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Abstract: Let G be a finite group and let G∗ be the set of elements of primary and biprimary orders of G. We show
that when the conjugacy class sizes of G∗ are {1,m, n,mn}, then G is solvable.
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1 Introduction
A well-established research area in finite group the-
ory consists in exploring the relationship between the
structure of a group G and the set of its conjugacy
class sizes of the elements of G. The best known in-
stance of this is Itô′s result in [1]:

Theorem 1 [1, Theorem 1] If the sizes of the conju-
gacy classes of a groupG are {1,m}, thenG is nilpo-
tent, m = pa for some prime p and G = P × A, with
P a Sylow p-subgroup of G and A ⊆ Z(G).

There exist several other results studying the solv-
ability of a group under some arithmetical conditions
on its conjugacy class sizes. For example, In [2]
Beltrán and Felipe prove the following two results:

Theorem 2 [2, Theorem 7] Let G be a group and
suppose that the conjugacy class sizes of elements of
G are exactly {1, pa, n, pan} with (p, n) = 1 and
a ≥ 0. Then G is solvable.

Theorem 3 [3, Theorem A] Let G be a group and
suppose that the conjugacy class sizes ofG are exactly
{1,m, n,mn} with (m,n) = 1, then G is solvable.

On the other hand, some other authors replace
conditions for all conjugacy classes by conditions re-
ferring to only some conjugacy classes in order to in-
vestigate the nilpotency or solvability of a finite group.
We say that a group element has primary, biprimary or
triprimary order respectively if its order is divisible by
at most one, two or three primes. In [3] E. Alemany,
A. Beltrán and M. J. Felipe extend Itô′s result by re-
placing conditions for all conjugacy classes by con-
ditions referring to only some conjugacy classes. For
instance, the conjugacy classes of elements of primary
orders of G.

Theorem 4 [3, Corollary B] Let G be a finite group
and suppose that G has exactly two class sizes of
elements of prime power order, 1 and m. Then m
is a prime power and G is nilpotent. Moreover,
G = Q × A, with Q a Sylow q-subgroup of G and
A ≤ Z(G).

Recently, in [4] Kong focuses his attention on
conjugacy classes sizes of all elements of primary,
biprimary and triprimary orders of G and obtain a
complete extension of Theorem 2. He proves:

Theorem 5 [4, Theorem A] Let G be a group and
let G∗ be the set of elements of primary, biprimary
and triprimary orders of G. Suppose that the conju-
gacy class sizes of G∗ are exactly {1, pa, n, pan} with
(p, n) = 1 and a ≥ 0, then G is solvable.

In the present paper, we will continue to focus our
attention on conjugacy classes sizes of all elements of
primary and biprimary orders of G and also obtain a
complete extension of the Theorem 3 of Beltrán and
Felipe. Our main result is the following:

Theorem 6 Let G be a group and let G∗ be the set
of elements of primary and biprimary orders of G.
Suppose that the conjugacy class sizes of G∗ are
{1,m, n,mn} with (m,n) = 1, then G is solvable.

In order to prove Theorem 6, we will first obtain
the solvability of G when one of the class sizes m or
n is a prime power, that is, when for instance m = pa

for some prime p. The proof of Theorem 6 will consist
then of proving that one of the two class sizes m or n
is a prime power.

Theorem 7 Let G be a group and let G∗ be the set
of elements of primary and biprimary orders of G.
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Suppose that the conjugacy class sizes of G∗ are
{1, pa, n, pan} with (p, n) = 1 and a ≥ 0, then G
is solvable.

There is an evident question about solvability
arises when we eliminate the coprime hypothesis and
we are interested in studying which arithmetical con-
ditions on groups with four class sizes of elements of
primary and biprimary orders yield their solvability.
For p-solvable group, in [5] Kong eliminates the co-
prime hypothesis (p, n) = 1 and get the following
main result:

Theorem 8 [5, Theorem C] Let G be a p-solvable
group and let G∗ be the set of elements of primary
and biprimary orders of G. Suppose that the conju-
gacy class sizes of G∗ are {1, pa, n, pan}, where p di-
vides the positive integer n and pa does not divide n,
then G is up to central factors a {p, q}-group with p
and q two distinct primes. In particular,G is solvable.

At last, with the aid of Theorem 8, we get the
following main result:

Theorem 9 Let G be a finite p-solvable group and let
G∗ be the set of elements of primary and biprimary
orders of G. Suppose that the conjugacy class sizes
of G∗ are {1,m, n,mn}, where m, n are positive in-
tegers which do not divide one to another, then G is
up to central factors a {p, q}-group with p and q two
distinct primes. In particular, G is solvable.

Remark 10 It is known that there seems to exist cer-
tain parallelism between the results obtained on the
group structure from the set of its conjugacy class
sizes and the results obtained from the set of its char-
acter degrees. In [6], groups whose character degrees
are {1,m, n,mn} are proved to be solvable. Our
main result in this paper shows the same conclusion
when the set of class sizes ofG∗ is {1,m, n,mn} with
(m,n) = 1. In fact, we believe that the result is true
for arbitrary integers m and n, but we have not been
able to prove it with the techniques we employ here.
Recently in [13, 14], we use this techniques to study
the nilpotency of a finite group.

