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Abstract: Let G be a finite p-solvable group and let G∗ be the set of p′-elements of primary and biprimary orders
of G. We show that when the conjugacy class sizes of G∗ are {1,m, pa,mpa} with (m, p) = 1, then the p-
complements of G are nilpotent and m is a prime power.
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1 Introduction
All groups considered in this paper are finite. If G is
a group, then xG denotes the conjugacy class contain-
ing x. Following Baer [1], we call IndG(x) = |xG| =
|G : CG(x)|, the index of x inG(in some other papers,
IndG(x) = |xG| = |G : CG(x)| is called conjugacy
class size or length of x in G, for example, [2],[3]).
We say that a group element has primary or biprimary
order respectively if its order is divisible by at most
one or two primes. The rest of our notation and termi-
nology are standard. The reader may refer to ref.[4].

There is a strong relation between the structure of
a group and the sizes of its conjugacy classes and there
exist many results studying the structure of a group
under some arithmetical conditions on its conjugacy
class sizes. In [1], R. Baer proves that a group G
is solvable if its elements of prime power order have
also prime power index. N. Itô shows in [5] that if
the sizes of the conjugacy classes of a group G are
{1,m}, then G is nilpotent, m = pa for some prime
p and G = P × A, with P a Sylow p-subgroup of G
and A ⊆ Z(G). Later in [6], Li Shirong proves that
if the finite group G has exactly two conjugacy class
lengths of elements of prime power order of G, then
G is solvable. Recently, A.Beltrán and M.J.Felipe in
[7] show that suppose that the class size of every el-
ement of prime power order of G is 1 or m. Then G
is nilpotent. More precisely, m = pn for some prime
p, and G = P × A with A abelian and P a p-group.
There exist other deeper results. For instance, in [8],
Itô shows that if the conjugacy class sizes of G are
{1, n,m}, then G is solvable. Kong in [9] proves that
let G be a group. Assume that the set of conjugacy

class sizes of all elements of primary and biprimary
orders of G is exactly {1, pa, qb, paqb}, where p and q
are two distinct primes and a and b are positive inte-
gers, then G is nilpotent. Recently, Kong and Guo in
[10] prove that let G be a group and assume that the
conjugacy classes sizes of primary and biprimary or-
ders of G are exactly {1, pa, n, pan} with (p, n) = 1,
where p is a prime and a and n are positive integers. If
there is a p-element in G whose index is precisely pa,
then G is nilpotent and n = qb for some prime q ̸= p.
In [11], Kong further proves that let G be a group and
let G∗ be the set of elements of primary, biprimary
and triprimary orders of G. Suppose that the conju-
gacy class sizes of elements of G∗ are {1, pa, n, pan}
with (p, n) = 1 and a ≥ 0. Then G is nilpotent and
n = qb for some prime q.

In this paper, we go on studying the nilpotency
of a group under some arithmetical conditions on its
conjugacy class sizes and will replace conditions for
all conjugacy classes by conditions referring to only
some conjugacy classes to determine completely the
structure of G. We put our emphasis on conjugacy
class sizes of p′-elements of primary or biprimary or-
ders of G to analyze a new case of groups having
four conjugacy class sizes of p′-elements of primary
and biprimary orders of G and generalize Theorem A
in [11] and Theorem A in [12] and obtain arithmeti-
cal conditions on the p-regular conjugacy class sizes
which guarantee the nilpotency of the p-complements.
Our main result is the following: Let G be a finite p-
solvable group and let G∗ be the set of p′-elements of
primary and biprimary orders of G. Suppose that the
conjugacy class sizes of G∗ are {1,m, pa,mpa} with
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(m, p) = 1, then the p-complements of G are nilpo-
tent and m = qb for some prime q distinct from p.

We believe that this could probably be a starting
point for a proof of a more general result, that is, to
show the nilpotency of the p-complements of a group
when the set of its p-regular conjugacy class sizes is
{1,m, n,mn} where m and n are arbitrary coprime
numbers.

2 Basic definitions and preliminary
results

In this section, we state the necessary results for the
proof of our main theorem.

Lemma 1 [13, Theorem 5] Let G be a finite group
and p a prime divisor of |G|. Then there is in G no
p′−element of primary order whose index is divisible
by p if and only if G = P × H, where P is a Sylow
p-subgroup of G and H has order prime to p.

Lemma 2 [9, Lemma 5] Let G be a group. A prime
p does not divide any conjugacy class length of any
element of prime power order of G if and only if G
has a central Sylow p-subgroup.

