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Abstract: In this paper, we consider the stabilization problem of a one-dimensional wave equation with unknown
disturbance. In order to stabilize the system with disturbance, we design a distributed feedback controller by
employing the idea of sliding mode control technology. For the resulted nonlinear closed-loop system, we prove
its solvability by using the maximal monotone operator. Further we prove the exponentially stable of the closed-
loop system.

Key–Words: 1-d wave equation; distributed control; distributed disturbance; exponential stabilization.

1 Introduction
Many practical systems composed of certain flexible
parts are governed by partial differential equation-
s (PDEs), such as strings, plates, shells and so on.
For these systems, one of the important tasks is to
design various feedback control laws to stabilize the
systems to their equilibriums as fast as possible. In
the last decades, some important stabilization results
have been obtained for the infinite-dimensional sys-
tems such as wave equation and flexible beam (e.g.,
see [1, 2, 3, 4, 5]), including stabilization of the sys-
tems with time delay [6, 7, 8, 9]. We observe that
these systems are modeled in the ideal operational en-
vironment with exact mathematical model in which
the internal and external disturbances are neglected.
Since the uncertain disturbances from the internal and
external of systems always exist in the real world, and
these disturbances effect seriously the performance of
the systems, which may distort the systems, we must
take the disturbances into account when we study the
stabilization problem of systems.

In the past years, there are many scholars mak-
ing great efforts for the anti-disturbance problems, for
example, [10, 11]. One of the more successful ap-
proaches of rejecting disturbance is the sliding mod-
e control (briefly, SMC). For a long time, the slid-
ing mode control has been recognized as a powerful
control tool [12] for the finite-dimensional system-
s. Recent decades, scholars are trying to extend this
method from finite-dimensional system to infinite-
dimensional systems [13, 14, 15, 16]. There have been
some successful examples, for instance, Drakunov et

al. in [17] proposed a sliding mode control law for a
heat equation with boundary control and disturbance;
Cheng et al. in [18] studied a parabolic PDE sys-
tem with parameter variations and boundary uncer-
tainties by using boundary sliding mode control ap-
proach; Pisano et al. in [19] investigated tracking con-
trol problem of wave equation with distributed con-
trol and disturbance, and applying the sliding mod-
e control they obtained the asymptotical stability of
the closed-loop system. There exist other approaches
of anti-disturbance, such as active disturbance rejec-
tion control (ADRC) in [20, 21], Lyapunov control in
[22, 23], adaptive control in [24, 25], and LMI-based
design [26] etc. These methods also can be extend-
ed to the distributed parameter systems. We observe
that the resulted system is a time-variant and nonlinear
system under the sliding mode control; the solvabili-
ty and stability analysis of the closed-loop system are
major difficulty. For some systems, with stronger slid-
ing mode control, the closed-loop system might have
no solution. So when we design the feedback con-
troller, we must take account into two things of stabi-
lization property of the system and solvability of the
closed-loop system.

In the present paper, we study a 1-dimensional
wave equation with unknown disturbance, whose dy-
namic behavior is governed by the following partial
differential equation:

{
wtt(x, t)=wxx(x, t)+u(x, t)+r(x, t), x∈(0, 1),
w(0, t) = 0, w(1, t) = 0,

(1)
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with initial data

w(x, 0) = w0(x), wt(x, 0) = w1(x)

and observation or system output

y(x, t) =
(
w(x, t), wt(x, t)

)
,

where x ∈ [0, 1] is the space variable; t is the
time variable; w(x, t) is the state of the system;
u(x, t) is the distributed control input and r(x, t) is
a source term which represents the uncertain distur-
bance; (w0, w1) is the initial state of the system and
y(x, t) is the measured output.

Usually the disturbance has finite energy, so we
can suppose that r(x, t) is a uniformly bounded and
measurable function, that is, there exists a positive
constant R such that |r(x, t)| ≤ R for all x ∈ (0, 1)
and t > 0. Throughout the paper, we use wx or w′

to denote the partial derivative of w with respect to x,
and ẇ or wt denote the partial derivative with respect
to t.

It is well-known that if there is no disturbance,
then the system (1) becomes the following one:

wtt(x, t)=wxx(x, t)+u(x, t), x ∈ (0, 1),
w(0, t) = 0, w(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x),
y(x, t) =

(
w(x, t), wt(x, t)

)
.

