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Abstract: In this paper we derive sufficient conditions for local optimality, for the Lagrange problem in the cal-
culus of variations involving mixed equality constraints, by means of the notion of augmented Lagrangians. It is
well-known that the standard necessary conditions for that problem can be easily obtained under the assumption
of augmentability, instead of the usual one of normality. On the other hand, as we show in this paper, the standard
sufficient conditions for a strong (weak) minimum imply strong (weak) augmentability. Since this kind of aug-
mentability implies that the extremal under consideration is a local solution, the results given provide an alternative
approach to the classical theory of sufficient conditions.

Key–Words:Augmentability, Lagrange problem, calculus of variations, equality constraints, sufficient conditions

1 Introduction
This paper deals with a control problem of Lagrange
which corresponds to the classical fixed-endpoint
problem in the calculus of variations involving a set
of equality constraints.

The problem consists in finding in a class of arcs
xmapping a fixed interval[t0, t1] to Rn and satisfying
a set of differential equations

ϕα(t, x(t), ẋ(t)) = 0 (α = 1, . . . , q)

and end conditionsx(t0) = ξ0, x(t1) = ξ1, one which
minimizes the integral

I(x) =
∫ t1

t0
L(t, x(t), ẋ(t))dt.

Necessary and sufficient conditions for this prob-
lem are well established in the literature (see [23, 24]
for a detailed explanation).

For necessity, a Lagrangian formulation includes
the corresponding conditions of Euler, Legendre,
Weierstrass and Jacobi, and standard techniques un-
der the assumption of normality yield the required re-
sults. Those techniques are not, however, easily ap-
plied. As pointed out by Hestenes [12], “the standard
necessary conditions for a minimum for the problem
of Lagrange are usually derived under normality (con-
trollability) assumptions by means of a very compli-
cated argument.”

A Hamiltonian formulation, on the other hand,
expresses the first-order necessary conditions in terms

of a minimum or maximum principle and they are
equivalent to the Euler and Weierstrass conditions.
Again, the assumption of normality plays a fundamen-
tal role in this approach.

It is important to mention that, in both cases, first-
order necessary conditions for the optimal control
problem of which the classical problem of Lagrange
in the calculus of variations can be seen as a particular
case have been recently derived in the literature under
a very general setting which includes, in particular,
equality and inequality mixed constraints, nonsmooth
data and weaker assumptions than the standard ones
(see [3, 5, 6]).

On the other hand, sufficiency for local optimal-
ity is based on a slight strengthening of the necessary
conditions and it is usually established by invoking
general embedding or field theorems of the theory of
differential equations. Those theorems are an inte-
gral component of the usual proofs (see, for example,
[10]).

Other approaches applicable to optimal control
problems include optimal fields, the solution to a cer-
tain matrix Riccati equation, an appropriate form of
local convexity of the Lagrangian, generalized conju-
gate points, the Hamilton-Jacobi theory, or even indi-
rect sufficiency proofs (see for example [4, 9, 10, 13,
14, 19, 20] and references therein).

An entirely different approach to derive both nec-
essary and sufficient conditions for problems in opti-
mization theory is that of augmentability. In partic-
ular, when dealing with constrained minimum prob-
lems in the finite dimensional case, there is one type
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of augmentability which yields the derivation of the
Lagrange multiplier rules in a much simpler way than
under the usual assumption of regularity. Also, the
standard sufficient conditions for optimality imply
that type of augmentability, and it provides a method
of multipliers for finding numerical solutions to con-
strained minimum problems (see [11, 12]).

In order to clearly understand these statements,
let us briefly describe the main ideas for constrained
minimum problems in the finite dimensional case. For
such problems, one is usually interested in proving
the linearly independence of the gradients of the con-
straints in order to derive the Lagrange multiplier rules
as necessary conditions for optimality.

In other words, if the problem is that of minimiz-
ing a functionf :S → R on the set

S = {x ∈ Rn | gα(x) = 0 (α ∈ A)}

with A = 1, . . . ,m, then the Lagrange multiplier
rules state that, for someλ ∈ Rm,

F ′(x0) = 0, F ′′(x0;h) ≥ 0

for all h ∈ Rn satisfyingg′α(x0;h) = 0 (α ∈ A),
where

F (x) = f(x) + 〈λ, g(x)〉

denotes the standard Lagrangian. These conditions
become necessary for a solution to the problem if the
linear equations

g′α(x0;h) = 0 (α ∈ A)

in h are linearly independent. By strengthening the
inequality in the second order condition to be strict for
all h ∈ Rn, h 6= 0, satisfyingg′α(x0;h) = 0 (α ∈ A),
one obtains sufficiency for local minima.