We will make use of Thompson′s A×B Lemma.

Lemma 3 [14] Let AB be a finite group represented
as a group of automorphisms of a p-group G with
[A,B] = 1 = [A,CG(B)], B a p-group and A =
Op(A). Then [A,G] = 1.

Lemma 4 Let G be a π-separable group, where π is
a non-empty subset of π(G). Then

(a) let x ∈ G such that |xG| a π-number, then
x ∈ Oπ,π′(G).

(b) the conjugacy class size of any π′-element of
primary order in G is a π-number if and only if G has
Abelian Hall π′-subgroups. Moreover, lπ′(G) ≤ 1.

Proof: (a) Part (a) is Theorem C of [15].
(b) In this case the converse direction is easy and

so it is sufficient to prove the direct sense.
We argue by induction on |G|. First suppose

that Oπ(G) ̸= 1. Since the hypothesis is inher-
ited by quotient groups, by induction G/Oπ(G) has
an abelian Hall π′-subgroup H/Oπ(G). Further,
the Schur-Zassenhaus theorem gives that Oπ(G) has
a π-complement H1 in H . Consequently, H1

∼=
H/Oπ(G) is an abelian π′-subgroup of G, and we are
done.

Hence, we may assume that Oπ′(G) ̸= 1 since G
is π-separable. Moreover, for any π′-element x ∈ G

of primary order, there exists a Hall π′-subgroup K1

of G and an element g ∈ G such that xg ∈ Kg
1 ≤

CG(x). Then

x ∈ CG(K
g
1 ) ≤ CG(Oπ′(G)) ≤ Oπ′(G),

which implies that G has an abelian normal Hall π′-
subgroup, as required.

The second assertion follows immediately by ap-
plying Lemma 4 (a).

Lemma 5 LetG be a finite p-solvable group and π =
{p, q} with q and p two primes. Suppose that the sizes
of the conjugacy classes of G∗ are π-numbers. Then
G is solvable, it has abelian π-complements and every
p-complement of G has a normal Sylow q-subgroup.

Proof: We argue by induction on |G|. We will prove
first that G is solvable. Assume that Op(G) < G.
As the hypothesis is inherited by normal subgroups,
it follows by induction that Op(G) is solvable and
hence G is solvable too. Thus, we may suppose that
Op

′
(G) < G and use bars to work inG = G/Op

′
(G).

Notice that for any x ∈ G, we may assume that x
is a p′-element of primary order and as |xG| divides

|xG| and |xG| is a π-number, it follows that |xG| is
a q-number. Hence, by applying Lemma 2, we ob-
tain that G is nilpotent. As Op

′
(G) is solvable by

induction, we conclude that G is solvable too. We
show now that every p-complement of G has a nor-
mal Sylow q-subgroup. If y is a π′-element of G, then
in particular we can assume that y is a p′-element of
primary order so by hypothesis |yG| is a π-number.
By Lemma 4(b), we have that G has abelian Hall π′-
subgroups and lπ′(G) ≤ 1. Let T be a π-complement
of G, so Oπ(G)T E G. Suppose first that Oπ(G)=1,
so T = Oπ′(G). If x is a q-element of G, by hypoth-
esis |xG| is a π-number, whence T ⊆ CG(x). There-
fore, x ∈ CG(T ) ⊆ T , whence q does not divide
|G| and the thesis of the theorem is trivially true. Ac-
cordingly, we will assume that Oπ(G) > 1. If H is
any p-complement of G, by induction we have that
HOπ(G)/Oπ(G) = H/H

∩
Oπ(G) has a normal

Sylow q-subgroup. As H
∩
Oπ(G) is a q-subgroup

of H , we conclude that H has a normal Sylow q-
subgroup too, as wanted. ⊓⊔

In the next result, we show that the p-
complements of G are indeed nilpotent when we add
to the hypotheses of the above theorem the existence
of some q-element in G whose index is the highest
power of q dividing the sizes of classes of G∗.

Lemma 6 LetG be a finite p-solvable group and π =
{p, q} with q and p two distinct primes. Suppose that
the sizes of classes ofG∗ are π-numbers. Let qb be the
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highest power of the prime q which divides the sizes
of classes of G∗. Suppose that there exists some q-
element x ∈ G such that |xG| = qb. Then G has
nilpotent p-complements.