(2)

It has been proved that under the velocity feedback
control

u(x, t) = −kwt(x, t), k > 0

the corresponding closed-loop system is exponential-
ly stable [27, 28]. However, due to the presence of
r(x, t), this stabilizer is not robust to the external dis-
turbance. To see this point, we consider the case that
r(x, t) = r is a constant. Under the feedback con-
trol law u(x, t) = −kwt(x, t), the system (1) has a
nonzero solution

(w(x, t), wt(x, t)) = (
r

2
x2 − r

2
x, 0).

Therefore, we need to redesign controller based on the
aforementioned control.

Our idea is that we divide the control into two
parts: one ensures the exponentially stability of the
non-disturbance system and the other is used to reject
disturbance. Employing the idea of the sliding mode
control, we take the feedback control law as

u(x, t) = −kwt(x, t)−Msign[ρw(x, t) + wt(x, t)],
(3)

where

sign(x) =


−1, x < 0,

[−1, 1], x = 0,
1, x > 0,

the parameters ρ, k and M are positive constants with
ρ ∈ (0, k) and M ≥ R. We will determine the rela-
tion between parameters k and ρ later in the following
analysis.

Under the feedback control law (3), the closed-
loop system corresponding to (1) is

wtt(x, t) = wxx(x, t)− kwt(x, t) + r(x, t)
−Msign[ρw(x, t) + wt(x, t)], x ∈ (0, 1),

w(0, t) = 0, w(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x).

(4)
Note that the controller includes a sign function, the
closed-loop system (4) is a nonlinear system with dis-
continuous nonlinear term. Moreover, it is a nonau-
tonomous system due to the existence of disturbance.

The design of the second term of controller is very
novel, its different form will lead to different effec-
t. At the same time, it will yield different difficul-
ty in latter analysis. In our design, it seems to be a
simple extension of sliding mode control from the fi-
nite dimensional space to infinite-dimensional space.
Indeed, this form has many advantages that will be
seen in solvability and stability analysis. Although so,
there are still many challenge problems to face. One
of the challenges is the well-posedness of the closed-
loop system. Since the resulted closed-loop system is
a semi-linear system with discontinuous nonlinear ter-
m, which in fact is a differential inclusion equation. In
finite-dimensional problem, most of literatures have to
use the Ritz method or approximate approach to ob-
tain the existence of the Filippov solution, and then,
by limit process, obtain the solvability of the closed-
loop system [29, 30]. Maybe it is an approach to solve
Filippov-type equation but not the effective one. The
second challenge comes from the stability analysis of
the closed-loop system. Since the disturbance is time-
varying, the classical LaSalle invariance set princi-
ple [31] does not give the asymptotic behavior of the
closed-loop system. The contributions of this paper
are that we find a simple way to prove the existence
and uniqueness of solution to the closed-loop system;
and by the multiplier method, we establish the expo-
nentially stability of the system (4).

The rest of the paper is organized as follows. In
section 2, we deal with the existence and uniqueness
of the solution of the closed-loop system by maximal
monotone theory. In section 3, we discuss the stability
of the system (4). By multiplier method, we obtain
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the exponential stability of the system (4). In Section
4, we present some numerical simulations to check
our theoretical results. Finally, in section 5, we give a
concluding remark.

2 Well-posedness of the Closed-loop
System

In this section, we will discuss the existence and u-
niqueness of a solution to the closed-loop system (4).

For the convenience, we rewrite the system (4) as
follows:

wtt(x, t) = wxx(x, t) + r(x, t)− kwt(x, t)
−Msign[ρw(x, t) + wt(x, t)], x ∈ (0, 1),

w(0, t) = 0, w(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x).

(5)

Remark 1. Since the sign function is a set-valued
function, the system (5) should understand as the d-
ifferential inclusion, i.e.,

−wtt(x, t) + wxx(x, t)− kwt(x, t) + r(x, t)
∈Msign[ρw(x, t) + wt(x, t)], x ∈ (0, 1),

w(0, t) = 0, w(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x).

