(b− x̃K) ≤ ε, X̃ ∈ X. (6)

Proof. Here we use the proof by mathematical
induction over the number of knots.

1) The base of mathematical induction is estab-
lished in this way. Let variable τ ∈ Ξ increase from
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a = x̃0 to b. Taking into account the assumption (2),
we see that function ϕ0(τ)

def
== max

t∈⟨x̃0, τ⟩
f(t)(τ− x̃0) is

strictly growing, and if the variable τ increases from
a = x̃0 to b, then function ϕ0(τ) increases from 0 to
max
t∈⟨a, b⟩

f(t)(b− a).

Using the condition (5) – (6), we see that the only
one point point τ1 ∈ ⟨a, b⟩ exists such that

max
t∈⟨x̃0, τ1⟩

f(t)(τ1−x̃0) ≤ ε < max
t∈⟨x̃0, τ

+
1 ⟩
f(t)(τ+1 −x̃0).

Now we put x̃1
def
== τ1. The base of the mathematical

induction has been established.
2). Suppose that knots x̃1, x̃2, . . ., x̃s of the

grid X̃ have been defined. If x̃s = b, then we put
K

def
== s − 1: in that case the construction of the grid

X̃(f, ε,Ξ) has been completed. Otherwise we have
x̃s < b, and the construction of the grid is continued.
Consider a function ϕs(τ)

def
== max

t∈⟨x̃s, τ⟩
f(t)(τ − x̃s);

the last one is strictly growing: if τ increases from x̃s
to b, then the function ϕs(τ) increases from 0 up to

ms
def
== max

t∈⟨x̃s, b⟩
f(t)(b − x̃s). Note that if x̃s = b−,

then
ms = max

t∈{b−,b}
f(t)(b− b−) ≤

≤ max
ξ∈⟨a,b−⟩

max
t∈{ξ,ξ+}

f(t)(ξ+ − ξ) = ε∗,

and according to supposition (5) – (6), we have
ms ≤ ε. If ms ≤ ε, we always put K def

== s and
x̃s+1 = b.

Consider the case of ε < ms; as before we have
x̃s < b−. Suppose that the relations x̃s = ξp and
ms = maxt∈⟨x̃s, ξq⟩ f(t)(ξq − x̃s) are right for some
integer p, q. It’s clear that p < q (note that the equality
p = q givesms = 0 but last one contradicts to relation
ε < ms).

Taking into account the inequality 0 < ε < ms,
and consider the discrete function ϕs(τ) increasing
from 0 to ms, we find j such that ξj ∈ ⟨x̃s, b−⟩ and
ϕs(ξj) ≤ ε < ϕs(ξj+1); the last one is equivalent to
the relation

max
t∈⟨x̃s, ξj⟩

f(t)(ξj−x̃s) ≤ ε < max
t∈⟨x̃s, ξj+1⟩

f(t)(ξj+1−x̃s).

Now we put x̃s+1
def
== ξj .

Existence of the point x̃s+1, which satisfies to re-
lations (5), is established; the possible meanings of the
last one are the next knots of the grid ξp+1, ξp+2, . . .,
ξq−1. Uniqueness of the point x̃s+1 follows from the
strict growing of the function ϕs(τ).

Thus if ε ≥ ms, the we put K def
== s and x̃s+1 =

b; note that the relation (6) is fulfilled. If ε < ms,
then there exists unique point τs+1 < b such that the
inequality (5) holds. Inductive passage has been over.

This concludes the proof.
The net (4) with properties (5) – (6) is called the

net of adaptive type.
Summing the relations (5), we obtain

K−1∑
s=0

max
t∈⟨x̃s, x̃s+1⟩

f(t)(x̃s+1 − x̃s) ≤ Kε <

<
K−1∑
s=0

max
t∈⟨x̃s, x̃

+
s+1⟩

f(t)(x̃+s+1 − x̃s). (7)

3 On the construction of the net of
adaptive type in particular case

Here we give some illustration of the situation in the
case of equidistant grid Ξ with knots ξj = jh. We put

a = ξ0 < ξ1 < ξ2 < ξ0 = b

such that ⟨a, b⟩ def
== {0, h, 2h, 3h}; thus, a = 0, b =

3h, and a+ = h < b− = 2h.
Now we have

ε∗∗ = 3ε∗, (8)

where

ε∗ = max{f(0), f(h), f(2h), f(3h)}h = ∥f∥C⟨a,b⟩h.