Proof: By Lemma 5 we know that G is solvable. Let
Q be a Sylow q-subgroup of G with x ∈ Q. Since
G = QCG(x), then K = ⟨xg|g ∈ G⟩ = ⟨xg|g ∈ Q⟩
is a normal q-subgroup of G.

Let T be a π-complement of G with T ⊆ CG(x).
For any y ∈ T of primary order, we have CG(xy) =
CG(x) ∩ CG(y) ⊆ CG(x) and then the hypotheses
imply that |CG(x) : CG(x) ∩ CG(y)| is a p-number.
Therefore, CK(x) = CK(x) ∩ CK(y) ⊆ CK(y)
and by applying Lemma 3, we obtain CK(y) = K.
If we write Z = CG(K), we have just proved that
T ⊆ Z E G, with |G : Z| a π-number. Thus, if y is
any π′-element of primary order of Z, then |yZ | is a
π-number, so Lemma 4(b) implies that Z has abelian
Hall π′-subgroups and lπ′(Z) ≤ 1. Thus, we can
write R = Oπ,π′(Z) = Oπ(Z)T with T abelian.

Now, let P1 be a Sylow p-subgroup of Oπ(Z).
By Frattini′s argument, we can write R =
Oπ(Z)NR(P1). Moreover, without loss of generality
we may suppose that T ⊆ NR(P1). Now, for any y ∈
T of primary order, since T ⊆ Z ⊆ CG(x), we have
CG(xy) = CG(x) ∩ CG(y) and |CG(x) : CG(xy)|
is a p-number by hypothesis. As R ⊆ CG(x) then
|R : CR(y)| is a p-number too, whence there exists
some Q1 ∈ Sylq(R) such that Q1 ⊆ CR(y). Hence,
for any y ∈ T of primary order we have y ∈ CT (Q1)
for some Q1 ⊆ CR(y). Now, if g ∈ TP1, then
g ∈ CTP1(Q1)P1 for some Q1 ⊆ CR(y). Since
R = P1Q1T , then

TP1 ⊆
∪

g∈TP1

CTP1(Q
g
1)P1

=
∪

g∈TP1

(CTP1(Q1)P1)
g,

which forces TP1 = CTP1(Q1)P1. As T is a p-
complement of TP1, there exists some g ∈ TP1

such that T g ⊆ CTP1(Q1). Thus, T × Qg
−1

1 is a p-
complement of R.

Now, choose a p-complement H of G such that
T × Qg

−1

1 ⊆ H . Since R E G, we have that H ∩ R
is a p-complement of R, so H ∩ R = T × Qg

−1

1 E
H . Therefore, T E H . By applying Lemma 5, we
conclude that H is nilpotent. ⊓⊔

Lemma 7 Let G be a p-solvable group whose conju-
gacy class sizes ofG∗ are {1, pa1 , · · ·, par , qb, pc1qb, · ·
·, pcsqb}, where q is prime distinct from p and ci >
0, b, ai ≥ 0 for all i. Then the p-complements of G
are nilpotent.

Proof: By Lemma 5 we know that G is solvable. If
b = 0, we use Lemma 4(b) with π = {p} to obtain
that G has abelian p-complements, so we may sup-
pose that b > 0.

If there exists some q-element of index qb, then
Lemma 6 applies and the p-complements of G are
nilpotent, so the Lemma is proved. Suppose now
that there exists some q-element x ∈ G such that
|xG| = pciqb for some i with ci ≥ 0 and let T be a
{p, q}-complement of G, which is abelian by Lemma
4(b), and such that T ⊆ CG(x). Let Q1T be a p-
complement of CG(x), where Q1 ∈ Sylq(CG(x)) and
x ∈ Q1. Now, if y ∈ T of primary order then
CG(xy) = CG(x) ∩ CG(y) and notice that the hy-
potheses of the Lemma imply that |CG(x) : CG(xy)|
must be a p-power. On the other hand, T ⊆ CG(xy)
since T is abelian, and consequently, there exists some
g ∈ CG(x) such that TQg1 is a p-complement of
CG(xy). Now, if we take a p-complement H of G
such that TQg1 ⊆ H , we can certainly writeH = TQ,
for some Q ∈ Sylq(G), with Qg1 ⊆ Q. As Qg1 ⊆
CQ(xy) ⊆ CQ(x) and Qg1 ∈ Sylq(CG(x)), it follows
that CQ(xy) = CQ(x) and thus CQ(x) ⊆ CQ(y).
Furthermore, by Lemma 5, we know that QEH . No-
tice that x ∈ Q and then we can apply Lemma 3
to conclude that CQ(y) = Q, for all y ∈ T . Then
H = Q × T , and since T is abelian, we deduce that
H is nilpotent and this case is finished too.