For this kind of problems the approach of aug-
mentability deals with an augmented Lagrangian of
the type

H(x) = f(x) + 〈λ, g(x)〉+ σG(x)

where

G(x) =
1
2

m∑
1

gα(x)2.

The problem is calledaugmentableat a pointx0 if
x0 affords an unconstrained minimum toH and, as
one can easily show, it implies the Lagrange multiplier
rules atx0 together with the fact that the point affords
a local minimum tof on S. Moreover, the standard
sufficient conditions imply augmentability.

This concept of augmentability also provides a
method of multipliers for finding numerical solutions

to constrained minimum problems. A brief explana-
tion can be given as follows. Using the notation

H(x, λ, σ) = f(x) + 〈λ, g(x)〉+
σ

2
|g(x)|2

selectλ0 andσ > 0, hopefully so thatH(x, λ0, σ)
is convex inx. Chooseξ0, ξ1, . . . with ξk ≥ ξ0 > 0
and choosexk, λk successively so thatxk minimizes
H(x, λk−1, σ + ξk−1). Set

λk = λk−1 + ξk−1g(xk).

Then, as explained in Hestenes [10], usually{xk}
converges to a solutionx0 to the problem and{λk}
converges to the Lagrange multiplier associated with
x0.

The importance of this theory in the finite dimen-
sional case (see [11, 12, 25]) has been recognized par-
ticularly in the development of computational proce-
dures (see, for example, [1, 2, 7, 8, 16, 18, 26] and
references therein, where a wide range of applications
illustrate the use of the theory) but it has received lit-
tle attention in the development of other areas of op-
timization. It is important to mention that the method
of multipliers for finding numerical solutions has been
generalized to certain classes of problems in convex
programming [17]. Also, the idea of generalizing this
theory to optimal control problems involving mixed
constraints has been recently developed in [21–24].

Now, the results given in [12] include a sketch
of how some aspects of this theory can be applied to
infinite dimensional problems such as the problem of
Lagrange mentioned above. The approach is based
on earlier results given by Hestenes [9] and McShane
[15] and our aim in this paper is to develop that theory
by explaining clearly the role played by a generalized
Lagrangian on which the notion of augmentability can
be based.

In [23] we deal with the same problem and pro-
vide some of the basic ideas to define different no-
tions of augmentability according to the local nature
of the solution to the problem. Some of the proofs
were given in [24] where it is shown, in particular,
that the well-known sufficient conditions for a weak
local minimum imply weak augmentability.

In this paper we turn to local optimality in terms
of strong minima and state the corresponding re-
sult assuming the standard sufficient conditions for a
strong local minimum. We shall prove that those stan-
dard conditions imply strong augmentability which
in turn implies that the arc under consideration is a
strong local minimum.

Clearly this is a crucial aspect of the theory since
it provides an alternative approach not only to the
derivation of necessary conditions but also for suffi-
ciency results.
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2 Statement of the problem

The problem we shall be dealing with can be stated
as follows. Suppose we are given an intervalT :=
[t0, t1] in R, two pointsξ0, ξ1 in Rn, and a functionL
mappingT × Rn × Rn to R.

LetX denote the space of all absolutely continu-
ous functions mappingT to Rn. For anyC subset of
T × Rn × Rn let

X(C) := {x ∈ X | (t, x(t), ẋ(t)) ∈ C a.e. inT},

Xe(C) := {x ∈ X(C) | x(t0) = ξ0, x(t1) = ξ1},
and consider the functionalI:X → R given by

I(x) :=
∫ t1

t0
L(t, x(t), ẋ(t))dt (x ∈ X).

Denote by P(I,C) the problem of minimizingI over
Xe(C).

Suppose also that a (relatively) open setA of T ×
Rn ×Rn, and a functionϕ mappingT ×Rn ×Rn to
Rq, are given. Let

B := {(t, x, ẋ) ∈ A | ϕ(t, x, ẋ) = 0}.

The problem we shall be concerned with is P(I,B),
that is, the problem of minimizing

I(x) =
∫ t1

t0
L(t, x(t), ẋ(t))dt

subject to
a. x:T → Rn absolutely continuous;
b. x(t0) = ξ0, x(t1) = ξ1;
c. (t, x(t), ẋ(t)) ∈ A andϕ(t, x(t), ẋ(t)) = 0

a.e. inT .

Elements ofX will be calledtrajectoriesand, for
anyC ⊂ T ×Rn×Rn, a trajectoryx solvesP(I,C) if
x ∈ Xe(C) andI(x) ≤ I(y) for all y ∈ Xe(C).