The condition (2) has a form

ε∗ < ε < 3ε∗. (9)

Let us put

ϕ0(τ) = max
t∈⟨0, τ⟩

f(t)τ,

where τ ∈ {0, h, 2h, 3h}.
We have

ϕ0(τ) = 0,

ϕ0(h) = hmax{f(0), f(h)},
ϕ0(3h) = 2hmax{f(0), f(h), f(2h)},
ϕ0(3h) = 3h∥f∥C⟨a,b⟩.

By definition put x̃0
def
== a, a = 0. On the first step

we find x̃1 satisfied to relation (5) with s = 0. Thus
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we find the value τ , τ ∈ {0, h, 2h}, which satisfies to
the relation

ϕ0(τ) ≤ ε < ϕ0(τ
+);

the last one may be represented in the form

max
t∈⟨0, τ⟩

f(t)(τ) ≤ ε < max
t∈⟨0, τ+h⟩

f(t)(τ + h).

If τ = 0, then we have 0 ≤ ε < max{f(0), f(h)}h.
The last inequality contradicts to the conditions (8) –
(9); thus we have only two variants

τ = h max{f(0), f(h)}h ≤ ε <

< 2hmax{f(0), f(h), f(2h)}, (10)

τ = 2h 2hmax{f(0), f(h), f(2h)} ≤
≤ ε < 3h∥f∥C⟨a,b⟩, (11)

1) If the relation (10) is true, then according to (5)
we put

x̃1
def
== h, (12)

and jump to searching of x̃2. For that purpose we con-
sider a function ϕ1(τ) = max

t∈⟨x̃1, τ⟩
f(t)(τ − x̃1).

Note that

ϕ1(h) = 0, ϕ1(2h) = h max
t∈⟨h, 2h⟩

f(t) =

= hmax{f(h), f(2h)}, (13)

ϕ1(3h) = 2h max
t∈⟨h, 3h⟩

f(t) =

= 2hmax{f(h), f(2h), f(3h)}. (14)

Now we have to find τ ∈ {h, 2h}, which satisfies
to relation

ϕ1(τ) ≤ ε < ϕ1(τ
+). (15)

and to put x̃2
def
== τ .

If τ = h, then according to (15) we have

0 = ϕ1(h) ≤ ε < ϕ1(2h); (16)

it is clear to see that (16) contradicts the conditions (8)
– (9).

Now we have the case of τ = 2h; by (15) we have
ϕ1(2h) ≤ ε < ϕ1(3h), and (by formulas (13) – (14))
we obtain

hmax{f(h), f(2h)} ≤ ε <

< 2hmax{f(h), f(2h), f(3h)}. (17)

Thus, if the inequality (17) is fulfilled, then we
put x̃2

def
== 2h, x̃3

def
== 3h. According to the relation

(12), we see that the grid X̃ has been constructed; now
we have X̃ = {0, h, 2h, 3h}.

If inequality (17) isn’t true, then according to (8)
– (9), the condition (6) is right; in discussed case the
last one has a form

2hmax{f(h), f(2h), f(3h)} ≤ ε;

now we put x̃2
def
== 3h. In this case we have X̃ =

{0, h, 3h}.
2) Up to now we discuss the situation when the

inequality (10) is true. Now we suppose that the in-
equality (11) is realized: φ0(2h) ≤ ε < φ0(3h). In

this case we put x̃1
def
== 2h and x̃2

def
== 3h; here we

have X̃ = {0, 2h, 3h}. This concludes the construc-
tion of the grid X̃ .

4 Pseudo-equidistant grid

Now suppose that

ε ∈ (ε∗, ε∗∗), (18)

where

ε∗ =max
ξ∈⟨a,b−⟩

(ξ+ − ξ)∥f∥C⟨a,b⟩, ε
∗∗=(b− a)∥f∥C⟨a,b⟩.

