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Abstract: In this paper, for nonconvex optimization problem with both equality and inequality constrains, we in-
troduce a new augmented Lagrangian function and propose the corresponding multiplier algorithm. The global
convergence is established without requiring the boundedness of multiplier sequences. In particular, if the algo-
rithm terminates in finite steps, then we obtain a KKT point of the primal problem; otherwise the iterative sequence
{xk} generalized by algorithm converges to optimal solutions. Even if {xk} is divergent we also present a neces-
sary and sufficient condition for the convergence of {f(xk)} to the optimal value. Finally, preliminary numerical
experience is reported.
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1 Introduction
Multipliers methods, also called augmented La-
grangian methods, have enjoyed a long and success-
ful history as a tool for solving the nonlinear, convex
or nonconvex optimization problems. Since its first
proposal independently by Hestenes [10] and Powell
[19] in 1969 and its comprehensive study by Rock-
afellar [20, 21, 22] and Bertsekas [3], multiplier meth-
ods have received much interest. These methods have
been studied and applied to general mathematical pro-
gramming problems involving various classes of con-
straints, such as equality constraints [3, 10, 19], in-
equality constraints, and complementarity constraints;
see [3, 15, 20, 21].

In this paper, we consider the following nonlinear
programming problem

(P ) min f(x)

s.t. gi(x) ≤ 0, i = 1, · · · ,m;

hj(x) = 0, j = 1, · · · , l;

where f, gi : Rn → R for i = 1, · · · ,m and
hj : Rn → R for j = 1, · · · , l are all twice differ-

entiable functions. Denoted by X the feasible region
and by X∗ the solution set. (P) is called nonconvex
optimization problem if f(x) or X is nonconvex.

The standard Lagrangian function for this prob-
lem is defined as

L(x, λ, µ) = f(x) +
m∑
i=1

λigi(x) +
l∑

j=1

µjhj(x)

where (λ, µ) ∈ Rm+ × Rl
Recall that a vector x is said to be a KKT point of

(P) if there exist λi ∈ IR+ for all i = 1, · · · ,m and µj
for j = 1, · · · , l such that the following system holds

∇f(x) +
m∑
i=1

λi∇gi(x) +
l∑

j=1

µj∇hj(x) = 0,

λigi(x) = 0, for all i = 1, · · ·m,

where the second condition is referred as the well-
known complementarity condition. For notational
simplification, the multipliers satisfying the above is
denoted by Λ(x).
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The Lagrangian dual problem (D) is presented be-
low.

(D) max θ(λ, µ)

s.t. λ ≥ 0

where θ(λ, µ) = infx∈IRn L(x, λ, µ).
It is well known that for any feasible solution x

and (λ, µ) ∈ Rm+ × Rl, the weak duality relation
f(x) ≥ θ(λ, µ) always holds. Under suitable con-
vexity assumptions, the strong duality theorem shows
that the primal and dual problems have equal opti-
mal objective values. Consequently, the classical La-
grangian method based on the above dual formula-
tion has been widely applied to convex optimization
due to the zero duality gap between the primal and
dual problems. However, for a nonconvex constrained
optimization problem a nonzero duality gap may be
arisen by using the above Lagrangian. To overcome
this drawback, various augmented Lagrangians have
been introduced. The strong duality properties and
exact penalization of different types of augmented La-
grangians or nonlinear Lagrangians have been studied
by many researchers (see e.g., [1, 4, 5, 6, 11, 13, 15,
16, 18, 24, 25, 27]).

An indispensable assumption in the most exist-
ing global convergence analysis for augmented La-
grangian methods is that the multiplier sequence gen-
erated in the algorithms is bounded. This restrictive
assumption confines applications of augmented La-
grangian methods in many practical situation. The
important work on this direction includes [4, 8, 9, 12],
where global convergence of modified augmented La-
grangian methods for nonconvex optimization with
equality constraints was established. Recently, in the
context of inequality-constrained global optimization,
Luo et.al [14] proved the convergence properties of
the primal-dual method based on four types of aug-
mented Lagrangian functions without the bounded-
ness assumption of the multiplier sequence.