(6)
Since only at the origin, the sign function takes its val-
ue in a set [-1,1], we still use the form (5) for conve-
nience.

We begin with recalling concept of the maximal
monotone operator.

Definition 2. [32, Definition 2.1, pp.28] Let X be a
real Banach space, and X∗ be its dual. The set A ⊂
X×X∗(equivalently the operatorA : X → X∗) is said
to be monotone if

⟨x1−x2, y1−y2⟩X,X∗ ≥ 0, ∀ [xi, yi] ∈ A, i = 1, 2.

A monotone set A ⊂ X × X∗ is said to be maximal
monotone if it is not properly obtained in any other
monotone subset of X× X∗.

For a maximal monotone operator, we have the
following results.

Lemma 3. [32, Corollary 2.2, pp.36] Let X be a re-
flexive Banach space and let A be a coercive maximal
monotone subset of X×X∗. Then A is surjective, that
is, R(A) = X∗.

The following lemma gives the solvability of ab-
stract evolutionary equation.

Lemma 4. [32, Corollary 4.1, pp.131] Let X be a real
Banach space with the norm || · || and let A ⊂ X× X
be a quasi-m-accretive set of X × X. Consider the
Cauchy problem{

dy
dt (t) +Ay(t) ∋ f(t), t ∈ [0, T ],
y(0) = y0,

(7)

where y0 ∈ X and f ∈ L1(0, T ;X). Then, for each
y0 ∈ D(A) and f ∈ L1(0, T ;X) there is a unique
mild solution y to (7).

To applying the maximal monotone operator the-
ory, we choose the state space as follows:

H = H1
E(0, 1)× L2(0, 1)

where Hk
E(0, 1) = {f ∈ Hk(0, 1)|f(0) = f(1) =

0}, and Hk(0, 1) is the usual Sobolev space of the
order k(k = 1, 2).

In the state space H, the inner product is defined
as follows, for Y1 = (w1, z1)

⊤, Y2 = (w2, z2)
⊤ ∈ H,

⟨Y1, Y2⟩H=

∫ 1

0
w′
1(x)w

′
2(x)dx+

∫ 1

0
z1(x)z2(x)dx.

(8)
It is easy to check that (H, || · ||H) is a Hilbert space.

We define the system operator A in H:

A
(
w
z

)
=

(
z − ρw

wxx+ρ(k−ρ)w−(k−ρ)z−Msign[z]

)
with the domain

D(A) =

{
(w, z) ∈ H

∣∣∣∣ w ∈ H2
E(0, 1),

z ∈ H1
E(0, 1).

}
Then the closed loop system (5) can be written as a
nonlinear evolutionary equation in H{

Ẏ (t) = AY (t) +R(t),
Y (0) = Y0,

(9)

where Y (t) = (w(·, t), ẇ(·, t) + ρw(·, t))⊤, R(t) =
(0, r(·, t))⊤ and Y0 = (w0(x), w1(x) + ρw0(x))

⊤.

Remark 5. According to Remark 1, A defined above
is a multi-valued operator. Thus, (9) should also be
written as a differential inclusion: Ẏ (t) − R(t) ∈
AY (t).

The operator A satisfies the following proposi-
tion.

Proposition 6. Let A and H be defined as before. If
the parameters ρ and k satisfy the following condi-
tions:

1) when k2 ≤ 32, ρ ∈ (0, k);
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2) when k2 ≥ 32, ρ is in the subset

ρ ∈

(
0,
k −

√
k2 − 32

2

)∪(
k +

√
k2 − 32

2
, k

)
,

then −A is a maximal monotone operator.

Proof: We complete the proof of Proposition 6 by
two steps.