(19)
Then we find the numbers

N = N(f, ε,Ξ)
def
== ⌊ε∗∗/ε⌋, (20)

and
h = h(f, ε,Ξ)

def
==

b− a

N + 1
. (21)

Consider now the grid X ⊂ Ξ,

X = X(f, ε,Ξ) : a = x0 < x1 < . . . < xN = b,
(22)

where

xs+1−xs ≤ h < x+s+1−xs, s ∈ {0, 1, . . . , N−1},
(23)

xN+1 − xN ≤ h. (24)

The grid (22) with properties (23) – (24) is called
pseudo-equidistant grid.

By (20) we have

N ≤ b− a

ε
∥f∥C⟨a,b⟩ < N + 1; (25)

therefore

(b−a)∥f∥C⟨a,b⟩−ε < Nε ≤ (b−a)∥f∥C⟨a,b⟩. (26)
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By (25) we get b−a
N+1∥f∥C⟨a,b⟩ < ε; hence

h∥f∥C⟨a,b⟩ < ε. By left inequality (23) and by in-
equality (24) we obtain

max
t∈⟨xs, xs+1⟩

f(t) (xs+1−xs) ≤ ε, s ∈ {0, 1, . . . , N}.

(27)
By mathematical induction over the number of

knots the next assertion can be proved.
Lemma 2. If the relations (18) – (19) are true,

then there exists the unique grid (22) with properties
(23) – (24), and the relations (26) – (27) are fulfilled.

5 Relative quantity of knots and
limit relations

In this section we find the boundaries for ratio of the
quality of knots for the pseudo-equidistant grid to the
quality of knots for the adaptive grid (i.e. the bound-
aries for N/K).

Theorem 1. Suppose the hypothesis of lemmas 1
and 2 are fulfilled. Then

(b− a)∥f∥C⟨a,b⟩ − ε

K−1∑
s=0

max
t∈⟨x̃s, x̃

+
s+1⟩

f(t)(x̃+s+1 − x̃s)

<
N

K
≤

≤
(b− a)∥f∥C⟨a,b⟩

K−1∑
s=0

max
t∈⟨x̃s, x̃s+1⟩

f(t)(x̃s+1 − x̃s)

. (28)

Proof. In view of suppositions (1) and (4) it’s
clear that the relation (7) is the inequality between
positive expressions.

By (18) – (19) we have (b−a)∥f∥C⟨a,b⟩− ε > 0;
therefore the relation (26) has the same properties: all
parts of the relation are positive expressions.

Taking into account these properties, we see that
the relation (28) follows from the inequalities (7) and
(26).

Note 1. The inequality (28) is easy calculated by
computer: instead of search of maximum for function
on the segment we find the maximum of finite quantity
of given numbers; algorithms of search of the last one
are well known (for example, see [30]).

Suppose the function f(t) is continuous in the
segment [a, b], and satisfies to the property

f(t) ≥ c > 0 ∀t ∈ [a, b]. (29)

Consider the sequence of grids Ξ(λ):

. . .< ξ−2(λ)< ξ−1(λ)< ξ0(λ)< ξ1(λ)< ξ2(λ) . . .
(30)

depending on parameter λ > 0; suppose a, b ∈ Ξ(λ).
By definition, put

⟨a, b⟩λ
def
== Ξ(λ) ∩ [a, b], hλ

def
== max

ξ∈⟨a,b−⟩λ
(ξ+ − ξ).

Theorem 2. If f ∈ C[a, b], the condition (5.1) is

valid, and
lim

λ→+0
hλ = 0, (31)

then

lim
ε→+0

lim
λ→+0

K

N
=

1
b−a

∫ b
a f(t)dt

∥f∥C[a,b]
. (32)

Proof. According to (31) it’s clear to see that

lim
λ→+0

∥f∥C⟨a,b⟩λ = ∥f∥C[a,b].