Throughout this paper all groups are finite. If G
is a group, then xG denotes the conjugacy class con-
taining x and |xG| the size of xG. Following Baer [7],
we call IndG(x) = |xG| = |G : CG(x)|, the index of
x in G. The rest of our notation and terminology are
standard.

2 Preliminary results
In this section, we state the necessary results for the
proof of our main theorem.

Lemma 11 [8, Theorem 5] Let G be a finite group
and p a prime divisor of |G|. Then G has no
p′−element of prime power order and index divisible
by p if and only if G is a direct product of a p-group
and a p′-group.

Lemma 12 [9, Lemma 5] Let G be a group. A prime
p does not divide any conjugacy class length of any
element of prime power order of G if and only if G
has a central Sylow p-subgroup.

Lemma 13 [3, Lemma 6] Suppose that the three
smallest non-trivial indices of elements of a group G
are a < b < c, with (a,b)=1 and a2 < c. Then the set
{g ∈ G| |gG| = 1 or a} is a normal subgroup of G.

The following is the Thompson′s A×B Lemma.

Lemma 14 [10] LetAB be a finite group represented
as a group of automorphisms of a p-group G with
[A,B] = 1 = [A,CG(B)], B a p-group and A =
Op(A). Then [A,G] = 1.

In order to prove the following Lemma, we need
one application of the Classification of the Finite Sim-
ple Groups.

Lemma 15 [11] Let G be a transitive permutation
group on a set Ω with |Ω| > 1. Then there exist a
prime p and an element x ∈ G of order a power of p
such that x acts without fixed points on Ω.

Lemma 16 Let G be a π-separable group. where π
is a non-empty subset of π(G). Then the conjugacy
class size of any π-element x of primary order in G is
a π-number if and only if G = Oπ(G)×Oπ′(G).

Proof: The converse direction is easy and so it is suf-
ficient to prove the direct sense.

Let Ω be the set of all Hall π′-subgroups of G.
Then Ω is non-empty as G is π-separable. Moreover,
G acts transitively on Ω. By Lemma 15, for some
prime p , there exists an p-element g ∈ G that acts
without fixed points on Ω. Suppose that p ∈ π′. Since
G is π-separable, g ∈ Hi for some Hi ∈ Ω, and so
Hg
i = Hi. This contradiction gives r ∈ π. Moreover,

there exists some Hj ∈ Ω such that Hj ≤ CG(g),
which implies that Hg

j = Hj , also a contradiction.
Consequently, H = Oπ′(G) E G. Moreover,

H ≤ CG(x) for every π-element x of primary or-
der, which implies x ∈ CG(H). Therefore, G =
Oπ(G)×Oπ′(G). ⊓⊔

WSEAS TRANSACTIONS on MATHEMATICS Ping Kang

E-ISSN: 2224-2880 151 Volume 14, 2015



Lemma 17 [3, Theorem A] Suppose that G is a finite
p-solvable group and that 1 and m are the conjugacy
class sizes of p′-elements of prime power order. Then
m = paqb, with q a prime distinct from p and a, b ≥ 0.
If b = 0, then G has abelian p-complement. If b ̸= 0,
thenG = PQ×A, withP andQ a Sylow p−subgroup
and a Sylow q−subgroup of G, respectively, and A ≤
Z(G). Furthermore, if a = 0, then G = P ×Q×A.

Lemma 18 [12, Proposition 1] Let G be a finite
group with a subgroupA0 such thatA0 is a character-
istic subgroup of A, a subgroup of G, such that every
element of A0 has centralizer A or G. Let π be the
set of primes dividing |A0/A0 ∩ Z(G)| and assume
|π| > 1. Then either

(i) NG(A)/A is a π′-group or
(ii)|NG(A)/A| = p for some p ∈ π.

3 Proofs of main results
Proof of Theorem 7 We finish the proof by the fol-
lowing several steps:

Step 1. We may suppose that there are no p-element
of index pa. Consequently, there exists some p′-
element of index pa.

Assume that x is a p-element of index pa and take
any p′-element y of primary order of CG(x). The
fact that CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x) im-
plies that y has index 1 or n in CG(x), and so in
particular, we can apply Lemma 11 to obtain that
CG(x) = CG(x)p × CG(x)p′ . If CG(x)p′ is not
abelian, then class sizes of primary elements of such
a p′-subgroup are exactly the two numbers 1 and n in
CG(x)p′ . Note that n must occur. It follows Theorem
4 that n is a prime power and therefore, G is solvable
by Lemma ?? and Burnside′s paqb-Theorem, we are
done.

Now we prove that CG(x)p′ is not abelian. Oth-
erwise, we have that CG(x)p′ has a p-complement
H , which also a p-complement of G. Moreover,
H � Z(G). Let v ∈ H − Z(G) be a primary
element. Then |vG| = pa and CG(x) = CG(v).
For any w ∈ CG(x)p, we have that |wG| = 1 or
pa. Since |CG(x) : CG(x) ∩ CG(w)| = |CG(v) :
CG(v)∩CG(w)| = 1 or n andCG(x)p′ ≤ CG(w), we
have that CG(x) = CG(w). Hence CG(x) is abelian.
Let y ∈ G be a primary element of index n. By conju-
gation, there is some g ∈ G such that xg

−1 ∈ CG(y),
that is, yg ∈ CG(x). Hence CG(x) ≤ CG(y

g). It
follows that |yG|||xG|, a contradiction.