In this paper, for the optimization problem (P)
with both equality and inequality constraints, we in-
troduce a new augmented Lagrangian function, which
includes the well-known essentially quadratic aug-
mented Lagrangian function in [21], and its struc-
tures are simpler and easier to solve than those in
[11, 23]. It should be mentioned that it cannot be
derived from the generalized augmented Lagrangian
functions in [11, 23]. Based on this new augmented
Lagrangian, we propose the corresponding multiplier
algorithm and establish its global convergence prop-
erties. Specially, let {xk} be the iterative sequence
generalized by algorithm. Then every limit point of
{xk} is the optimal solution of (P). Compared with
[14], we further consider the case when {xk} is diver-

gent, in which a necessary and sufficient condition for
{f(xk)} converging to the optimal value is given. Fi-
nally, under Mangasarian-Fromovitz constraint quali-
fication, we show that {xk} converge to a KKT point
of (P).

The paper is organized as follows. In section
2, we propose the multiplier algorithm and study the
global convergence properties. Some preliminary nu-
merical results are reported in Section 3. The conclu-
sion is drawn in Section 4.

2 Multiplier Algorithms
A new generalized essential quadratic augmented La-
grangian function for (P) is defined as follows,

L(x, λ, µ, c) :

= f(x) +
l∑

j=1

µjhj(x) +
c

2

l∑
j=1

h2j (x)

+
1

2c

m∑
i=1

{max2{0, ϕ(cgi(x)) + λi} − λ2i } (1)

where (x, λ, µ, c) ∈ Rn×Rm×Rl ×R++ and IR++

denotes the all positive real scalars, i.e., IR++ = {a ∈
IR
∣∣ a > 0}.

The function ϕ : R → R involved in (1) needs to
satisfy the following properties:

(A1) ϕ is continuously differentiable and convex on R;

(A2) ϕ(0) = 0, ϕ′(0) = 1;

(A3) limt→−∞ ϕ(t) = −∞.

If, in particular, ϕ(t) = t, then L reduces to
the essential quadratic augmented Lagrangian func-
tion introduced by Rockafellar, which has been stud-
ied by many authors; see [23] for more information.
Note that the above three conditions ensure that ϕ is
increasing over IR. In fact, it only needs to show that
ϕ′(t) > 0 for all t. If not, we can find t0 such that
ϕ′(t0) ≤ 0. Since ϕ′(0) > 0 by (A2), then acc-
cording to mean value theorem there exists t1 satis-
fying ϕ′(t1) = 0, which in turn implies that t1 is a
global minimization of ϕ over IR, i.e., inft∈IR ϕ(t) =
ϕ(t1) > −∞, contradicting the condition (A3).

Given (x, λ, µ, c), the Lagrangian relaxation
problem associated with the augmented Lagrangian L
is defined as

(Lλ,µ,c) min L(x, λ, µ, c)

s.t. x ∈ Rn.

Its solution set is denoted by S∗(λ, µ, c).
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Throughout this paper we always assume that f
is bounded from below, i.e.,

f∗ = inf
x∈Rn

f(x) > −∞.

This assumption is rather mild in optimization prob-
lem, because otherwise the objective function f can
be replaced by ef(x).

The multiplier algorithm based on the general-
ized essential quadric augmented LagrangianL is pro-
posed below. One of its main feature is that the La-
grangian multipliers associated with equality and in-
equality constraints are not restricted to be bounded,
which make the algorithm applicable for many prob-
lems in practice.