After passage to the limit λ → +0 in the relation (7)
we can pass to limit under condition ε → +0; as a
result we get the integral

∫ b
a f(t)dt instead of sums in

the relation (28). The formula (32) is proved.

6 Approximation of the discrete flow

Suppose the function u(t) is defined for t ∈ ⟨y, z⟩,
where

⟨y, z⟩ : y = ξ0 < ξ1 < . . . < ξM−1 < ξM = z.
(33)

By definition we put

ũ(t)
def
== u(y) +

u(z)− u(y)

z − y
(t− y), t ∈ ⟨y, z⟩.

(34)
Note 2. The formula (34) may be rewritten in the

form

ũ(t)
def
== u(z) +

u(z)− u(y)

z − y
(t− z), t ∈ ⟨y, z⟩.

(35)

If w ∈ C⟨a, b⟩ and

y ≤ ξj < ξk ≤ z, (36)

then

w(θ)− w(τ) =
k−1∑
s=j

w(ξs+1)− w(ξs)

ξs+1 − ξs
(ξs+1 − ξs),

(37)
where θ = ξk, τ = ξj .
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Lemma 3. If w ∈ C⟨a, b⟩, θ = ξk, τ = ξj ,
ξk, ξj ∈⟨a, b⟩, then

w(θ)−w(τ) = sgn(θ−τ)
M(k,j)−1∑
s=m(k,j)

DΞw(ξs)(ξs+1−ξs);

(38)
here

sgn(q)=


1 for q > 0

0 for q = 0

−1 for q < 0,

DΞu(ξ)=
u(ξ+)− u(ξ)

ξ+ − ξ
,

m(k, j)
def
== min{k, j}, M(k, j)

def
== max{k, j}.

Proof. Under the condition (36) the relation (38)
is equivalent to condition (37); if y ≤ ξk < ξj ≤ z,
then the relation (38) coincides with the relation (37).
If y ≤ ξk = ξj ≤ z, then the relation (38) is trivial.

Lemma 4. If t ∈ ⟨y+, z⟩, t = ξk, then

u(t)− ũ(t) =

=

M−1∑
j=0

(ξj+1−ξj)
k−1∑
i=0

[
DΞu(ξi)−DΞu(ξj)

]ξi+1 − ξi
ξM − ξ0

,

(39)
u(t)− ũ(t) =

=

M−1∑
j=0

(ξj+1−ξj)
M−1∑
i=k

[
DΞu(ξj)−DΞu(ξi)

]ξi+1 − ξi
ξM − ξ0

.

(40)
Proof. Applying (37) to w = u, τ = y = ξ0,

θ = t = ξk, we have

u(t)−u(y) =
k−1∑
i=0

u(ξi+1)− u(ξi)

ξi+1 − ξi
(ξi+1−ξi). (41)

Now we apply the formula (37) with w = u, τ = y =
ξ0, θ = z = ξM ; then

u(z)− u(y) =

M−1∑
j=0

u(ξj+1)− u(ξj)

ξj+1 − ξj
(ξj+1 − ξj).

(42)
Using the formulas (41) – (42), we have

u(t)− ũ(t) =

=
1

ξM − ξ0

[
(ξM−ξ0)

k−1∑
i=0

u(ξi+1)− u(ξi)

ξi+1 − ξi
(ξi+1−ξi)−

−(ξk − ξ0)
M−1∑
j=0

u(ξj+1)− u(ξj)

ξj+1 − ξj
(ξj+1− ξj)

]
; (43)

formulas (43) and (39) are the same.
Consider the difference u(t)− ũ(t) again; by (35)

we have for t ∈ [y, z]:

u(t)− ũ(t) = u(t)− u(z)− u(z)− u(y)

z − y
(t− z).