For local minima, a trajectoryx will be called
a strong or a weak minimum ofP(I,C) if, for some
ε > 0, x solves P(I, T0(x; ε) ∩ C or P(I, T1(x; ε) ∩ C)
respectively where, for allx ∈ X andε > 0,

T0(x; ε) := {(t, y, v) ∈ T×Rn×Rn : |x(t)−y| < ε}

(called in some references a “tube” aroundx), and

T1(x; ε) := {(t, y, v) ∈ T0(x; ε) : |ẋ(t)− v| < ε}

(corresponding to a “restricted tube” aroundx).
Let us assume that the functionsL(t, x, ẋ) and

ϕ(t, x, ẋ) and their derivatives with respect tox and
ẋ are continuous onA and the matrixϕẋ has rankq
onA. For anyx ∈ X the notation(x̃(t)) will be used
to represent(t, x(t), ẋ(t)).

3 Sufficient conditions

In the theory to follow it will be convenient to first
consider the unconstrained problem P(I,A) usually
referred to as thesimple fixed endpoint problemin the
calculus of variations. This will be done not only for
comparison reasons but also to explain clearly the role
played by this result in the theory of augmentability.

Forx ∈ X, define thefirst variation ofI alongx
by

I ′(x; y) :=
∫ t1

t0
{Lx(x̃(t))y(t) + Lẋ(x̃(t))ẏ(t)}dt

and thesecond variation ofI alongx by

I ′′(x; y) :=
∫ t1

t0
2Ω(t, y(t), ẏ(t))dt (y ∈ X)

where, for all(t, y, ẏ) ∈ T × Rn × Rn,

2Ω(t, y, ẏ) := 〈y, Lxx(x̃(t))y〉

+ 2〈y, Lxẋ(x̃(t))ẏ〉+ 〈ẏ, Lẋẋ(x̃(t))ẏ〉.

Define the set ofadmissible variationsby

Y := {y ∈ X | y(t0) = y(t1) = 0}

and consider the following sets:

E := {x ∈ X | I ′(x; y) = 0 for all y ∈ Y },

H′ := {x ∈ X | I ′′(x; y) > 0 for all y ∈ Y, y 6= 0},

L′ := {x ∈ X | Lẋẋ(x̃(t)) > 0 for all t ∈ T},

W(A, ε) := {x0 ∈ X(A) | EL(t, x, ẋ, u) ≥ 0

for all (t, x, ẋ, u) ∈ T × R3n with

(t, x, ẋ) ∈ T1(x0; ε) and(t, x, u) ∈ A}

whereEL:T × R3n → R, the Weierstrass “excess
function” with respect toL, is given by

EL(t, x, ẋ, u) := L(t, x, u)− L(t, x, ẋ)

− Lẋ(t, x, ẋ)(u− ẋ).

Following the terminology of [10], elements of
E ∩ C1 are calledextremals, elements ofL′ are said
to satisfy thestrengthened condition of Legendre, and
elements ofW(A, ε) to satisfy thestrengthened con-
dition of Weierstrass. Also, recall thatx belongs toE
if and only if there existsc ∈ Rn such that

Lẋ(x̃(t)) =
∫ t

t0
Lx(x̃(s))ds+ c (t ∈ T ).
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The following theorem gives sufficient conditions
for a local solution to P(I,A). We refer to [10] for a
full account of this theory.

3.1 Theorem:Let x ∈ Xe(A) ∩ C1. If x belongs to

E ∩ H′ ∩ L′

then x is a strict weak minimum of P(I,A). If also x
belongs to

W(A; ε) for some ε > 0

then x is a strict strong minimum of P(I,A).

Let us turn now to our original constrained prob-
lem P(I,B). Sufficiency for this problem is usually
expressed in terms of the following functions and sets.

For all (t, x, ẋ, µ) ∈ T × Rn × Rn × Rq let

F (t, x, ẋ, µ) := L(t, x, ẋ) + 〈µ, ϕ(t, x, ẋ)〉

and consider the second variation of the functional

J(x, µ) :=
∫ t1

t0
F (t, x(t), ẋ(t), µ(t))dt

given by

J ′′(x, µ; y) =
∫ t1

t0
2Ωµ(t, y(t), ẏ(t))dt

where

2Ωµ(t, y, ẏ) := 〈y, Fxx(x̃(t), µ(t))y〉

+ 2〈y, Fxẋ(x̃(t), µ(t))ẏ〉+ 〈ẏ, Fẋẋ(x̃(t), µ(t))ẏ〉.
For allx ∈ X define the setY (B, x) of B-admissible
variations alongx as the set of ally ∈ X satisfying
y(t0) = y(t1) = 0 and

ϕx(x̃(t))y(t) + ϕẋ(x̃(t))ẏ(t) = 0 (a.e. inT ).