As a result, we may assume that every q-element
ofG is central inG or has p-power index. Choose y ∈
G∗ such that |yG| = qb and write y = yqyq′ , where
yq and yq′ are the q-part and q′-part of y respectively,
they are elements of primary orders. Since CG(y) ⊆
CG(yq), it follows that yq must be central in G and
thus, by replacing y by yq′ , we may assume that y is a
{p, q}′-element. Let H = QT be a p-complement of
G, where Q ∈ Sylq(G) and T is a {p, q}-complement
of G with y ∈ T . As G = QCG(y), then

L = ⟨yg|g ∈ G⟩ = ⟨yg|g ∈ Q⟩ ⊆ H.

As L is normal in G, we deduce that L ⊆ CG(x)
for any x ∈ Q. Then Q ⊆ CG(L) ⊆ CG(y), and this
is a contradiction. ⊓⊔

Lemma 8 [9, Theorem 16] Let G be a group. As-
sume that the set of conjugacy class sizes of all el-
ements of primary and biprimary orders of G is ex-
actly {1, pa, qb, paqb}, where p and q are two distinct
primes and a and b are positive integers, then G is
nilpotent.

Lemma 9 Let G be a p-solvable group whose conju-
gacy class sizes of G∗ are {1, ra, qb, raqb}, where q
and r are primes (distinct from or equal to p) and a
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and b positive integers. Then the p-complements of G
are nilpotent.

Proof When r ̸= p ̸= q we apply Lemma 1 and 8
and obtain that any p-complement of G is nilpotent.
Otherwise, we apply Lemma 7. ⊓⊔

Lemma 10 Let G be a finite p-solvable group and
let π = {p, q}. Suppose that the size of any conju-
gacy class of π′-elements of primary orders is a p-
number. Then G is solvable, the π-complements of G
are abelian and each p-complement ofG has a normal
(abelian) q-complement.

Proof: We show first that G is solvable by induc-
tion on |G|. If Op(G) < G, then as the hypotheses
are inherited by normal subgroups, it clearly follows
that G is solvable. Therefore, we will assume that
Op(G) = G and hence, Op

′
(G) < G. Notice that

if Op
′
(G)=1, then G is a p′-group and the hypothe-

ses imply that every q′-element of primary order of G
is central, so G is trivially solvable. We can assume
then that Op

′
(G) > 1 and write G = G/Op

′
(G). It

is easy to see that the hypotheses are inherited by fac-
tor groups and we will prove it for G. Let x ∈ G a
π′-element and factor x = xπxπ′ where xπ and xπ′

are the π-part and π′-part of x respectively, they are
elements of primary orders. Then x = xπ′ , so x can
be assumed without loss to be a π′-element of primary
order. As |xG| divides |xG|, we obtain that the class
size of any π′-element of primary order of G is also a
p-number, as wanted. By applying the inductive hy-
pothesis toOp

′
(G) andG, we conclude thatG is solv-

able as wanted.
The fact that the π-complements of G are abelian

follows just by applying Lemma 4(b).
We prove now by induction on |G| that each

p-complement of G, say H , has a normal q-
complement. Let N = Oq′(G) and suppose first that
N = 1. Since the index of any π′-element of primary
order y ∈ G is a p-number, then Oq(G) ⊆ CG(y) and
so y ∈ CG(Oq(G)) ⊆ Oq(G), which is a contradic-
tion. Therefore, in this case there are no π′-elements
in G, that is, G is a {p, q}-group and the conclusion
of the Lemma is trivial. Hence, we will assume that
N > 1 and apply the inductive hypothesis to G/N so
as to obtain that HN/N ∼= H/H ∩ N has a normal
q-complement. As H ∩N is a q′-subgroup, it follows
that H also has a normal q-complement. ⊓⊔

Lemma 11 [7, Corollary B] Let G be a finite group
and suppose that the class size of every element of
prime power order of G is 1 or m. Then G is nilpo-
tent. More precisely, m = pn for some prime p, and
G = P ×A with A abelian and P a p-group.

3 Main results
Theorem 12 Let G be a finite p-solvable group and
let G∗ be the set of p′-elements of primary and bipri-
mary orders of G. Suppose that the conjugacy class
sizes of G∗ are {1,m, pa,mpa} with (m, p) = 1, then
the p-complements of G are nilpotent and m = qb for
some prime q distinct from p.