First step: monotony of −A

For any Y1, Y2 ∈ D(A), by the definition of the
inner product of H, we have

⟨AY1 −AY2, Y1 − Y2⟩H

=

∫ 1

0
(z′1 − z′2)(w

′
1 − w′

2)dx

−ρ
∫ 1

0
(w′

1 − w′
2)(w

′
1 − w′

2)dx

+

∫ 1

0
(w′′

1 − w′′
2)(z1 − z2)dx

+ρ(k − ρ)

∫ 1

0
(w1 − w2)(z1 − z2)dx

−(k − ρ)

∫ 1

0
(z1 − z2)(z1 − z2)dx

−M
∫ 1

0

(
sign(z1)− sign(z2)

)
(z1 − z2)dx

= −ρ
∫ 1

0
|w′

1 − w′
2|2dx

+ρ(k − ρ)

∫ 1

0
(w1 − w2)(z1 − z2)dx

−(k − ρ)

∫ 1

0
|z1 − z2|2dx

−M
∫ 1

0

(
sign(z1)− sign(z2)

)
(z1 − z2)dx

= −ρ
∫ 1

0
|w′

1 − w′
2|2dx

−(k − ρ)

∫ 1

0

[
(z1 − z2)−

ρ

2
(w1 − w2)

]2
dx

+
ρ2

4
(k − ρ)

∫ 1

0
(w1 − w2)

2dx

−M
∫ 1

0

(
sign(z1)− sign(z2)

)
(z1 − z2)dx.

Since∫ 1

0
(w1 − w2)

2dx ≤ 1

2

∫ 1

0
(w′

1 − w′
2)

2dx

and for any y1, y2 ∈ R

[sign(y1)− sign(y2)](y1 − y2) ≥ 0,

so for ρ ∈ (0, k), we have

⟨AY1 −AY2, Y1 − Y2⟩H

≤ −ρ(1− ρ

8
(k − ρ))

∫ 1

0
(w′

1 − w′
2)

2dx

We request ρ ∈ (0, k) satisfies the following equality

ρ

8
(k − ρ) ≤ 1,

which is equivalent to

−ρ2 + kρ = −(ρ− k

2
)2 +

k2

4
≤ 8.

Clearly, if k2 − 32 ≤ 0, then for all ρ ∈ (0, k), the
above inequality holds true. If k2 − 32 > 0, then we
have

ρ ∈

(
0,
k −

√
k2 − 32

2

)∪(
k +

√
k2 − 32

2
, k

)
.

Therefore, when ρ and k satisfy the request, we have

⟨AY1 −AY2, Y1 − Y2⟩H ≤ 0,

which claims that −A is monotone.
Second step: maximality

According to the definition of the maximal oper-
ator, we only need to show that R(I −A) = H.

For ∀(f, g)⊤ ∈ H given, we consider the follow-
ing equation

(I −A)(w, z)⊤ = (f, g)⊤,

namely,

w(x)− z(x) + ρw(x) = f(x),

z(x)− w′′(x)− ρ(k − ρ)w(x) + (k − ρ)z(x)

+Msign(z(x)) = g(x).

Equivalently, z(x) = (1 + ρ)w(x) − f(x) and w(x)
satisfies the following differential equation

−w′′(x) + (k + 1)w(x)

+Msign((1 + ρ)w(x)− f(x))

= g(x) + (k − ρ+ 1)f(x)

and the boundary conditions w(0) = w(1) = 0.
Let λ =

√
k + 1. Then the differential equation

can be rewritten as

w′′(x) = λ2w(x)
+Msign((1 + ρ)w(x)− f(x))
−[g(x) + (λ2 − ρ)f(x)]. (10)
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Set

d =
∫ 1
0 [(λ2−ρ)f(s)+g(s)] sinh(λ(1−s))ds

λ sinhλ ,

p = coshλ−1
λ2 sinhλ

,

ϕ(x) =
∫ x
0 [(λ2−ρ)f(s)+g(s)] sinh(λ(x−s))ds

λ ,

ψ(x) = coshλx−1
λ2

.

Lemma 7. Let p and ψ(x) be defined as before. Then
we have

−Mp sinhλx+Mψ(x)≤Mp sinhλx−Mψ(x), (11)

i.e.,
Mp sinhλx−Mψ(x) ≥ 0.

Proof. Set

S(x) = p sinhλx− ψ(x).

By the definition, we have

S(x) =
coshλ− 1

λ2 sinhλ
sinhλx− coshλx− 1

λ2

=
(coshλ− 1) sinhλx− (coshλx− 1) sinhλ

λ2 sinhλ

=
sinhλ− sinhλx− sinh(λ− λx)

λ2 sinhλ
.

Obviously, S(0) = S(1) = 0 and

S(
1

2
) =

sinhλ− 2 sinh λ
2

λ2 sinhλ
.