In order to apply this step it is enough to consider
the decomposition of an element of index pa as a prod-
uct of a p-element by a p′-element.

Step 2. We may suppose that there are no p′-element
of index n. As a result, there exist p-elements of index
n.

Assume that y ∈ G∗ is a p′-element of index n.
By considering the primary decomposition and the hy-
potheses we can further assume y to be a q-element for
some prime q ≠ p. Take any q′-element x of primary
order of CG(y). Note that CG(xy) = CG(x)∩CG(y)
and that |CG(y) : CG(x)∩CG(y)| must be equal to 1
or pa. Thus any q′-element of primary order of CG(y)
has index 1 or pa in CG(y), and in particular, this in-
dex is a q′-number. By applying Lemma 11, we ob-
tain that CG(y) = Qy × A, with Qy a q-group and
A a q′-subgroup. Notice that the class size in A of
any element of primary order of A is 1 or pa, and so
by Theorem 4 we can write A = P × B, with P ∈
Sylp(G) and B a {p, q}′-subgroup. Now we choose
a p′-element of primary order, say t, of index pa. As
y is a q-element and t has index pa, we can suppose
without loss that y ∈ CG(t), so that t ∈ CG(y). But
this is a contradiction since the p′-elements of primary
order of CG(y) are centralized by P and t has index
pa.

We obtain the second statement with an argument
as in the above step.

Step 3. If x is a p-element of index pan, then
CG(x) = Px × Vx with Px a p-group and Vx an
abelian p′-group such that Vx * Z(G). If y is a p′-
element of index pan, then CG(y) = Py × Vy with Py
an abelian p-group such that Py * Z(G) and Vy a
p′-group.

Let x be a p-element of index pan and let y ∈
CG(x) be any p′-element of primary order. Then we
have that CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x).
As pan is the largest class size of G∗, we get that
CG(xy) = CG(x), Thus CG(x) ⊆ CG(y). This
implies that y ∈ Z(CG(x)), hence we can write
CG(x) = Px×Vx with Px a p-group and Vx an abelian
p′-group. It remains to show that Vx cannot be central
in G.

Assume that Vx ⊆ Z(G). Then we have that
Vx = Z(G)p′ and |G : Z(G)|p′ = n. Choose z
a non-central p-element of G, which must have in-
dex n or pan by Step 1. In every case, we can get
that Z(G)p′ is a p-complement of CG(z). This im-
plies that if we choose any non-central p′-element w
of primary order of G, then any p-element CG(w)
must be central in G. This means that Z(G)p is a
Sylow p-subgroup of CG(w). As w has index pa or
pan, we have that |G : Z(G)|p = pa. This yields
|G : Z(G)| = |G : Z(G)|p|G : Z(G)|p′ = pan,
which contradicts the existence in G∗ of elements of
index pan. Hence, the first assertion of the step is
proved.
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The second part of this step can be proved by rea-
soning in a similar way with a p′-element of index
pan.

Step 4. If pa > n, we define Lp = {x| x is p-element
and |xG| = 1 or n}. Then Lp is an abelian normal
p-subgroup of G. If pa < n, for any prime q dividing
n, we define Lq = {x| x is q-element and |xG| = 1 or
pa}. Then Lq is an abelian normal q-subgroup of G.

Suppose that pa > n. Applying Lemma 13, we
obtain that the set W = {x||xG| = 1 or n} is a
normal subgroup of G. Now, if x is any element
in G∗ of index n and factorize x = xpxp′ , with xp
and xp′ a p-element and a p′-element of primary or-
der, respectively, it follows that xp′ must be central
by Step 1, whence x ∈ Lp × Z(G)p′ . Therefore,
W = Lp×Z(G)p′ andLp is also a normal p-subgroup
of G, as we wanted to prove.

Finally, we see that Lp is abelian. If we take any
y ∈ Lp, then |Lp : CLp(y)| divides (|Lp|, n) = 1.
Consequently, Lp is abelian.

Similarly, if pa < n, then again by Lemma 13, the
set W ′ = {x||xG| = 1 or pa} is a normal subgroup
of G, and the argument to show that Lq is an abelian
normal q-subgroup of G is similar.

Now we write Lp′ = {x| x is p′-element of G∗

and |xG| = 1 or pa}. Notice that Lp′ is the direct
product of the subgroups Lq for all primes q divid-
ing n, and consequently, Lp′ is an abelian normal sub-
group of G.

As a consequence of Step 4, we will distinguish
two cases: pa > n and pa < n.

Case 1. pa > n.

Step 5. Lp is an abelian normal Sylow p-subgroup of
G. In particular, G is p-solvable.

In order to prove that Lp is a Sylow p-subgroup
of G, because of Step 1 it is enough to show that
there are no p-elements of index pan. Suppose that
z is a p-element of index pan. By Step 3, we may
write CG(z) = Pz × Vz , with Vz a non-central
abelian p′-group and Pz a p-group. If t ∈ Vz , it
is clear that CG(z) ⊆ CG(t), so that in particular
CLp(z) ⊆ CLp(t). By applying Lemma 14, we get
t ∈ M = CG(Lp), and thus Vz ⊆ M . On the other
hand, by Step 2 we know that any non-central ele-
ment t ∈ Vz of primary or biprimary order has index
pa or pan, so that |CG(t) : CG(z)| must be 1 or n.
This proves that Lp ⊆ CG(z) and it follows that Lp
centralizes every p-element of index pan. Also any
p-element of index n trivially centralizes Lp as it is
abelian. We conclude then that any p-element of G
lies in M , whence |G : M | is a p′-number. Further-

more, since Lp ⊆ M ⊆ CG(k) for any non-central
k ∈ Lp, which has index n, we have that n must di-
vide |G :M |. Considering the equality

|G :M ||M : Vz| = |G : CG(z)||CG(z) : Vz|,

together with the properties noted above, we conclude
that Vz is a p-complement of M .