Algorithm 1. (Multiplier algorithm based on L):

Step 0. Select an initial point x0 ∈ Rn, λ0 ≥ 0,
µ0 ∈ R and c0 > 0. Set k := 0,

Step 1. Compute

λk+1i = max{0, ϕ(ckgi(xk))+λki }ϕ′(ckgi(xk)),
∀i = 1, · · · ,m, (2)

µk+1
j = µkj + ckhj(x

k),
∀j = 1, · · · , l, (3)

ck+1 ≥ (k+1)max{1,
m∑
i=1

(λk+1i )2,

l∑
j=1

(µk+1j )2},

(4)

Step 2. Find xk+1 ∈ S∗(λk+1, µk+1, ck+1),

Step 3. If xk+1 ∈ X and (λk+1, µk+1) ∈ Λ(xk+1),
then STOP; otherwise, let k := k + 1 and go back to
Step 1.

Remark 2. If we consider ϵ-global minimization of
the subproblems, then only the global convergence
property can be established. But, a natural ques-
tion is when the multiplier sequences λk and µk are
bounded, whether their accumulate points, say λ∗ and
µ∗, must be KKT multipliers of x∗. To answer this
question, we considers exact global minimization of
the subproblems.

From (4), it is easy to see that

λk

ck
,
µk

ck
,

(λk)2

ck
,

(µk)2

ck
→ 0. (k → ∞) (5)

For establishing the convergence property of Algo-
rithm 1, we first consider the perturbation analysis of
(P). Given α ≥ 0, define the perturbation of feasible
region as

X(α) =

{
x ∈ Rn

∣∣ |gi(x) ≤ α, |hj(x)| ≤ α,
i = 1, · · · ,m, j = 1, · · · , l

}
,

the corresponding perturbation function as

v(α) = inf{f(x)
∣∣ x ∈ X(α)},

and the perturbation of level set as

L(α) = {x ∈ Rn
∣∣ f(x) ≤ v(0) + α}.

It is clear that X(0) coincides with the feasible set of
(P).

Lemma 3. For any λ, µ, and c > 0, one has

S∗(λ, µ, c) ⊆ {x ∈ Rn|L(x, λ, µ, c) ≤ v(0)}.

Proof. For any x̄ ∈ S∗(λ, µ, c), we have

L(x̄, λ, µ, c) = inf{L(x, λ, µ, c)|x ∈ Rn}
≤ inf{L(x, λ, µ, c)|x ∈ X(0)}

= inf{f(x) + 1

2c

m∑
i=1

{max2{0, ϕ(cgi(x))}

+λi} − λ2i | x ∈ X(0)}
≤ inf{f(x)|x ∈ X(0)}
= v(0),

where the second inequality uses the fact ϕ(cgi(x)) ≤
0 for all x ∈ X(0), since ϕ is increasing as previous
discussion.

Lemma 4. Let (λk, µk, ck) be given as in Algorithm
1. For any ϵ > 0, one has

{x ∈ Rn|L(x, λk, µk, ck) ≤ v(0)} ⊆ X(ϵ) ∩ L(ϵ).

whenever k is sufficiently large.

Proof. We prove this result by contradiction. Suppose
that we can find an ϵ0 > 0 and an infinite subsequence
K ⊆ {1, 2, · · · } such that

zk ∈ {x ∈ Rn|L(x, λk, µk, ck) ≤ v(0)}, ∀k ∈ K,
(6)

but

zk /∈ X(ϵ0) or zk /∈ L(ϵ0), ∀k ∈ K.

Consider the following cases:

Case 1. zk /∈ X(ϵ0), k ∈ K.

v(0) ≥ L(zk, λk, µk, ck) (7)

= f(zk) +
1

2ck

m∑
i=1

{
max2{0, ϕ(ckgi(zk)) + λki }

−(λki )
2
}
+

l∑
j=1

µkjhj(z
k) +

ck
2

l∑
j=1

h2j (z
k).
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Since zk /∈ X(ϵ0), it needs to consider the fol-
lowing two subcases.