Define now

E(µ) := {x ∈ X | there existsc ∈ Rn such that

Fẋ(x̃(t), µ(t)) =
∫ t

t0
Fx(x̃(s), µ(s))ds+ c

(t ∈ T )},
H′(µ) := {x ∈ X | J ′′(x, µ; y) > 0

for all y ∈ Y (B, x), y 6= 0},
L′(µ) := {x ∈ X | 〈h, Fẋẋ(x̃(t), µ(t))h〉 > 0

for all h ∈ Rn, h 6= 0 suchthat

ϕẋ(x̃(t))h = 0 (t ∈ T )},

W(B, µ; ε) := {x0 ∈ X(B) |
EF (t, x, ẋ, u, µ(t)) ≥ 0

for all (t, x, ẋ, u) ∈ T × R3n with

(t, x, ẋ) ∈ T1(x0; ε) ∩ B and(t, x, u) ∈ B}
whereEF denotes the Weierstrass excess function
with respect toF , that is,

EF (t, x, ẋ, u, µ) := F (t, x, u, µ)− F (t, x, ẋ, µ)

− Fẋ(t, x, ẋ, µ)(u− ẋ).

The next result gives sufficient conditions for the
constrained Lagrange problem we are dealing with
(see [9, 10]).

3.2 Theorem: Let x ∈ Xe(B) ∩ C1 and let µ be an
absolutely continuous function mapping T to Rq. If x
belongs to

E(µ) ∩H′(µ) ∩ L′(µ)

then x is a strict weak minimum of P(I,B). If also x
belongs to

W(B, µ; ε) for some ε > 0

then x is a strict strong minimum of P(I,B).

As mentioned in the introduction, the proof of this
result is usually established by invoking general em-
bedding or field theorems of the theory of differential
equations, and those theorems are an integral compo-
nent of the usual proofs (see, for example, [10]). In
the following section we turn to an entirely different
approach.

4 Augmentability

For a given functionσ mappingA to R and for all
(t, x, ẋ, µ) ∈ T × Rn × Rn × Rq, define

F̃ (t, x, ẋ, µ) := L(t, x, ẋ) + 〈µ, ϕ(t, x, ẋ)〉

+ σ(t, x, ẋ)G(t, x, ẋ)

where

G(t, x, ẋ) :=
1
2

q∑
1

ϕα(t, x, ẋ)2.

Note that

F̃ (t, x, ẋ, µ) = F (t, x, ẋ, µ)+
σ(t, x, ẋ)

2
|ϕ(t, x, ẋ)|2.

4.1 Definition: For anyx0 ∈ Xe(B) we shall say
that P(I,B) is strongly (weakly) augmentable atx0 if
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there existσ:A → R andµ:T → Rq such thatx0 is a
strong (weak) minimum of the unconstrained problem
P(J̃ ,A), where

J̃(x, µ) :=
∫ t1

t0
F̃ (t, x(t), ẋ(t), µ(t))dt.

Note that, in this event,x0 is a strong (weak) mini-
mum of P(I,B) since, for anyx ∈ Xe(B), we have
J̃(x, µ) = I(x).

The definitions given above of strong and weak
augmentability yield one of the main aspects of the
theory related to necessity. If the problem is aug-
mentable at an arc, then that arc satisfies the first
and second order necessary conditions for the un-
constrained problem posed above and this in turn
implies the necessary conditions for the constrained
case. This result holds without the usual assumption
of normality and is applicable to both strong or weak
minima (see [24] for details).

For sufficiency, we have the following crucial re-
sult which, in particular, implies that the notion of
augmentability can be seen as an alternative approach
to establish sufficiency results.

4.2 Theorem: Let x0 ∈ Xe(B) ∩ C1 and let µ be an
absolutely continuous function mapping T to Rq. If
x0 belongs to

E(µ) ∩H′(µ) ∩ L′(µ)

then P(I,B) is weakly augmentable at x0. If also x0

belongs to

W(B, µ; ε) for some ε > 0

then P(I,B) is strongly augmentable at x0.

This result was first stated in [23] and a proof of
the first part, corresponding to weak augmentability,
can be found in [24]. For completeness, and being
an integral part of the second statement, we shall find
convenient to give a sketch of that proof and then turn
entirely to the second part.