Applying the formula (38) withw = u, ξk = t, ξj = z
(i.e. j =M ) and taking into account sgn(t−z) = −1,
m(k, j) = k, M(k, j) =M , we get

u(t)− u(z) = −
M−1∑
i=k

DΞu(ξi)(ξi+1 − ξi). (44)

Considering the formulas (42) and (44), we obtain

u(t)− ũ(t) = −
M−1∑
i=k

DΞu(ξi)(ξi+1 − ξi)+

+
ξM − ξk
ξM − ξ0

M−1∑
j=0

DΞu(ξj)(ξj+1 − ξj) =

=
1

ξM − ξ0

M−1∑
j=0

(ξj+1 − ξj)×

×
M−1∑
i=k

(DΞu(ξj)−DΞu(ξi))(ξi+1 − ξi); (45)

the relation (40) follows from (45).
Lemma has been proved.

Theorem 3. If the functions u(t) and ũ(t) are de-
fined on the grid segment ⟨y, z⟩, then the evaluations

|u(t)− ũ(t)| ≤ 2min{t−y, z− t} max
ξ∈⟨y,z−⟩

|DΞu(ξ)|,

(46)
|u(t)−ũ(t)| ≤ (z−y) max

ξ∈⟨y,z−⟩
|DΞu(ξ)|, t ∈ ⟨y, z⟩

(47)
are valid.

Proof. If t = y or t = z, then left parts of in-
equalities (46) and (47) are equal to zero, and the right
parts of them are nonnegative; therefore the inequali-
ties are obvious in these cases.

If t ∈ ⟨y+, z−⟩, then by (39) we find the next
expression

|u(t)− ũ(t)| ≤

≤ 1

ξM − ξ0

M−1∑
j=0

(ξj+1−ξj)
k−1∑
i=0

∣∣DΞu(ξi)−DΞu(ξj)
∣∣×
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×(ξi+1 − ξi) ≤ 2(t− y) max
ξ∈⟨y,z−⟩

|DΞu(ξ)|; (48)

by (40) we have

|u(t)− ũ(t)| ≤ 2(z − t) max
ξ∈⟨y,z−⟩

|DΞu(ξ)|. (49)

The relation (46) follows from the formulas (48)
and (49), the relation (47) follows from (46).

7 Another variant of approximation
for discrete flow

Lemma 5. If t ∈ ⟨y+, z−⟩, then

u(t)− ũ(t) =

M−1∑
j=0

(ξj+1 − ξj)

k−1∑
i=0

(ξi+1 − ξi)×

×sgn(ξi−ξj)
M(i,j)−1∑
p=m(i,j)

D2
Ξu(ξp+1)(ξp+1−ξp)/(ξM−ξ0),

(50)
where

D2
Ξu(ξ)

def
==

DΞu(ξ)−DΞu(ξ
−)

ξ − ξ−
, ξ ∈ ⟨y+, z−⟩.

(51)

Proof. Considering

ψ(ξ)
def
==

u(ξ+)− u(ξ)

ξ+ − ξ
, ξ ∈ ⟨y, z⟩,

we have

DΞu(ξi)−DΞu(ξj) = ψ(ξi)− ψ(ξj).

Applying the formula (38) with w = ψ and knots
ξi, ξj ∈ ⟨y, z−⟩, we obtain

ψ(ξi)−ψ(ξj) = sgn(ξi−ξj)
M(i,j)−1∑
p=m(i,j)

DΞψ(ξp)(ξp+1−ξp),

so that for mentioned knots we find

DΞu(ξi)−DΞu(ξj) = sgn(ξi − ξj)×

×
M(i,j)−1∑
p=m(i,j)

DΞu(ξp+1)−DΞu(ξp)

ξp+1 − ξp
(ξp+1−ξp). (52)

Formulas (50) – (51) follow from the relations
(39) and (52).

Theorem 4. If function ũ(t) is defined by (34),
then

|u(t)−ũ(t)| ≤ (z−y)2 max
ξ∈⟨y+,z−⟩

|D2
Ξu(ξ)|, t ∈ ⟨y, z⟩.

(53)

Proof. Using (50) – (51) under condition t ∈
⟨y, z⟩, we have

|u(t)− ũ(t)| ≤
M−1∑
j=0

(ξj+1 − ξj)
k−1∑
i=0

(ξi+1 − ξi)×

×
∣∣∣M(i,j)−1∑
p=m(i,j)

(ξp+1−ξp)
∣∣∣/(ξM−ξ0) max

ξ∈⟨y+,z−⟩
|D2

Ξu(ξ)|.