Let x be a p-element of G, which we know lies in
M . If x has index 1 or n, then it certainly follows that
x ∈ Z(M). If x has index pan, then by Step 3, we
write CG(x) = Px×Vx with Vx a non-central abelian
p′-group and Px a p-group. As we have seen above,
Vx is a p-complement of M , and in particular Vx ⊆
CM (x) and |M : CM (x)| is a p-number. Thus the
index of any p-element ofM is a p-number. Moreover
M is solvable by Wielandt′s theorem, as it possesses
abelian p-complements. Hence, by applying Lemma
16, we can write M = P × Vz , where P ∈ Sylp(G).
In particular, P is normal in G, but if we choose some
non-central element y ∈ Vz of primary or biprimary
order, then we have P ⊆ CG(y), so that y has index
n, which contradicts Step 2.

Step 6. G is solvable.
Let us consider a p-complement H of G, write

G = LpH , G = G/Lp ∼= H and use bars to work in
G. For any x ∈ G we can choose x to be a p′-element
of primary order of H . If we take y ∈ CG(x), we can
also assume without loss that y ∈ H . Since [x, y] = 1
we have [x, y] ∈ Lp ∩ H = 1, and so y ∈ CG(x).
This shows that CG(x) = CG(x).

On the other hand, we know that x has index pa
or pan and this is equal to

|G : CG(x)Lp||CG(x)Lp : CG(x)|.

The first index is a p′-number since Lp is a Sylow p-
subgroup and the second one is a p-number, so that
|G : CG(x)Lp| is equal to 1 or n. Therefore, the
equality of centralizers obtained above shows that x
has index 1 or n in G. By applying Theorem 4, we
conclude that G is nilpotent, and as a consequence, G
is solvable.

Case 2. pa < n.

Step 7. For any prime q dividing n, if Lq is not cen-
tral in G, then Lq is an abelian normal Sylow q-
subgroup of G.

We will assume that Lq is not central and not a
Sylow q-subgroup of G for some prime q dividing n.
This means that there is a q-element, say w, of index
pan. By Step 3 we can write CG(w) = Pw × Vw
with Pw a non-central abelian p-group and Vw a p′-
subgroup. For each u ∈ Pw we have CG(w) ⊆
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CG(u) and in particular CLq(w) ⊆ CLq(u), so that
by Thompson′s theorem we conclude that u ∈ N =
CG(Lq) and hence Pw ⊆ N .

Now for the rest of this step, since Lq is not
central in G, we can fix a q-element y of index pa,
notice that N ⊆ CG(y). As w has index pan, it
easily follows that |CG(y) : N | and N : Pw| are
both p′-numbers, so that Pw ∈ Sylp(N) and Pw ∈
Sylp(CG(y)). This property holds not only for w but
also for any p′-element of index pan.

We show now that any q-element of G lies in N .
Certainly Lq ⊆ N . We choose a q-element z from Lq
(and thus of index pan), we will prove that it lies inN .
By Step 3, we can writeCG(z) = Pz×Vz , where Pz is
a non-central p-group and Vz is a p′-subgroup. By the
above paragraph we know that Pz ⊆ N . For any u ∈
Pz we have CG(z) ⊆ CG(u), and since u has index n
or npa by Step 1, it follows that |CG(u) : CG(z)| is 1
or pa. Since Pz ⊆ N we have Lq ⊆ CG(u), so that
Lq ⊆ CG(z). Then z ∈ N , as we wanted to prove.

Now let any element t ∈ CG(y) and consider
the primary decomposition t = tqtq1 · · · tqs , where
q, qi ∈ π(G), i = 1, · · ·, s. Then for every tqi , we
have CG(tqi) ∩ CG(y) = CG(tqiy) ⊆ CG(y) and
|CG(y) : CG(tqiy)| must be equal to 1 or n. Since
Pw ∈ Sylp(CG(y)), we deduce that there exists some
g ∈ CG(y) such that P gw ⊆ CG(tqiy) ⊆ CG(tqi).
Consequently, tqi ∈ CG(P

g
w). Now we distinguish

two cases for tq. Suppose first that tq ∈ Lq, so
that P gw ⊆ N ⊆ CG(tq). In this case we conclude
that t ∈ CG(P

g
w). In the other case, that is, when

tq /∈ Lq, so that tq has index pan, as in the first para-
graph we can write CG(tq) = Ptq × Vtq , where Ptq
is abelian and non-central in G. The property proved
above for w also holds for tq, so that Ptq is a Sylow
p-subgroup of CG(y) and as a result Ptq = P gw for
some g ∈ CG(y). Since Ptq is central in CG(tq), we
conclude that t ∈ CG(P

g
w) too. These properties yield

that
CG(y) =

∪
g∈CG(y)

CCG(y)(Pw)
g,

As CG(y) cannot be union of proper conjugate sub-
groups of CG(y), we deduce that Pw must be cen-
tral in CG(y). But we know that Pw is not central
in G, so that if we choose some non-central element
u ∈ CG(y), we have CG(y) ⊆ CG(u), which implies
that u is a p-element of index pa, contradicting Step 1.