Let us denote bỹE(µ, σ), H̃′(µ, σ), L̃′(µ, σ) and
W̃(A, µ, σ; ε) the four sets defined before Theorem
3.1 but now replacingL with the augmented La-
grangianF̃ . Explicitly,

Ẽ(µ, σ) := {x ∈ X | there existsc ∈ Rn such that

F̃ẋ(x̃(t), µ(t)) =
∫ t

t0
F̃x(x̃(s), µ(s))ds+ c

(t ∈ T )},

H̃′(µ, σ) := {x ∈ X | J̃ ′′(x, µ; y) > 0

for all y ∈ Y, y 6= 0},

L′(µ, σ) := {x ∈ X | 〈h, F̃ẋẋ(x̃(t), µ(t))h〉 > 0

for all h ∈ Rn, h 6= 0, (t ∈ T )},

W(A, µ, σ; ε) := {x0 ∈ X(A) |

EF̃ (t, x, ẋ, u, µ(t)) ≥ 0

for all (t, x, ẋ, u) ∈ T × R3n with

(t, x, ẋ) ∈ T1(x0; ε) and(t, x, u) ∈ A}

whereEF̃ denotes the Weierstrass excess function
with respect toF̃ , that is,

EF̃ (t, x, ẋ, u, µ) := F̃ (t, x, u, µ)− F̃ (t, x, ẋ, µ)

− F̃ẋ(t, x, ẋ, µ)(u− ẋ).

These sets are precisely the ones that define the clas-
sical sufficient conditions in terms of the functioñF .

Now, let us state an auxiliary result which will
be used to prove that the standard sufficient condi-
tions for a weak minimum imply weak augmentabil-
ity. The first statement can be easily established, as
we show next, and the second follows from the fact
that, under the assumptions of the lemma, the func-
tion J̃ ′′(x0, µ; ·) is lower semicontinuous (see [15]).

4.3 Lemma: If x0 ∈ L′(µ), there exists θ > 0 such
that, if σ(t, x, ẋ) ≥ θ, then

a.x0 ∈ L̃′(µ, σ).
b. If {yq} ⊂ X ′′ converges uniformly on T to y0

then

lim inf
q→∞

J̃ ′′(x0, µ; yq) ≥ J̃ ′′(x0, µ; y0).

Proof: To prove (a), for allt ∈ T andh ∈ Rn, define

P (t, h) := 〈h, Fẋẋ(x̃0(t), µ(t), 1)h〉,

Q(t, h) := |ϕẋ(x̃0(t))h|2.

Sincex0 ∈ L′(µ), we have

P (t, h) > 0 for all t ∈ T andh 6= 0

with Q(t, h) = 0. We claim that, for some constant
θ > 0,

P (t, h) + θQ(t, h) > 0 for all t ∈ T andh 6= 0.

Suppose the contrary. Then, for allq ∈ N, there exist
(tq, hq) ∈ T × Rn with hq 6= 0 such that

P (tq, hq) + qQ(tq, hq) ≤ 0.
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Let kq := hq/|hq| so thatP (tq, kq) + qQ(tq, kq) ≤ 0
and |kq| = 1. Thus there exist a subsequence (we
do not relabel),t0 ∈ T and a unit vectork0 such
that (tq, kq) → (t0, k0). ThereforeP (t0, k0) ≤ 0
andQ(t0, k0) = 0, contrary to the assumptionx0 ∈
L′(µ). Now, letσ(t, x, ẋ) be such thatσ(x̃0(t)) > θ
(t ∈ T ). Hence

〈h, F̃ẋẋ(x̃0(t), µ(t))h〉 =

P (t, h) + σ(x̃0(t))Q(t, h) > 0

for all h ∈ Rn, h 6= 0, and t ∈ T , showing that
x0 ∈ L̃′(µ, σ).

The next auxiliary result shows that the strength-
ened condition of Legendre together with the positiv-
ity of the second variation with respect toF imply the
existence of a functionσ for which the second vari-
ation with respect toF̃ is also positive. The main
ideas of the proof are based on the theory developed
by Hestenes in [9].

4.4 Lemma: If x0 ∈ L′(µ) ∩ H′(µ), then there
exists θ0 > 0 such that, if σ(t, x, ẋ) ≥ θ0, then
x0 ∈ H̃′(µ, σ).

Proof: Define

Φ(t, y, ẏ) := ϕx(x̃0(t))y + ϕẋ(x̃0(t))ẏ

P (y) := J ′′(x0, µ; y),

Q(y) :=
∫ t1

t0
|Φ(t, y(t), ẏ(t))|2dt.