Subcase 1. There exist an index j0 and an infinite
subsequence K0 ⊆ K such that |hj(zk)| ≥ ϵ0. It then
follows from (7) that

v(0) ≥ f∗ +

l∑
j=1

µkjhj(z
k) +

ck
2

l∑
j=1

h2j (z
k)

− 1

2ck

m∑
i=1

(λki )
2

= f∗ +
ck
2

l∑
j=1

{(
hj(z

k) +
µkj
ck

)2 − (µkj )
2

c2k

}
− 1

2ck

m∑
i=1

(λki )
2

= f∗ +
ck
2

∑
j ̸=j0

(
hj(z

k) +
µkj
ck

)2
+
ck
2

{(
hj0(z

k) +
µkj0
ck

)2 − (µkj0)
2

c2k

}
− 1

2ck

m∑
i=1

(λki )
2 − ck

2

∑
j ̸=j0

(µkj )
2

c2k

≥ f∗ −
ck
2

∑
j ̸=j0

(µkj )
2

c2k
− 1

2ck

m∑
i=1

(λki )
2

+
ck
2

{(
hj0(z

k) +
µkj0
ck

)2 − (µkj0)
2

c2k

}
= f∗ −

1

2

∑
j ̸=j0

(µkj )
2

ck
− 1

2

m∑
i=1

(λkj )
2

ck

+
ck
2

{(
hj0(z

k) +
µkj0
ck

)2 − (µkj0)
2

c2k

}
. (8)

Using (5) and the fact |hj0(zk)| ≥ ϵ0 yield

(
hj0(z

k) +
µkj0
ck

)2 − (µkj )
2

ck
≥ 1

2
ϵ20,

whenever k is sufficiently large. This, together with
(8), yields v(0) = +∞ by taking k ∈ K0 approaches
to ∞, which leads to a contradiction.

Subcase 2. There exists an index i0 and an infinite
subsequence K0 ⊆ K such that gi0(z

k) > ϵ0. It fol-
lows from (7) that

v(0) ≥ f∗ +

l∑
j=1

µkjhj(z
k) +

ck
2

l∑
j=1

h2j (z
k)

+
1

2ck

m∑
i=1

max2{0, ϕ(ckgi(zk)) + λki }

− 1

2ck

m∑
i=1

(λki )
2

= f∗ +
ck
2

l∑
j=1

{(
hj(z

k) +
µkj
ck

)2 − (µkj )
2

c2k

}
+

1

2ck

{
max2{0, ϕ(ckgi0(zk)) + λki0}−(λki0)

2
}

+
1

2ck

∑
i̸=i0

max2{0, ϕ(ckgi(zk))+λki }

− 1

2ck

∑
i̸=i0

(λki )
2

≥ f∗ −
ck
2

l∑
j=1

(µkj )
2

c2k
+

1

2ck
(ck)

2g2i0(z
k)

+gi0(z
k)λki0 −

1

2ck

∑
i̸=i0

(λki )
2

≥ f∗ +
ck
2
ϵ20 + ϵ0λ

k
i0

− 1

2ck

l∑
j=1

(µkj )
2

c2k
− 1

2ck

m∑
i=1

(λki )
2

≥ f∗ +
ck
2
ϵ20 −

1

2ck

l∑
j=1

(µkj )
2

c2k
− 1

2ck

m∑
i=1

(λki )
2,

where the second inequality comes from the convex
inequality ϕ(a) ≥ ϕ(0) + ϕ′(0)a = a for all a ∈ IR
and the last inequality follows from the nonnegativ-
ity of λ by (2). Taking limits in the above inequality
yields v(0) = +∞, which is a contradiction

Case 2. zk /∈ L(ϵ0),∀k ∈ K.

f(zk)

= L(zk, λk, µk, ck)

− 1

2ck

m∑
i=1

{
max2{0, ϕ(ckgi(zk)) + λki } − (λki )

2
}

−
l∑

j=1

µkjhj(z
k)− ck

2

l∑
j=1

h2j (z
k)

≤ v(0)− ck
2

l∑
j=1

{(
hj(z

k) +
µkj
ck

)2 − (µkj )
2

c2k

}
+

1

2ck

m∑
i=1

(λki )
2
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≤ v(0) +
1

2ck

l∑
j=1

(µkj )
2 +

1

2ck

m∑
i=1

(λki )
2. (9)

When k is large enough, it follows from (5) that

1

ck

l∑
j=1

(µkj )
2 +

1

ck

m∑
i=1

(λki )
2 ≤ ϵ0,

which together with (9) means f(zk) ≤ v(0) + ϵ0,
i.e., zk /∈ L(ϵ0), this is a contradiction. The proof is
complete.