Step 8. G is solvable.
Choose any prime q dividing n and take a fixed

q-element y of index pa and Py ∈ Sylp(CG(y)). First
we notice that any q′-element of primary order, say
x, of CG(y) has index 1 or n in CG(y), so that there
exists some g ∈ CG(y) such that P gy ⊆ CG(x). Now,
for any t ∈ CG(y) and t = tqtq1 · · · tqs with the

usual notation. By the above property we have tqi ∈
CG(P

g
y ) for some g ∈ CG(y). On the other hand,

certainly tq ∈ Lq, whence we can write

CG(y) =
∪

g∈CG(y)

CCG(y)(Py)
gLq.

This forces thatCG(y) = CCG(y)(Py)Lq and as a con-
sequence, |G : CCG(y)(Py)| is a {p, q}-number. Now,
if there exists some non-central u ∈ Py which has in-
dex n or npa, we conclude that n is a q-power and this
forces G to be solvable by Lemma 12 and Burnside′s
paqb-Theorem.

So, finally we suppose that Py is central in G and
write CG(y) = Py × Vy where Vy is a p′-subgroup.
As y has index pa, we have Lp′ ⊆ Vy. If the equality
holds, thenG has a normal abelian p-complement, and
so in particular G is solvable and the proof is finished
again. Therefore, we assume that Vy ̸= Lp′ , so that
some element t ∈ Vy of primary or biprimary order
has index pan. By Step 3, we know that CG(t) =
Pt × Vt, where Pt a non-central p-group. As y ∈ Vt
we have Pt ⊆ Py and this is a contradiction. ⊓⊔

Now, we are ready to prove our Theorem 6.

Proof of Theorem 6 We denote by π the set of
primes dividing m and π′ the set of primes divid-
ing n. By Lemma 12, we can certainly assume that
π(G) = π ∪ π′. In order to apply Theorem 7, we
will show that either m or n is a prime power. In fact,
we will prove that if n < m then there exists a prime
q ∈ π such that the set of q-elements in G of index
1 or n is an abelian normal Sylow q-subgroup of G.
This is the key to the proof that m must be a power of
q. We finish the proof by the following several steps:

Step 1. We can assume that G has no π-elements of
index m and no π′-elements of index n.

Let x be a π-element of index m. Notice that
by the primary decomposition we can assume with-
out loss of generality that x is a p-element for some
prime p ∈ π such that |xG| = m. Now, if y
is a p′-element of primary order of CG(x), then as
CG(xy) = CG(x) ∩ CG(y) ⊆ CG(x), we have that
y has necessarily index 1 or n in CG(x), which is a
p′-number. By Lemma 11, CG(x) can be written as
a direct product of a p-subgroup and a p′-subgroup,
so CG(x) = CG(x)p × CG(x)p′ . By reasoning in a
similar way in Step 1 of the proof of Theorem 7 we
can prove that CG(x)p′ is not abelian. Thus, the class
sizes of elements of primary orders of CG(x)p′ are 1
or n. By Theorem 4, we have that n is a prime power
and consequently, G is solvable by Theorem 7 and the
theorem is proved.

The second assertion holds because the hypothe-
ses are symmetric in m and n.
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Step 2. If x is a π-element of index mn, then
CG(x) = Ux × Vx with Ux a π-group and Vx an
abelian π′-group such that Vx * Z(G). Similarly, If
y is a π′-element of index mn, then CG(y) = Uy×Vy
with Uy an abelian π-group such that Uy * Z(G) and
Vy a π′-group.

Suppose that x is a π-element in G∗ of index
mn. Certainly we can assume by considering the pri-
mary decomposition that x is a p-element for some
prime p ∈ π. Let y ∈ CG(x) be any p′-element
of primary order. Then we have that CG(xy) =
CG(x) ∩ CG(y) ⊆ CG(x). As mn is the largest
class size of G∗, we get that CG(xy) = CG(x), Thus
CG(x) ⊆ CG(y). This implies that y ∈ Z(CG(x)),
hence we can write CG(x) = Ux × Vx with Ux a π-
group and Vx an abelian π′-group. It remains to show
that Vx cannot be central in G.

Assume that Vx ⊆ Z(G). Then we have that
Vx = Z(G)π′ and |G : Z(G)|π′ = n. Choose z a non-
central π-element of primary order of G, which must
have index n or mn by Step 1. In every case, we can
get thatZ(G)π′ is a π-complement ofCG(z). This im-
plies that if we choose any non-central π′-element w
of primary order of G, then any π-element of primary
order of CG(w) must be central in G. This means that
Z(G)π is a Hall π-subgroup of CG(w). As w has in-
dex m or mn, we have that |G : Z(G)|π = m. This
yields |G : Z(G)| = |G : Z(G)|π|G : Z(G)|π′ =
mn, which contradicts the existence inG∗ of elements
of index mn. Hence, the first assertion of the step is
proved.