Sincex0 ∈ H′(µ) we have

P (y) > 0 for all y ∈ X ′′, y 6= 0,

satisfyingΦ(t, y(t), ẏ(t)) = 0 a.e. inT andy(t0) =
y(t1) = 0. As one readily verifies,

J̃ ′′(x0, µ; y) =

P (y) +
∫ t1

t0
σ(x̃0(t))|Φ(t, y(t), ẏ(t))|2dt

and so

J̃ ′′(x0, µ; y) ≥ P (y) + θ0Q(y) if σ(x̃0(t)) ≥ θ0

the equality holding whenσ(x̃0(t)) = θ0.
Let us suppose the conclusion of the theorem is

false. Then, for allq ∈ N, if σ(t, x, ẋ) ≥ q we have
x0 6∈ H̃′(µ, σ). That is, for allq ∈ N there exists
yq ∈ X ′′ nonnull withyq(t0) = yq(t1) = 0 such that

P (yq) + qQ(yq) ≤ J̃ ′′(x0, µ; yq) ≤ 0 (1)

if σ(t, x, ẋ) ≥ q.
Since the functions at hand are homogeneous iny

we can suppose thatyq has been chosen so that∫ t1

t0
{|yq(t)|2 + |ẏq(t)|2}dt = 1. (2)

Therefore we can replace the sequence{yq} by a sub-
sequence (we do not relabel) which converges to a
variationy0 in the sense that

lim
q→∞

yq(t) = y0(t) uniformly onT. (3)

Obviouslyy0(t0) = y0(t1) = 0. By Lemma 4.3 there
existsθ > 0 such that

lim inf
q→∞

{P (yq) + θQ(yq)} ≥ P (y0) + θQ(y0). (4)

This inequality, together with (1) andQ(y) ≥ 0, im-
plies that

lim inf
q→∞

Q(yq) ≤ 0.

But since the Legendre condition holds forQ(y) we
have that

lim inf
q→∞

Q(yq) ≥ Q(y0) ≥ 0.

ConsequentlyQ(y0) = 0. Clearly this can be the case
only if Φ(t, y0(t), ẏ0(t)) = 0 a.e. inT . Suppose that
y0 6≡ 0. ThenP (y0) > 0. However, by (4) with
Q(y0) = 0 one has, for large values ofq that

P (yq) + θQ(yq) > 0

contradicting the inequality in (1). Hencey0 ≡ 0.
Let us complete the proof by showing thaty0

cannot be the null variation. Suppose that this is the
case. Takeσ = θ as described in Lemma 4.3. Then,
by (4), we have

lim inf
q→∞

J̃ ′′(x0, µ; yq) =

lim inf
q→∞

{P (yq) + θQ(yq)} ≥ 0

sinceP (y0) = Q(y0) = 0. Using (1), we see that
the equality must hold. Consequently, by (3) and the
assumptiony0 ≡ 0, we have

0 = lim inf
q→∞

J̃ ′′(x0, µ; yq) =

lim inf
q→∞

∫ t1

t0
〈ẏq(t), F̃ẋẋ(x̃0(t), µ(t))ẏq(t)〉dt. (5)

Since, by Lemma 4.3, the last integrand is a positive
definite form, there is a constantc > 0 such that

〈h, F̃ẋẋ(x̃0(t), µ(t))h〉 ≥ 〈h, ch〉 ≥ c|h|2.
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Consequently equation (5) implies that

lim inf
q→∞

∫ t1

t0
|ẏq(t)|2dt = 0.

Using (2) and (3) we see that

lim
q→∞

∫ t1

t0
|ẏq(t)|2dt = 1.

This contradiction completes the proof.

Let us turn now to the second part of Theorem
4.2. We are assuming thatx0 belongs to

E(µ) ∩H′(µ) ∩ L′(µ) ∩W(B, µ; ε)

and we want to prove that P(I,B) is strongly aug-
mentable atx0. This follows if we show that there
exists a functionσ mappingA to R such thatx0 is
a strong minimum of the problem P(J̃ ,A), and we
have well-known sufficient conditions for such uncon-
strained problem stated in Theorem 3.1.

In other words, the result will follow if we show
that, for some functionσ, x0 satisfies the classical suf-
ficient conditions for a strong minimum in terms of the
functionF̃ .

Thus we want to show that, for some function
σ(t, x, ẋ) andε̃ > 0, x0 belongs to

Ẽ(µ, σ) ∩ H̃′(µ, σ) ∩ L̃′(µ, σ) ∩ W̃(A, µ, σ; ε̃).

Observe first that, for anyσ, x0 ∈ Ẽ(µ, σ). To
prove it note that, sincex0 ∈ E(µ), there existsc ∈
Rn such that, for allt ∈ T ,

Fẋ(x̃0(t), µ(t)) =
∫ t

t0
Fx(x̃0(s), µ(s))ds+ c.