With these preparation, the global convergence
property of Algorithm 1 can be given, which shows
that if the algorithm terminates in finite steps, then we
obtain a KKT point of (P); otherwise every limit point
of {xk} would be an optimal solution of (P).

Theorem 5. Let {xk} be the iterative sequence gen-
erated by Algorithm 1. Then If {xk} is terminated in
finite steps, then we get the KKT point of (P); other-
wise, every limit point of {xk} belongs to X∗.

Proof. According to the construction of Algorithm 1,
the first part is clear. For the second case, it follows
from Lemma 3 that when k is large enough we have

S∗(xk, λk, µk) ⊆ X(ϵ) ∩ L(ϵ).

Thus,
xk ∈ X(ϵ) ∩ L(ϵ). (10)

Note that X(ϵ) and L(ϵ) are closed, due to the conti-
nuity of f , gi (i = 1, · · · ,m) and hj (j = 1, · · · , l).
Taking the limit in (10) yields x∗ ∈ X(ϵ) ∩ L(ϵ),
which further shows that x∗ ∈ X(0) ∩ L(0), since
ϵ > 0 is arbitrary, i.e., x∗ ∈ X∗. The proof is com-
plete.

The foregoing result is applicable to the case
when {xk} at least has an accumulation point. How-
ever, a natural question arises: how does the algorithm
perform as {xk} is divergent? The following theorem
gives an answer.

Theorem 6. Let {xk} be an iterative sequence gener-
alized by Algorithm 1. Suppose that limϵ→0+ v(ϵ) >
−∞, then the following statements are equivalent:

(1) limk→∞ f(xk) = v(0);

(2) v(α) is continuous at α = 0.

Proof. (2) ⇒ (1). According to the proof of Theorem
5 (cf. (10)), we know that

v(ϵ) ≤ f(xk) ≤ v(0) + ϵ, (11)

whenever k is sufficiently large. Since v(α) is con-
tinuous at α = 0, taking the lower limitation in (11)
yields

v(0) = lim
ϵ→0+

v(ϵ) ≤ lim inf
k→∞

f(xk)

≤ lim sup
k→∞

f(xk) ≤ v(0),

i.e.,
lim
k→∞

f(xk) = v(0).

(1) ⇒ (2). Note that v(ϵ) ≤ v(0) for all ϵ ≥ 0, since
X(0) ⊆ X(α), then we must have limϵ→0+ v(ϵ) <
v(0). Suppose on the contrary that v is not continuous
at zero from right, then there must exist δ0 > 0 as
ϵ > 0 is small enough such that

v(ϵ) ≤ v(0)− δ0, ∀j. (12)

For any given ck, we can choose a ϵk satisfying

ϵkck → 0 as k → ∞,

In addition, let zk ∈ X(ϵk) with f(zk) ≤ v(ϵk)+
δ0
2 , which further implies f(zk) ≤ v(0)− δ0

2 by (12).
Therefore,

f(xk) = L(xk, λk, µk, ck)

− 1

2ck

m∑
i=1

{
max2{0, ϕ(ckgi(xk))+λki }−(λki )

2
}

−
l∑

j=1

µkjhj(x
k)− ck

2

l∑
j=1

h2j (x
k)

≤ inf
x∈Rn

L(x, λk, µk, ck)−
ck
2

l∑
j=1

{(
hj(x

k)

+
µkj
ck

)2 − (µkj )
2

c2k

}
+

1

2ck

m∑
i=1

(λki )
2

≤ inf
x∈Rn

L(x, λk, µk, ck)