The second part of this step can be proved by rea-
soning in a similar way with a π′-element of index
mn.

From now on we will assume that n < m.

Step 3. For a prime q ∈ π, we define Lq = {x| x is
q-element and |xG| = 1 or n}. Then Lq is an abelian
normal q-subgroup of G.

Applying Lemma 13, we obtain that the set W =
{x||xG| = 1 or n} is a normal subgroup of G. Now,
if x is any element in G∗ of index n and factorize x =
xqxq′ ,with xq and xq′ a q-element and a q′-element of
primary order, respectively, it follows that xq′ must be
central by Step 1, whence x ∈ Lq × Z(G)q′ . There-
fore, W = Lq × Z(G)q′ and Lq is also a normal q-
subgroup of G, as we wanted to prove.

Finally, we see that Lq is abelian. If we take any
y ∈ Lq, then |Lq : CLq(y)| divides (|Lq|, n) = 1.
Consequently, Lq is abelian.

Now we write Lπ = {x| x is π-element ofG∗ and
|xG| = 1 or n}. Notice that Lπ is the direct product
of the subgroups Lq for all primes q ∈ π, and conse-
quently, Lπ is an abelian normal subgroup of G.

Step 4. Let q ∈ π. If Lq is not central in G, then Lq

is an abelian normal Sylow q-subgroup of G.

We will assume that Lq is not central in G and
that Lq is not Sylow q-subgroup of G and work to
get a contradiction. In this case, we may choose
a q-element w of index mn and by Step 2, write
CG(w) = Uw × Vw, with Vw a noncentral abelian
π′-group and Uw a π-group. If u ∈ Vw, it is clear that
CG(w) ⊆ CG(u), so in particular CLq(w) ⊆ CLq(u).
By applying Lemma 14, we get u ∈ M = CG(Lq)
and therefore, Vw ⊆M .

For the rest of this step we fix some non-central
element y ∈ Lq, so that M ⊆ CG(y). As w has index
mn and y has index n, it is easy to see that |CG(y) :
M | and |M : Vw| are both π-numbers, and so Vw is a
Hall π′-subgroup of M and CG(y).

We show now that any q-element of G lies in M .
It is trivial that Lq ⊆ M , and so we consider an ele-
ment z /∈ Lq, thus z must have index mn. By Step
2, we may write CG(z) = Uz × Vz , where Uz is a π-
group and Vz a non-central abelian π′-subgroup, and
arguing with z as we did above with w, we obtain that
Vz ⊆ M . Suppose that u ∈ Vz in G∗ and u is non-
central, then CG(z) ⊆ CG(u). In addition, by Step
1, u has index m or mn, so that |CG(u) : CG(z)| is
equal to 1 or n. Since Vz ⊆M we have Lq ⊆ CG(u),
so that Lq ⊆ CG(z) and consequently z ∈ M , as we
wanted to prove.

Now let any element t ∈ CG(y) and consider
the primary decomposition t = tqtq1 · · · tqs , where
q, qi ∈ π(G), i = 1, · · ·, s. Then for every tqi , we
have CG(tqi) ∩ CG(y) = CG(tqiy) ⊆ CG(y) and
|CG(y) : CG(tqiy)| must be equal to 1 orm because y
has index n. Since Vw is a non-central π-complement
ofCG(y) for some r ∈ π′ we can choose a non-central
Sylow r-subgroup R of CG(y) which is also a Sylow
r-subgroup of M . Then there exists some g ∈ CG(y)
such that Rg ⊆ CG(tqiy) ⊆ CG(tqi), so that tqi ∈
CG(R

g). Now we distinguish two cases for tq. Sup-
pose first that tq ∈ Lq, so that Rg ⊆ M ⊆ CG(tq),
we conclude that t ∈ CG(R

g).

In the other case, that is, when tq is not in Lq and
hence has index mn, we can again write CG(tq) =
Utq × Vtq , where Vtq is an abelian non-central π′-
subgroup and Utq is a π-group. Furthermore, notice
that the property of w given at the beginning of this
step holds for tq, that is, Vtq is also a π-complement of
M and of CG(y). As we know thatM has non-central
π-complements and non-central Sylow r-subgroups,
we may consider the Sylow r-subgroup R1 of Vtq ,
which is not central. Then tqi ∈ CG(tq) ⊆ CG(R1)
and trivially tq ∈ CG(R1), whence t ∈ CG(R1).
Since R1 = Rg for some g ∈ CG(y) the above re-
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marks combine to yield the equality

CG(y) =
∪

g∈CG(y)

CCG(y)(R)
g,

which implies that R must be central in CG(y). But
we know that R is not central in G, and so if we take
some non-central u ∈ R, we haveCG(y) ⊆ CG(R) ⊆
CG(u). This provides a π′-element u of index n, con-
tradicting Step 1.

Step 5. G is solvable.
By considering the decomposition of any element

of index n and taking into account Step 1, we see im-
mediately that Lπ is non-trivial. Thus we may choose
a prime q ∈ π and fix a q-element y ∈ Lπ of index
n. In particular, we are assuming that Lq is not cen-
tral in G, and thus Lq is a Sylow q-subgroup of G by
Step 4. It is easy to check that any q′-element of pri-
mary order of CG(y) has index 1 or m in CG(y). We
will assume first that there exists a non-central Sylow
r-subgroup R of CG(y) for some prime r ∈ π′. If w
is a q

′
-element of primary order of CG(y), then there

exists some g ∈ CG(y) such that Rg ⊆ CG(w), that
is, w ∈ CCG(y)(R)

g. Thus, if we consider the {q, q′}-
decomposition of any element of CG(y), taking into
account that Lq is a Sylow q-subgroup of G, we have

CG(y) =
∪

g∈CG(y)

CCG(y)(R)
gLq

=
∪

g∈CG(y)

(CCG(y)(R)Lq)
g.