(54)
The evaluation (53) follows from (54).

Note 3. If it is discussed the sequence of grids (33)
in [y, z] with property maxξ∈⟨y,z−⟩(ξ

+ − ξ) → +0,
then the function u ∈ C1[y, z] in the equality (46)
gives the evaluation

|u(t)− ũ(t)| ≤ (z − y) max
ξ∈[y,z]

|u ′(ξ)|,

and if u ∈ C2[y, z] and t ∈ [y, z], then (53) gives the
next enequality

|u(t)− ũ(t)| ≤ (z − y)2 max
ξ∈[y,z]

|u ′′(ξ)|.

Consider a grid X̂ , X̂ ⊂ Ξ such that ,

X̂ : a = x̂0 < x̂1 < x̂2 < . . . < x̂
K̂
< x̂

K̂+1
= b.

(55)
Let u(t) be grid function defined on ⟨a, b⟩. We

construct piecewise linear interpolation

ũ(t)
def
== u(x̂j) +

u(x̂j+1)− u(x̂j)

x̂j+1 − x̂j
(t− x̂j), (56)

∀t ∈ [x̂j , x̂j+1), j ∈ {0, 1, . . . , K̂}.

Theorem 5. If ũ(t) is defined by formula (56)
on the grid (55) and t ∈ ⟨x̂j , x̂j+1⟩, x̂+

j < x̂−
j+1, then

the next inequalities are valid

|u(t)− ũ(t)| ≤ (x̂j+1 − x̂j) max
ξ∈⟨x̂j , x̂

−
j+1⟩

|DΞu(ξ)|,

(57)
|u(t)− ũ(t)| ≤ (x̂j+1 − x̂j)

2 max
ξ∈⟨x̂+

j , x̂−
j+1⟩

|D2
Ξu(ξ)|.

(58)
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If u ∈ C1[a, b], then

|u(t)− ũ(t)| ≤ max
ξ∈[x̂j , x̂j+1]

|u ′(ξ)|(x̂j+1 − x̂j), (59)

and if u ∈ C2[a, b], then ∀t ∈ (x̂j , x̂j+1)

|u(t)−ũ(t)| ≤ max
ζ∈[x̂j , x̂j+1]

|u ′′(ζ)|(x̂j+1−x̂j)2. (60)

Proof. The evaluations (57) – (58) follow from
the inequalities (47) and (53). The relations (59)– (60)
follow from passage to limit in (57) – (58) under con-
dition maxξ∈⟨y,z−⟩(ξ

+ − ξ) → +0 by analogy with
Note 3.

8 On number of knots for grid of
adaptive type

Theorem 6. If the condition |DΞu(t)| ≥ c >

0 ∀t ∈ ⟨y, z⟩ is true, and the grid X̂ be the same
as X̃(|DΞu(t)|, η,Ξ), then

1) the number K ′
u,Ξ(η)

def
== K(|DΞu(t)|, η,Ξ)

satisfies to the relations

K−1∑
s=0

max
t∈⟨x̃s, x̃s+1⟩

|DΞu(t)|(x̃s+1−x̃s)/η ≤ K ′
u,Ξ(η) <

<

K−1∑
s=0

max
t∈⟨x̃s, x̃

+
s+1⟩

|DΞu(t)|(x̃+s+1 − x̃s)/η, (61)

2) the inequality

|u(t)− ũ(t)| ≤ η ∀t ∈ ⟨y, z⟩ (62)

is true,
3) if u ∈ C1[a, b], |u ′(t)| ≥ c > 0 ∀t ∈ [a, b],

and sequence (5.2) satisfies the condition (5.3), then

lim
η ′→+0

lim
λ→+0

K ′
u,Ξ(λ)(η

′)η ′ =

∫ b

a
|u ′(t)|dt. (63)

Proof. The formula (61) follows from (7), where
f(t) = |DΞu(t)|. The inequality (62) can be obtained

from (47) and (5), where f(t) def
== |DΞu(t)|, ε

def
==

η. The relation (63) follows from (61) by sequential
passages to the limits: first we have λ → +0, and
then we pass η to zero.