+
1

2ck

l∑
j=1

(µkj )
2 +

1

2ck

m∑
i=1

(λki )
2

≤ f(zk) +
l∑

j=1

µkjhj(z
k) +

ck
2

l∑
j=1

h2j (z
k)

+
1

2ck

m∑
i=1

{
max2{0, ϕ(ckgi(zk) + λki )} − (λki )

2
}

+
1

2ck

l∑
j=1

(µkj )
2 +

1

2ck

m∑
i=1

(λki )
2
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= f(zk) +
ck
2

l∑
j=1

{(
hj(z

k) +
µkj
ck

)2 − (µkj )
2

c2k

}
+

1

2ck

m∑
i=1

{
max2{0, ϕ(ckgi(zk) + λki )} − (λki )

2
}

+
1

2ck

l∑
j=1

(µkj )
2 +

1

2ck

m∑
i=1

(λki )
2

≤ v(0)− δ0
2

+
1

2ck

l∑
j=1

(
ϵjk +

|µkj |
ck

)2
+

1

2ck

m∑
i=1

(
ckϵjk + λki

)2
, (13)

where the last step is due to the fact |hj(zk)| ≤ ϵk
and gi(zk) ≤ ϵk since zk ∈ X(ϵk) and ϕ is increas-
ing. Taking the limits in both sides of (13) and using
Theorem 6 we get

v(0) = lim
k→∞

f(xk) ≤ v(0)− δ0
2

which leads to a contradiction. The proof is complete.

At a point x∗, denote by

I(x∗) = {i
∣∣ gi(x∗) = 0, i = 1, · · · ,m}

the active inequality constraints. The Mangasarian-
Fromovitz constraint qualification is that ∇hj(x∗) for
j = 1, · · · , l are linearly independent and there exists
h ∈ IRn such that

⟨∇gi(x∗), h⟩ < 0, ∀i ∈ I(x∗)

and ⟨∇hj(x∗), h⟩ = 0, ∀j = 1, · · · , l. (14)

The linear independent constraint qualification is
that ∇hj(x∗) for j = 1, · · · , l and ∇gi for i ∈ I(x∗)
are linearly independent.

Theorem 7. Let {xk} be the iterative sequence gen-
erated by Algorithm 1. Then

1. If lim
k→∞

xk = x∗ and the M-F constraint qualifi-

cation is satisfied at x∗, then {λk, µk} is bounded
and any of its limit points, say (λ∗, µ∗), satisfies
that (x∗, λ∗, µ∗) belongs to the KKT system of
(P).

2. If the linearly independent constraint qualifica-
tion holds at x∗, we further obtain that the mul-
tiplier sequence {λki } and {µkj } are convergent.

Proof. If lim
k→∞

xk = x∗, then it follows from Theorem

5 that x∗ ∈ X∗. If i /∈ I(x∗), then gi(xk) < 0 as k
large enough. This means the existence of ϵ0 > 0 such
that gi(xk) ≤ −ϵ0 whenever k is sufficiently large.
Therefore,

lim
k→∞

ckgi(x
k) = −∞. (15)

Taking into account of the properties (A1), (A2)
and Step 1 in Algorithm 1, we obtain

λk+1
i = max{0, ϕ(ckgi(xk)) + λki }ϕ′(ckgi(xk))

≤ max{0, λki } = λki ≤ · · · ≤ λ0i , (16)

where the second equation comes from the nonneg-
ativity of λi according to the construction in Algo-
rithm 1. This justifies the boundedness {λki } for
i /∈ I(x∗). Taking limit in (16) and using (15) and
the fact lim

k→∞
ϕ(ckgi(x

k)) = −∞ by A3 yield

lim
k→∞

λki = 0, ∀i /∈ I(x∗). (17)

We now show that λki for i ∈ I(x∗) and µkj for
j = 1, 2, · · · , l are bounded as well. If this is not
true, then we can find an infinite subsequence K ⊆
{1, 2, · · · , } such that