S(x) is increasing for x ∈ [0, 12 ], S(x) is decreasing
for x ∈ [12 , 1]. So

0 ≤ S(x) ≤ S(
1

2
) =

sinhλ− 2 sinh λ
2

λ2 sinhλ
,

therefore, the inequality (11) is true. �
Using the result of Lemma 7, we can solve the

differential equation (10). When

d sinhλx− f(x)

ρ+ 1
− ϕ(x)

> Mp sinhλx−Mψ(x),

w takes the form w(x) = c1 sinhλx−ϕ(x)+Mψ(x)
where c1 = d−Mp;

When

d sinhλx− f(x)

ρ+ 1
− ϕ(x)

∈ [−Mp sinhλx+Mψ(x),Mp sinhλx−Mψ(x)],

w takes w(x) = f(x)
ρ+1 ;

When

d sinhλx− f(x)

ρ+ 1
− ϕ(x)

< −Mp sinhλx+Mψ(x),

it takes w(x) = c2 sinhλx − ϕ(x) −Mψ(x) where
c2 = d+Mp.

Thus, we have proved that R(I − A) = H. This
finishes the maximality proof.

The two steps give the proof of Proposition 6. �
According to the Proposition 6 and Lemma 4, we

can show that the well-posedness of the nonlinear evo-
lutionary equation (9), i.e., the closed-loop system (5).

Theorem 8. Let A be defined as before. If the param-
eters ρ and k satisfy the following condition:

1) when k2 ≤ 32, ρ ∈ (0, k);
2) when k2 ≥ 32, ρ is in the subset

ρ ∈

(
0,
k −

√
k2 − 32

2

)∪(
k +

√
k2 − 32

2
, k

)
,

then, for each Y0 ∈ D(A), there is a unique mild
solution to the equation (9).

3 Exponential Stability of the
Closed-Loop System

In this section, we will discuss the exponential stabil-
ity of the closed-loop system (4). In (4), if r(x, t) = 0
and M = 0, from the spectral analysis we see that for
suitably small k the system has bigger exponential de-
cay rate. So in this section, we suppose that k and ρ
are small. More precisely, we suppose that ρ ∈ (0, 1).

Note that the energy functional of system (4) is

E(t) =
1

2

∫ 1

0
|wx(x, t)|2dx+

1

2

∫ 1

0
|wt(x, t)|2dx.

(12)
Differentiating (12) with respect to t, using the bound-
ary conditions and integrating by parts, we obtain

Ė(t) =

∫ 1

0
[wx(x, t)wxt(x, t) + wt(x, t)wtt(x, t)]dx

= −k
∫ 1

0
w2
t (x, t)dx

−M
∫ 1

0
sign[ρw(x, t) + wt(x, t)]wt(x, t)dx

+

∫ 1

0
r(x, t)wt(x, t)dx. (13)
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To further estimate inequality, we need the fol-
lowing lemma which is a direct result of Cauchy-
Schwartz inequality.

Lemma 9. Let ϕ1(x, t), ϕ2(x, t) be the continuous
functions defined on [0, 1] × R+. Then the following
inequalities hold

|ϕ1(x, t)ϕ2(x, t)| ≤ ϕ21(x, t) + ϕ22(x, t), (14)

and

|ϕ1(x, t)ϕ2(x, t)| ≤ |
( 1√

δ
ϕ1(x, t)

)(√
δϕ2(x, t)

)
|

≤ 1

δ
ϕ21(x, t) + δϕ22(x, t), (15)

where δ > 0.

To study the stability of (4), we consider the func-
tional

Vρ(t) = E(t) + ρ

∫ 1

0
w(x, t)wt(x, t)dx, (16)

where ρ ∈ (0, 1) is the same as in (4).
Since

|
∫ 1

0
w(x, t)wt(x, t)dx|

≤ 1

2

∫ 1

0
[w2
t (x, t) + w2

x(x, t)]dx = E(t),

so, Vρ(t) has the following property:

(1− ρ)E(t) ≤ Vρ(t) ≤ (1 + ρ)E(t). (17)

Lemma 10. If the parameters ρ and k in (16) satis-
fy the inequality 0 < ρ < k

1+k2
, then there exists a

positive constant η such that

V̇ρ(t) ≤ −ηVρ(t).