On the other hand, we have

F̃ẋ(t, x, ẋ, µ) = Fẋ(t, x, ẋ, µ)

+ σ(t, x, ẋ)
∑

ϕα(t, x, ẋ)ϕαẋ(t, x, ẋ)

+
σẋ(t, x, ẋ)

2
|ϕ(t, x, ẋ)|2

and similarly forF̃x. ThusF̃ẋ = Fẋ andF̃x = Fx on
B, and therefore

F̃ẋ(x̃0(t), µ(t)) =
∫ t

t0
F̃x(x̃0(s), µ(s))ds+ c

showing thatx0 belongs toẼ(µ, σ).
Now, by Lemma 4.3(a), the assumptionx0 ∈

L′(µ) implies the existence of a positive constantθ

such that, ifσ(t, x, ẋ) ≥ θ, thenx0 ∈ L̃′(µ, σ). Sim-
ilarly, by Lemma 4.4, the assumptionx0 ∈ L′(µ) ∩
H′(µ) implies the existence ofθ0 > 0 such that, if
σ(t, x, ẋ) ≥ θ0, thenx0 ∈ H̃′(µ, σ).

It remains to prove that the assumptionx0 ∈
W(B, µ; ε) implies the existence ofσ(t, x, ẋ) such
thatx0 ∈ W̃(A, µ, σ; ε).

This can be done as follows. LetEψ(ẋ, u) be the
Weierstrass excess function for

ψ(ẋ) := (1 + |ẋ|2)1/2.

As mentioned in [9],x0 satisfies the strengthened con-
dition of Weierstrass

EF (t, x, ẋ, u, µ(t)) ≥ 0

whenever(t, x, ẋ) ∈ T1(x0; ε)∩B, (t, x, u) ∈ B (that
is,x0 ∈ W(B, µ; ε)), and the arc is nonsingular in the
sense that ∣∣∣∣Fẋẋ ϕẋ

ϕ∗ẋ 0

∣∣∣∣ 6= 0 alongx0,

if andonly if there exist a neighborhoodB0 of x0 rel-
ative toB andτ > 0 such that

EF (t, x, ẋ, u, µ(t)) ≥ τEψ(ẋ, u)

whenever(t, x, ẋ) ∈ B0, (t, x, u) ∈ B.
Note that, sinceϕẋ(x̃0(t)) has rankq and

〈h, Fẋẋ(x̃0(t))h〉 ≥ 0

for all h ∈ S where

S = {h ∈ Rn | ϕẋ(x̃0(t))h = 0},

the condition of nonsingularity is equivalent to the re-
lation

〈h, Fẋẋ(x̃0(t))h〉 > 0 for all h 6= 0 in S

that is,x0 ∈ L′(µ). Also, as one readily verifies,

EF̃ (t, x, ẋ, u, µ(t)) ≥ τEψ(ẋ, u)

whenever(t, x, ẋ) ∈ B0, (t, x, u) ∈ B.
Now, the main idea of the proof consists in show-

ing that there exist a functionσ(t, x, ẋ) ≥ θ0, a posi-
tive numberτ andA0 neighborhood ofx0 relative to
A such that

EF̃ (t, x, ẋ, u, µ(t)) ≥ τEψ(ẋ, u) (6)

whenever(t, x, ẋ) ∈ A0, (t, x, u) ∈ A.
In view of the above characterization, this will im-

ply thatx0 belongs toW̃(A, µ, σ; ε) and an applica-
tion of Theorem 3.1 yields the required result.
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This will be proved in several steps.
Observe first that, since

F̃ (t, x, ẋ, µ) = F (t, x, ẋ, µ)+
σ(t, x, ẋ)

2
|ϕ(t, x, ẋ)|2,

we can assure that, for someτ1 > 0 andA1 neighbor-
hood ofx0,

EF̃ (t, x, ẋ, u) ≥ τ1Eψ(ẋ, u) (7)

for all (t, x, ẋ) ∈ B ∩ A1, (t, x, u) ∈ B (for simplic-
ity of notation we have deleted the dependence of the
excess function with respect toµ(t)).

Sincex0 ∈ L̃′(µ, σ), by Taylor’s theorem and
continuity we can diminishτ1 andA1 so that (7) holds
for all (t, x, ẋ) and(t, x, u) ∈ A1 (not necessarily in
B).

Now, we claim that there existτ > 0 andA0

neighborhood ofx0 with clA0 ⊂ A1 such that (6)
holds for all(t, x, ẋ) ∈ A0, (t, x, u) ∈ B.

To prove it, select first a neighborhoodA∗ of x0

with clA∗ ⊂ A1 and let0 < ε < 1 be such that, if
(t, x, ẋ) ∈ A∗ and(t, x, u) is exterior toA1, then

3εψ(u) ≤ Eψ(ẋ, u) ≤ 2ψ(u). (8)

Next selectA0 so small that there existsr(t, x, ẋ) de-
fined onA0 such that

(t, x, r(t, x, ẋ)) ∈ A∗ ∩ B for all (t, x, ẋ) ∈ A0.