This implies thatCG(y) = CCG(y)(R)Lq, and accord-
ingly, |CG(y) : CCG(y)(R)| is a q-number. Now, we
take some non-central u ∈ R, which has index m or
mn. Observe that CCG(y)(R) ⊆ CG(u) ∩ CG(y) =
CG(uy) ⊆ CG(y), so that uy has index n or mn. The
first case leads to CG(y) ⊆ CG(u), which is a con-
tradiction, and so uy has index mn and it follows that
m is a q-power. By Theorem 7, we obtain that G is
solvable and the theorem is proved.

Therefore, we will assume that for each prime
r ∈ π′ every Sylow r-subgroup of CG(y) is cen-
tral in G and we will obtain a contradiction. In this
case, we have CG(y) = S × Z(G)π′ for some π-
subgroup S, and also |G : Z(G)|π′ = n. If there
exists a π-element in G∗ of index mn, then the de-
composition of its centralizer given by Step 2 easily
leads to a contradiction. Thus we assume that there are
no π-elements in G∗ of index mn, and consequently
that S = Lπ. Furthermore, this implies that any π-
element of index n has the same centralizer, that is,
Lπ × Z(G)π′ . Now take an element w in G∗ of in-
dex mn and consider the factorization w = wπwπ′ ,

where wπ and wπ′ are elements of primary orders.
We know that wπ has index 1 or n. If wπ has in-
dex n, by the above comments wπ′ must be central,
contradicting the fact that w has index mn. Finally, if
wπ is central in G, then CG(w) = CG(wπ′) and by
Step 2 we can write CG(wπ′) = Uwπ′ × Vwπ′ with
Uwπ′ a non-central abelian π-subgroup and Vwπ′ a π′-
subgroup. If t ∈ Uwπ′ in G∗ is not central in G, then
CG(w) ⊆ CG(t). But t must have index n because
we are assuming that there are no π-elements in G∗

of index mn. It follows that CG(t) = Lπ × Z(G)π′ ,
whence wπ′ is central and this leads to the final con-
tradiction. Now the theorem is proved. ⊓⊔

At last we prove our Theorem 9.

Proof of Theorem 9 We can certainly assume that
π(G) = π(m)

∪
π(n) by Lemma 12. The proof is

divided into several steps.

Step 1. If x is an element in G∗ such that |xG| = m,
then CG(x) is maximal among all centralizers in G∗.
Also, either CG(x) is abelian or n = paqb for some
primes p and q, and CG(x) = PxQx × Tx, where Px
and Qx are p- and q-subgroups respectively, and Tx
is an abelian {p, q}′-group. The same properties can
be assumed for all elements of index n.

Suppose that x in G∗ such that |xG| = m, and
hence it can be assumed to be a p-element for some
prime p. Notice that CG(x) is a maximal subgroup
among all centralizers in G∗. Since every p′-element
of primary or biprimary order of CG(x) has index
1 or n in CG(x) we have two possibilities as Kong
and Liu have already explained in the proof of The-
orem 8: either CG(x) = Px × Hx with Hx an
abelian p′-subgroup or n = paqb for some prime q
and CG(x) = PxQx × Tx as described in the state-
ment. We will show that the first possibility also
yields to the statement of this step. If Hx ⊆ Z(G),
then |G : Z(G)| = mpd and since any class size inG∗

divides this index, we deduce that n is a power of p, so
our claim is proved. Therefore, for some prime q we
can take some noncentral q-element t ∈ Hx and cer-
tainlyCG(x) = CG(t). But this implies again that any
q′-element of primary or biprimary order ofCG(t) has
index 1 or n. Hence, we have either CG(t) = Qt×Kt

with Kt an abelian q-complement, and accordingly
CG(x) is abelian, or n is again a product of two prime
powers, as wanted.

Now if y in G∗ has index n then CG(y) is maxi-
mal among all centralizers as well and the assertion in
the statement of the other property for CG(y) follows
exactly as for CG(x).

Step 2. We can assume that there exists some el-
ement in G∗ of index m or n such that its central-
izer is not abelian. We can fix a q-element x of in-
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dex m such that CG(x) is not abelian and CG(x) =
PxQx × Z{p,q}′ , where Px and Qx are p- and q-
subgroups and such that x is a q-element. Moreover,
n = paqb.

Suppose that all elements of index m and n have
abelian centralizer and put X = CG(x) and Y =
CG(y) for some elements x and y in G∗ of index m
and n respectively. If u ∈ X ∩ Y , then X,Y ≤
CG(u), whence |G : CG(u)| < min{m,n} and so
u ∈ Z. Therefore, X ∩ Y = Z. Then

|X/Z| = |X/X ∩ Y | = |XY |/|Y | ≤ |G : Y | = n

and so

|G/Z| = |G : X||X/Z| ≤ mn.