Tk :=
∑

i∈I(x∗)

λki +

l∑
j=1

|µkj | → +∞, k → ∞. (18)

Since xk−1 ∈ S∗(λk−1, µk−1, ck) by Algorithm 1, ac-
cording to the well-known of optimality conditions we
must have

∇xL(x
k−1, λk−1, µk−1, ck) = 0,

i.e.,

∇f(xk−1)+
m∑
i=1

λki∇gi(xk−1)+
l∑

j=1

µkj∇hi(xk−1) = 0.

(19)

Since λki
Tk

and
|µkj |
Tk

are bounded, we can assume with-
out loss of generality that

λki
Tk

→ λ̃∗i , ∀i ∈ I(x∗)

and
|µkj |
Tk

→ µ̃∗i , ∀j = 1, 2, · · · , l.

Since ∑
i∈I(x∗)

λki
Tk

+
l∑

j=1

|µkj |
Tk

= 1, ∀k (20)
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taking limit with respect to k ∈ K in equation (20)
gives us ∑

i∈I(x∗)

λ̃∗i +

l∑
j=1

µ̃∗i = 1,

which implies that λ̃∗i for i ∈ I(x∗) and µ̃∗j for j =
1, · · · ,m are not all zero. Dividing on both sides of
(19) by Tk, taking limit with respect to k ∈ K, and
using (17) and (18), we get

∑
i∈I(x∗)

λ̃ki∇gi(x∗) +
l∑

j=1

µ̃kj∇hj(x∗) = 0. (21)

We claim that λ̃∗i for i ∈ I(x∗) are not all zero.
In fact, if λ̃∗i = 0 for all i ∈ I(x∗), then (21) takes the
form

l∑
j=1

µ̃kj∇hj(x∗) = 0,

which implies µ̃∗j = 0 for j = 1, · · · ,m, since
∇hj(x∗) are linear independent. This contradicts the
fact that λ̃∗i for i ∈ I(x∗) and µ̃∗j for j = 1, · · · ,m are
not all zero, as shown above.

Multiplying h in both sides of (21) yields

0 =
∑

i∈I(x∗)

λ̃ki ⟨∇gi(x∗), h⟩+
l∑

j=1

µ̃kj ⟨∇hj(x∗), h⟩

=
∑

i∈I(x∗)

λ̃ki ⟨∇gi(x∗), h⟩ < 0,

where the inequality comes from (14) and the fact that
λ̃∗i for i ∈ I(x∗) are not all zero. This leads to a con-
tradiction. Therefore, we establish the boundedness
of {λk, µk}. Let (λ∗, µ∗) be a limit point of {λk, µk}.
It follows from (17) that λ∗ = 0 for i /∈ I(x∗) and
from (19) that

∇f(x∗) +
∑

i∈I(x∗)

λ∗i∇gi(x∗) +
l∑

j=1

µ∗j∇hi(x∗) = 0.

This establishes Part (a). Part (b) can be proved in
the same vein, just noting that in the presence of lin-
early independence constraint qualification, the La-
grangian multiplier must be unique. This together
with the boundedness of {λki } for i = 1, · · · ,m and
{µkj } for j = 1, · · · , l ensure the convergence of these
sequences to the unique accumulation point.

3 Numerical Reports
To give some insight into the behavior of our proposed
algorithm presented in this paper, we solve a noncon-
vex programming problems by letting ϕ take the fol-
lowing different functions:

1. ϕ1(α) = α,

2. ϕ2(α) = ln(1+e
α

2 ) + 1
2α.

3. ϕ3(α) = sinhα = eα−e−α

2 .