Theorem 7. Suppose the condition

|D2
Ξu(t)| ≥ c > 0 ∀t ∈ ⟨y, z⟩ (64)

is fulfilled. If the grid X̂ coincides with

X̃(
√

|D2
Ξu(t)|, η,Ξ), then

1) the quantity of knots K ′′
u,Ξ(η)

def
==

K(
√

|D2
Ξu(t)|, η,Ξ) satisfies to relations

K−1∑
s=0

max
t∈⟨x̃s, x̃s+1⟩

√
|D2

Ξu(t)|(x̃s+1−x̃s)/η ≤ K ′′
u,Ξ(η) <

<

K−1∑
s=0

max
t∈⟨x̃s, x̃

+
s+1⟩

√
|D2

Ξu(t)|(x̃
+
s+1 − x̃s)/η. (65)

2) the inequality

|u(t)− ũ(t)| ≤ η2 ∀t ∈ ⟨y, z⟩ (66)

is true,
3) if u ∈ C2[a, b], |u ′′(t)| ≥ c > 0 ∀t ∈ [a, b],

and (31) is fulfilled, then

lim
η ′→+0

lim
λ→+0

K ′′
u,Ξ(λ)(η

′)η ′ =

∫ b

a

√
|u ′′(t)|dt.

(67)

Proof. The formula (7.5) follows from (7),
where f(t) =

√
|D2

Ξu(t)|. The inequality (66)

can be obtained from (53) and (5), where f(t) def
==√

|D2
Ξu(t)|, ε

def
== η. Finally, the formula (67) follows

from (65) by sequential passages to the limits (see the
proof of Theorem 6).

9 On the quantity of knots of
pseudo-equidistant grid

Theorem 8. If the grid X̂ is the same as the grid
X(|DΞu|, η,Ξ), then

1) the number N ′
u,Ξ(η)

def
== N(|DΞu|, η,Ξ) of

inner knots of the grid satisfies to the relation

(b− a)∥DΞu∥C⟨a,b⟩/η − 1 < N ′
u,Ξ(η) ≤

≤ (b− a)∥DΞu∥C⟨a,b⟩/η. (68)

2) the inequality

|u(t)− ũ(t)| ≤ η ∀t ∈ ⟨a, b⟩ (69)

is fulfilled.
Proof. Suppose that X̂ def

== X(|DΞu|, η,Ξ). Us-
ing the formula (26) with f = |DΞu|, we get relation
(68). The inequality (69) follows from (47) and (27),
where f = |DΞu| and ε = η.
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Theorem 9. If the grid X̂ is equal to the grid

X(
√

|D2
Ξu|, η,Ξ), then

1) the number N ′′
u,Ξ(η)

def
== N(

√
|D2

Ξu|, η,Ξ) of
inner knots of the grid satisfies to relation

(b− a)∥ |D2
Ξu|1/2∥C⟨a,b⟩/η − 1 < N ′′

u,Ξ(η) ≤

≤ (b− a)∥ |D2
Ξu|1/2∥C⟨a,b⟩/η, (70)

2) the inequality

|u(t)− ũ(t)| ≤ η2 ∀t ∈ ⟨a, b⟩ (71)

is true.
Proof. Applying the formula (26) with X̂

def
==

X(
√

|D2
Ξu|, η,Ξ), f = |D2

Ξu|, we get the relation
(70). The inequality (71) follows from (53) and (27)

if f =
√

|D2
Ξu| ε = η.

10 Relative characteristic of the
quantities of knots for different
grids under condition of the same
approximation

Theorem 10. The inequality |ũ(t) − u(t)| ≤ η

is true for each of two variants of grids: X̂
def
==

X(|DΞu|, η,Ξ) and X̂ def
== X̃(|DΞu|, η,Ξ). In ad-

dition we have

(b− a)∥DΞu∥C⟨a,b⟩ − η

K−1∑
s=0

max
t∈⟨x̃s, x̃

+
s+1⟩

|DΞu(t)|(x̃+s+1 − x̃s)

<
N ′

u,Ξ(η)

K ′
u,Ξ(η)

≤

≤
(b− a)∥DΞu∥C⟨a,b⟩

K−1∑
s=0

max
t∈⟨x̃s, x̃s+1⟩

|DΞu(t)|(x̃s+1 − x̃s)

. (72)

Proof. Using the inequality (28), we put f =
|DΞu| and ε = η. As a result we get (72).