Proof: Differentiating (16) with respect to t and inte-
grating by parts, using equality (13) and the boundary
conditions, we obtain

V̇ρ(t) = Ė(t) + ρ

∫ 1

0
w2
t (x, t)dx

+ρ

∫ 1

0
w(x, t)wtt(x, t)dx

= −k
∫ 1

0
w2
t (x, t)dx

−M
∫ 1

0
sign[ρw(x, t) + wt(x, t)]wt(x, t)dx

+

∫ 1

0
r(x, t)wt(x, t)dx+ ρ

∫ 1

0
w2
t (x, t)dx

−ρ
∫ 1

0
w2
x(x, t)dx− kρ

∫ 1

0
w(x, t)wt(x, t)dx

−Mρ

∫ 1

0
sign[ρw(x, t) + wt(x, t)]w(x, t)dx

+ρ

∫ 1

0
w(x, t)r(x, t)dx

= −(k − ρ)

∫ 1

0
w2
t (x, t)dx− ρ

∫ 1

0
w2
x(x, t)dx

−
∫ 1

0
(M − r(x, t))|ρw(x, t) + wt(x, t)|dx

−kρ
∫ 1

0
w(x, t)wt(x, t)dx

≤ −(k − ρ)

∫ 1

0
w2
t (x, t)dx− ρ

∫ 1

0
w2
x(x, t)dx

−kρ
∫ 1

0
w(x, t)wt(x, t)dx.

Using inequalities (15), we get

V̇ρ(t) ≤ −(k−ρ)
∫ 1

0
w2
t (x, t)dx−ρ

∫ 1

0
w2
x(x, t)dx

+kρ

∫ 1

0
[
w2
t (x, t)

δ2
+ δ2w

2(x, t)]dx

≤ −(k − ρ− kρ

δ2
)

∫ 1

0
w2
t (x, t)dx

−(ρ− kρδ2)

∫ 1

0
w2
x(x, t)dx.

Obviously, when k − ρ − kρ
δ2
> 0, ρ − kρδ2 > 0, we

have

V̇ρ(t) ≤ −(k − ρ− kρ

δ2
)

∫ 1

0
w2
t (x, t)dx

−(ρ− kρδ2)

∫ 1

0
w2
x(x, t)dx

≤ −2min{(k − ρ− kρ

δ2
), (ρ− kρδ2)}E(t)

≤ −
2min{(k − ρ− kρ

δ2
), (ρ− kρδ2)}

1 + ρ
Vρ(t)

= −ηVρ(t),

where

η =
2min{(k − ρ− kρδ2), (ρ− kρ

δ2
)}

1 + ρ
.
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In what follows, we show solvability of the in-
equality equations

k − ρ− kρ

δ2
> 0, ρ− kρδ2 > 0

where k , ρ and δ2 are positive constants.
From ρ−kρδ2 > 0 we get δ2 < 1

k . From k−ρ−
kρ
δ2
> 0, we get δ2 > kρ

k−ρ . So we must request k and

ρ satisfy kρ
k−ρ <

1
k . Clearly, ρ and k satisfy the above

inequality provided that 0 < ρ < k
1+k2

.
We can choose δ2, for example,

δ2 =
(k − 2ρ) +

√
(k − 2ρ)2 + 4k2ρ2

2kρ

such that Vρ(t) ≤ e−ηtVρ(0). In this case, we have

η =
k −

√
(k − 2ρ)2 + 4k2ρ2

1 + ρ
.

According to above discussion, we have proved
the following theorem.

Theorem 11. Suppose that |r(x, t)| ≤ R. Let the
control law be given as (3), where k and ρ satisfy re-
lation 0 < ρ < k

1+k2
and M ≥ R. Then for any

initial data (w0, w1) ∈ H, the closed-loop system (4)
is exponentially stable.

Remark 12. We present that the controller given by
(3) is robust for any |r(x, t)| ≤ R. But it is necessary
that ρ ̸= 0.