4. ϕ4(α) =
{

−1
4 ln(−2α)− 3

8 , α ≤ −1
2 ,

α+ 1
2α

2 otherwise;

In the following, we solve the following three
nonlinear programming by choosing ϕ to take the
above four different functions. The test was done at a
PC of Pentium 4 with 2.8GHz CPU and 1.99GB mem-
ory, and the preliminary numerical experience are re-
ported below, where k is the number of iterations, ck
is the penalty parameter, λk and µk is multipliers, xk
is iterative point found by the algorithm, and f(xk) is
the objective value. In the implementation of our al-
gorithm, we use the BFGS Quasi-Newton method [2]
with a mixed quadratic and cubic line search proce-
dure to solve the Lagrangian subproblem.

Example 8. [26]

min 4x31 − 3x1 + 6x2

s.t. x1 + x2 ≤ 4

x1 − 4x2 ≤ 0

2x21 + x2 = 5

x1 ≥ 0, x2 ≥ 0

The global optimal solution is x∗ = (
√
5
2 , 5−

√
5)

with optimal value f(x∗) = 18.8197. Numerical re-
sults are reported in Table 1, where the initial data are
x0 = (0, 0), c0 = 1, and (λ0, µ0) = (1, 1, 1).

Example 9. Beale problem [7]

min

{
−8x1 − 6x2 − 4x3 + 2x21 + 2x22

+x23 + 2x1x2 + 2x1x3 + 9

}
s.t. x1 + x2 + 2x3 ≤ 3

xi ≥ 0, i = 1, 2, 3.

The global optimal solution is x∗ = (43 ,
7
9 ,

4
9)

with optimal value f(x∗) = 1
9 . Numerical results are

reported in Table 2, where the initial data are x0 =
(0.5, 0.5, 0.5), c0 = 1, and (λ0, µ0) = (1, 1, 1, 1).
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Table 1: Result of Example 8

ϕi(s) k ck xk f(xk)
ϕ1(s) 1 1.0000 (1.1178, 2.7018) 18.4441

3 143.9365 (1.1179, 2.7643) 18.8203
7 252.0040 (1.1180, 2.7640) 18.8197

ϕ2(s) 1 1.0000 (1.1159, 0.2790) 3.8845
3 2.0000 (1.1178, 2.7653) 18.8251
4 107.1985 (1.1180, 2.7640) 18.8197

ϕ3(s) 1 1.0000 (1.1150, 0.2779) 3.8672
3 2.0000 (1.1181, 2.7639) 18.8196
4 143.9365 (1.1180, 2.7640) 18.8197

ϕ4(s) 1 1.0000 (1.1162, 0.2784) 3.8843
2 2.0000 (1.1179, 2.7639) 18.8179
3 107.2257 (1.1180, 2.7640) 18.8197

Example 10. [17]

min f(x) = −5(x1 + x2) + 7(x4 − 3x3)

+x21 + x22 + 2x23 + x24

s.t.
4∑
i=1

x2i + x1 − x2 + x3 − x4 − 8 ≤ 0

x21 + 2x22 + x23 + 2x24 − x1 − x4 − 10 ≤ 0

2x21 + x22 + x23 + 2x1 − x2 − x4 − 5 = 0

The global optimal solution is x∗ = (0, 1, 2,−1)
with optimal value f(x∗) = −44. Numerical results
are reported in Table 3, where the initial data are x0 =
(2, 2, 2, 2), c0 = 1, and (λ0, µ0) = (1, 1, 1).

4 Conclusion
A new generalized essentially quadratic augmented
Lagrangian function and the corresponding multiplier
algorithm are proposed. Particularly, the global con-
vergence property is established without requiring the
boundedness of Lagrangian multiplier sequence. In
addition, a necessary and sufficient condition for the
convergence of f(xk) to the optimal value is given.
This guarantees that the algorithm can be applicable
for many problems in practice. Our numerical reports
indicate that the generalization of ϕ from linear func-
tion to nonlinear function is not merely generalization
for its own sake but also can obtain better convergence
performance. As our future work, one of the interest-
ing and important topics is whether these nice prop-
erties could be extended to more general cone pro-
gramming, such as second-order cone programming
and semidefinite programming.
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