Theorem 11. If the family of grids (30) has prop-
erty (31), u ∈ C1[a, b] and ∥u ′∥C[a,b] ≠ 0, then

lim
η→+0

lim
λ→+0

K ′
u,Ξ(λ)(η)

N ′
u,Ξ(λ)(η)

=
1

b−a

∫ b
a |u ′(t)|dt

∥u ′∥C[a,b]
. (73)

Proof. Passing on to the limit λ → +0 in the
relation (72) we have

(b− a)∥ u ′∥C[a,b] − η∫ b
a |u ′(t)|dt

< lim
λ→+0

N ′
u,Ξ(λ)(η)

K ′
u,Ξ(λ)(η)

≤

≤
(b− a)∥ u ′∥C[a,b]∫ b

a |u ′(t)|dt
,

and passing on to the limit η → +0, we get (73).

Theorem 12. If X̂ def
== X(

√
|D2

Ξu|, η,Ξ) or if

X̂
def
== X̃(

√
|D2

Ξu|, η,Ξ), then in the both cases the

evaluation |ũ(t)−u(t)| ≤ η2 is correct. Moreover we
have

(b− a)∥ |D2
Ξu|1/2∥C⟨a,b⟩ − η

K−1∑
s=0

max
t∈⟨x̃s, x̃

+
s+1⟩

√
|D2

Ξu(t)|(x̃
+
s+1 − x̃s)

<
N ′′

u,Ξ(η)

K ′′
u,Ξ(η)

≤

≤
(b− a)∥ |D2

Ξu|1/2∥C⟨a,b⟩
K−1∑
s=0

max
t∈⟨x̃s, x̃s+1⟩

√
|D2

Ξu(t)|(x̃s+1 − x̃s)

. (74)

Proof. Applying the inequality (28) with f =√
|D2

Ξu| and ε = η, we get (74).

Theorem 13. If the family of grids (30) has the
property (31) and the function u ∈ C2[a, b] satisfies
to the relation ∥u ′′∥C[a,b] ̸= 0, then

lim
η→+0

lim
λ→+0

K ′′
u,Ξ(λ)(η)

N ′′
u,Ξ(λ)(η)

=
1

b−a

∫ b
a

√
|u ′′(t)|dt

∥
√

|u ′′|∥C[a,b]

.

(75)

Proof. Passing on to the limit λ → +0 in the
relation (74) we have

(b− a)∥ |u ′′|1/2∥C[a,b] − η∫ b
a

√
|u ′′(t)|dt

< lim
λ→+0

N ′′
u,Ξ(λ)(η)

K ′′
u,Ξ(λ)(η)

≤

≤
(b− a)∥ |u ′′|1/2∥C[a,b]∫ b

a

√
|u ′′(t)|dt

;

now passing on to the limit η → +0, we obtain (75).

11 Conclusion

In the offered paper the algorithm of approximation
for discrete function (discrete number flow) is pro-
posed for the splines of the first order associated with
the suggested adaptive grid.

We would be very interested in at least the two ap-
proaches to processing of the numerical flow: 1) usage
of splines of zero order (i.e. piecewise-constant func-
tions), 2) usage of splines of the second order. In the
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first approach we would obtain the simple approxima-
tion algorithm with small quantity arithmetical oper-
ations, but the second approach would give the high
order of approximation for ”smooth” discrete number
flows.

The both approaches will be discussed later in
connection with spline-wavelet decompositions.

In directions of our future researches we plan to
obtain the adaptive schemes of algorithms for wavelet
decompositions of discrete number flows, to discuss
their properties and to demonstrate their opportunities
in practical aspects.
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