But this certainly contradicts the fact that G∗ has ele-
ments of index mn.

Thus, we will assume that there exists some ele-
ment in G∗ of index m or n whose centralizer is not
abelian. By the symmetry of the hypothesis, we can
fix some x in G∗ of index m. By Step 1, we have
CG(x) = PxQx × Tx, where Px and Qx are p- and
q-subgroups, and Tx is an abelian {p, q}′-group. Fur-
thermore, n = paqb. We prove that Tx must be cen-
tral in G. In fact, if there exists some noncentral r-
element t ∈ Tx for some prime r ̸= q, p then, since
CG(x) ⊆ CG(t), they are equal by the maximality.
Also, every r′-element of CG(t) has index 1 or n.
Since r is not a divisor of n, by Lemma 17 we obtain
that n is either a power of p or q, and then the proof
of the theorem finishes by Theorem 8. Furthermore,
by using the maximality of CG(x) in G∗, we can also
assume without loss that x is has prime power order,
and without loss, for instance, that it is a q-element.

Step 3. If z is an element in G∗ such taht |zG| =
mn, then CG(z) = PzQz × Z{p,q}′ , where Pz
is a p-subgroup and Qz is a q-subgroup of CG(z)
both noncentral in G, and Z{p,q}′ denotes the {p, q}-
complement of Z. As a consequence, we have that
both p and q divide |CG(y)/Z| for every element y in
G∗ of index n.

Let z be an element in G∗ of index mn. If r
divides |CG(z)/Z| and r ≠ p, q, then |G/Z|r >
(mn)r ≥ mr, but mr = |G/Z|r by Step 2. Thus
we can write CG(z) = PzQz × Z{p,q}′ , with Pz a
p-subgroup and Qz a q-subgroup of CG(z).

We will prove now that both Pz and Qz cannot be
central in G. Suppose that Qz is central in G. Since
p divides |CG(x)/Z|, where x is the element fixed
in Step 2, there exists some p-element in CG(x)\Z.
Let us take any noncentral p-element, say w, in
CG(x). Notice that wx cannot have index mn, oth-
erwise |CG(wx)/Z| = |CG(z)/Z| is a p-power and

this is not possible because x ∈ CG(wx)\Z. Thus
CG(wx) = CG(x) = CG(w), and every q′-element,
so in particular every p-element, of CG(x) is central
in CG(x). Hence CG(x) = Px × Qx × Z{p,q}′ with
Px abelian. Likewise, if t is a q-element of CG(w),
similarly we get CG(tw) = CG(w) = CG(t) and
CG(w) = CG(x) has an abelian Sylow q-subgroup
too. This shows that CG(x) is abelian, which is a con-
tradiction.

Observe that Px is not central, otherwise Step 2
would imply that n is a prime power and the theorem
is true by Theorem C. Now let t be a p-element in
CG(x)\Z. If Pz is central in G then, arguing as in the
above paragraph, we have that xt cannot have index
mn and so CG(xt) = CG(t) = CG(x). We deduce
again that CG(t) = CG(x) is abelian, a contradiction,
so the step is proved. As we know that n andm are not
coprime numbers, from now on we will assume that p
is a common prime of m and n (we argue similarly if
the common prime is q).

Step 4. G is a {p, q}-group. In particular, G is solv-
able.

Let y be an element in G∗ of index n. We are
going to show that we can assume that CG(y) is not
abelian. Suppose that CG(y) is abelian. First, we will
assume that CG(y) = NG(CG(y)) and we will get a
contradiction. We know that p divides |CG(y)/Z| by
Step 3. Moreover, asCG(y) is abelian and by the max-
imality of this centralizer, there exists some p-element
t ∈ CG(y) such that CG(t) = CG(y). Since p divides
m and n, we have that the Sylow p-subgroups of G
are not abelian. Let P be a Sylow p-subgroup of G
such that t ∈ P and notice that Z(P ) = Zp. We
can take z ∈ Z(P/Zp) and then zt = tz. Whence
z ∈ NG(CG(t)) = CG(t). Thus, z ∈ CG(y). By the
maximality of CG(y) and using the fact that CG(y)
is abelian again, we conclude that CG(y) = CG(z).
However, P ∈ NG(CG(z)) = CG(z), but this is not
possible, as wanted.

Thus, by arguing as in the above paragraph,
we can take a p-element z ∈ NG(CG(y))\CG(y),
whence p divides |NG(CG(y))/CG(y)|. However, by
using Lemma 18 and taking A = A0 = CG(y), we
obtain |NG(CG(y))/CG(y)| = p.

On the other hand, we know that p and q both
divide |CG(y)/Z| by Step 3. Since q divides n, if Qy
is the Sylow q-subgroup of CG(y), then Qy < Q for
some Sylow q-subgroup Q of G. If v ∈ NQ(Qy)\Qy,
thenQy ⊆ CG(y)∩CG(yv). As CG(y) is abelian, we
deduce thatCG(y) = CG(yv) = CG(y)

v. This means
that v is a q-element lying in NG(CG(y))\CG(y), but
this cannot occur.

Therefore, CG(y) is not abelian, as wanted. By
using Steps 1 and 3, we conclude that m = pcqd.
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Consequently, m and n are {p, q}-numbers and G is a
{p, q}-group. In particular, G is solvable. ⊓⊔
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