If ρ = 0, the feedback controller becomes

u(x, t) = −kwt(x, t)−Msign[wt(x, t)], (18)

then the closed-loop system (1) with (18) is
wtt(x, t) = wxx(x, t)− kwt(x, t) + r(x, t)

−Msign[wt(x, t)], x ∈ (0, 1),
w(0, t) = 0, w(1, t) = 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x).

(19)
It is easy to see that the energy function defined by
(12) along the trajectory of (19) holds

Ė(t) ≤ −k
∫ 1

0
w2
t (x, t)dx ≤ 0, (20)

that implies that the energy of system (19) is decreas-
ing. But system (19) is not asymptotically stable to
zero. Indeed, if r(x, t) = 0, we take M = 1 and
sign(0) = 0.6. Clearly w(x, t) = 0.3x2 − 0.3x sat-
isfies the system (19). Hence, lim

t→∞
w(x, t) 9 0 as

x ∈ (0, 1).

4 Numerical Simulation
In this section, we consider a numerical example for
the system (4) and system (19). The purpose of nu-
merical simulation is to check the result of this paper.

We choose model parameters of the system (4) as
follows:

the initial data:

w(x, 0) = 20 cos(3πx+
π

2
),

wt(x, 0) = 20 cos(3πx+
π

2
)

and the disturbance

r(x, t) = −50x cos(2πt).

The controller parameters are

k = 2, M = 60, ρ = 0.5.

We used the Backward Euler Method in time and
Chebyshev spectral method in space and programmed
the code in Matlab (see [33]). The spatial grid size
N = 40 and time step dt = 0.0001.

1) We compare displacement change of the sys-
tems between the uncontrolled systems and controlled
system (4).

(a) the pictures for uncontrolled system are given
by Figures 1 and 2.

Figure 1: Displacement of the system (4) without con-
trol input.

Figure 1 shows the displacement of the system
(4) under disturbances without control input, i.e.,
u(x, t) = 0;

Figure 2 shows the dynamic behavior of the cross-
section of same system at x = 0.5.

From both figures we see that it results in the in-
stability.
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Figure 2: Displacement of the system (4) without con-
trol input at x = 0.5.

Figure 3: Displacement of the closed-loop system (4).

(b) the pictures for controlled system are given by
Figures 3 and 4.

Figure 3 exhibits the displacement the change
of the closed-loop system (4); And Figure 4 shows
the dynamic behavior of the cross-section of the con-
trolled system at x = 0.5.

As we see, the displacement of the system con-
verges to zero quickly.

2) We compare displacement change of the sys-
tems between the controlled system (4) and controlled
system (19).

Here we main simulate the dynamic behavior of
(19), in this case, ρ = 0. The simulation results are
shown by pictures 5 and 6.

Figure 5 and 6 illustrate the displacement of sys-
tem (19) and the behavior of the cross-section of the
system at x = 0.5, with all the same parameters as
that in Figure 3 except ρ = 0.
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Figure 4: Displacement of the closed-loop system (4)
at x = 0.5.

Figure 5: Displacement of the closed-loop system
(19) with ρ = 0.

From Figure 5 and 6, we see that the control law

u(x, t) = −kwt(x, t)−Msign[wt(x, t)]

cannot stabilize the solution of the system (19) to ze-
ro. However, it might achieve the bounded stability
in the sense of Lyapunov functional, as shown in both
figures.

5 Concluding Remark
In this paper, we studied the stabilization problem of
a wave equation with unknown disturbance. Employ-
ing the idea of sliding mode control, we designed a
nonlinear feedback control law. By using a trick and
theory of the monotone operators, we proved the solv-
ability of the corresponding closed-loop system. Fur-
thermore, we construct a multiplier term add to the
energy functional which is equivalent to the energy
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Figure 6: Displacement of the closed-loop system
(19) at x = 0.5.

functional, and proved the exponential stability of the
system.

We need to point out that the control strategy used
in this paper is simple and valid, it can avoid the dif-
ficulty aroused the complex control design, including
the solvability and stability analysis of the closed-loop
system. As a test of theoretical result, we give some
Numerical simulations. The simulation results show
that the control law is effective, it has faster decay rate.

In addition, we emphases that the control method
used in this paper also can be applied to other systems
with distributed uncertain disturbances, such as beam-
s, schrödinger equation. In future, we will extend this
controller design method from the interior control to
the boundary control.
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