We have

EF̃ (t, x, ẋ, u) = EF̃ (t, x, r(t, x, ẋ), u)

+ K(t, x, ẋ, u)

where

K(t, x, ẋ, u) = F̃ (t, x, r(t, x, ẋ))− F̃ (t, x, ẋ)

+ F̃ẋ(t, x, r(t, x, ẋ))u− F̃ẋ(t, x, ẋ)u

+ F̃ẋ(t, x, ẋ)ẋ− F̃ẋ(t, x, r(t, x, ẋ))r(t, x, ẋ).

If A0 is taken sufficiently small we have

|K(t, x, ẋ, u)| < ετ1ψ(u) for all (t, x, ẋ) ∈ A0.

By (7) and (8), if(t, x, ẋ) ∈ A0 and(t, x, u) ∈ B but
not inA1 then

EF̃ (t, x, ẋ, u) ≥ τ1Eψ(r(t, x, ẋ), u)− ετ1ψ(u)
≥ 2ετ1ψ(u) ≥ ετ1Eψ(ẋ, u).

Settingτ = ετ1 in (6), the claim follows.

Select now open setsA2,A3, . . . whose union is
A and such thatclAj ⊂ Aj+1 (j = 1, 2, . . .) and let
θj(t, x, ẋ) be functions of classC2 such that

θj = 0 onAj−1,

θj ≥ 0 onAj ,

θj = 1 onA ∼ Aj . (9)

Let (t, x, ẋ) ∈ A0. If (t, x, u) ∈ Aj+1 but
(t, x, u) 6∈ Aj (j ≥ 1) then (6) holds if(t, x, u) ∈ B
and so, by continuity, if

ϕα(t, x, u)2 < εjEψ(ẋ, u) (10)

whereεj is a small positive constant. Selectδj > 0
such that

EF̃ (t, x, ẋ, u) > δj if (t, x, u) ∈ Aj+1 ∼ Aj .

Let dj > 0 be such that, on this set,

djεjEψ(ẋ, u) + δj > τ1Eψ(ẋ, u). (11)

Setσ(t, x, ẋ) := θ0 +
∑
djθj(t, x, ẋ).

Now, observe that, by (9), we have

σ − θ0 = 0 onA0,

σ − θ0 ≥ 0 onA,

σ − θ0 ≥ dj onA ∼ Aj . (12)

Set

h(t, x, ẋ) := (σ(t, x, ẋ)− θ0)|ϕ(t, x, ẋ)|2.

Note thath ≡ 0 onA0 and

Eh(t, x, ẋ, u) = h(t, x, u) ≥ 0

(provided(t, x, ẋ) ∈ A0 as we have supposed).
Let F ∗ = F̃ + h. We have, whenever(t, x, ẋ) ∈

A0,

EF ∗(t, x, ẋ, u) = EF̃ (t, x, ẋ, u) + h(t, x, u). (13)

If (t, x, u) ∈ A1 then (6) holds so that

EF ∗(t, x, ẋ, u) ≥ τEψ(ẋ, u). (14)

The same is true if(t, x, u) ∈ Aj+1 ∼ Aj (j ≥ 1)
and (10) holds. If (10) fails to hold then, by (12),

h(t, x, u) ≥ (σ(t, x, ẋ)− θ0)εjEψ(ẋ, u)
≥ djεjEψ(ẋ, u).

It follows from (11) and (13) that (14) holds in this
case also.
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5 Conclusion

In this paper we deal with a Lagrange problem in the
calculus of variations involving mixed equality con-
straints. For such a problem, necessary and sufficient
conditions are well established in the literature.

However, the classical techniques used both for
necessity (under the assumption of normality) and suf-
ficiency (invoking general embedding of field theo-
rems of the theory of differential equations, or ma-
trix Riccati equations, or Jacobi’s theory on conju-
gate points, or Hamilton-Jacobi theory) can be sub-
stantially simplified by using a notion of a certain type
of augmentability.

We introduce the notions of weak and strong aug-
mentability and study their implications in sufficiency
theory. This aspect of the theory of augmentability
is crucial since, being an alternative approach to that
of normality for necessary conditions, one is inter-
ested in finding conditions that imply that the prob-
lem is augmentable at some point. This paper shows
that precisely the classical sufficient conditions both
for weak and strong minima imply the correspond-
ing property of augmentability. In other words, suf-
ficiency for a weak or strong local minimum can be
established directly from the definition of augmented
Lagrangians proposed in this paper.

It is of interest to see if the proof of this suffi-
ciency result can be generalized to optimal control
problems. Moreover, as in the case of finite dimen-
sional problems, one can expect that this approach
may yield a method of multipliers for finding numeri-
cal solutions of such problems.
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