Proof: We will show thatm is a power of some prime
q ̸= p and then the result will be proved by Lemma 9.
First, we show that two p′-elements of primary orders
of index pa and m centralize each other.

Step 1. If w is a p′-element of primary order of index
m and y is a p′-element of primary order of index pa,
then w ∈ CG(y).

Let H be a p-complement of G with w ∈ H . No-
tice that G = CG(w)H and that there exists some
g ∈ H such that wg ∈ Hg ⊆ CG(y). Also, as w and
y have coprime index, we have G = CG(w)CG(y),
so we can assume that g ∈ CG(w). Thus, w = wg ∈
Hg ⊆ CG(y).

There exist p′-elements of index pa by hypothesis,
so by considering the primary decomposition of such
elements, there must exist certain q-elements of index
pa for some prime q. For any such a prime q we prove
the following properties (Steps 2-4).

Step 2. For any p-complement H of G, it holds that
every q′-element of primary order of H has index 1 or
m in H .

Since the centralizer of any q-element of index
pa contains some p-complement of G, by conjugacy
we may certainly choose some q-element, say y, of
index pa such that H ⊆ CG(y). Now, let z be any
q′-element of primary order of H which centralizes y
and then CG(zy) = CG(z) ∩ CG(y) ⊆ CG(y). Thus,
z has necessarily index 1 orm inCG(y). Asm is a p′-
number, it follows that CG(y) = H(CG(z) ∩ CG(y))
and we conclude that |H : CH(z)| = 1 or m as re-
quired.

Step 3. If z is a q-element of index pam, then
CG(z) = QzPz × Tz , where Qz and Pz are q-
and p-subgroups respectively and Tz is an abelian
{p, q}′-subgroup. Furthermore, if z lies in some p-
complement H of G, then we can assume that Tz is
not central in H .

By the maximality of the index of z we notice that
any {p, q}′-element of primary order t ∈ CG(z) satis-
fiesCG(zt) = CG(z), soCG(z) ⊆ CG(t) and accord-
ingly CG(z) can be written as described in the state-
ment. We remark that this part of the step is also true
without the assumption of existence of q-elements of
index pa that we are doing.
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For the second part, we take some p-complement
H of G with z ∈ H and we will prove that if Tz is
central inH , then the theorem is proved. Suppose that
Tz ⊆ Z(H), and consequently, Tz = Z(H)q′ and

mq′ = |G|{p,q}′/|Z(H)|q′ .(I)

We distinguish three cases. Assume first that H pos-
sesses a q′-element of primary order of index m in
G, say w, and take a q-element y ∈ H of index pa.
We know by Step 1 that y ∈ CG(w), so CG(wy) =
CG(w)∩CG(y) and certainly wy has index pam. On
the other hand, (I) implies that Z(H)q′ is a {p, q}-
complement of CG(wy). But as w ∈ CG(wy), then
w ∈ Z(H) and this contradicts the fact that w has
index m. Therefore, this case cannot happen. As-
sume now that there exists in H a q′-element of pri-
mary order of index pam. Again (I) shows that Z(H)
is a {p, q}-complement of CG(w), and as in the above
paragraph, this leads to a contradiction.

Finally, we can assume that any q′-element of pri-
mary order w ∈ H has index pa. This means that
the class size of any {p, q}′-element of primary order
of G is a p-number, so by applying Lemma 10, we
have that G is solvable and the {p, q}-complements
are abelian. Let s be any prime distinct from p and q
and let S ∈ Syls(G) with S ⊆ H . If S ⊆ Z(H), it is
trivial that s does not divide m. If S * Z(H), then
we take w ∈ S − Z(H) and by Step 2, w has index
m in H . As S is abelian, we have S ⊆ CH(w), so in
particular, s does not divide m either. Therefore, m is
a q-power and the theorem is proved.

Step 4. If z is a q-element of index pam, lying in some
p-complement H of G, then |H : CH(z)| = m and
there exists some element t ∈ Tz ∩H −Z(H), where
Tz is the subgroup defined in Step 3.

We show first that |H : CH(z)| = m. Write
CG(z) = QzPz ∈ Tz as in Step 3, with Tz non-
central in H and choose a non-central {p, q}′-element
w ∈ Tz . This can be assumed of primary order, say
for instance an r-element for a prime r ̸= p, q. We
will distinguish three cases depending on the index of
w in G.

Assume first that w has index pa. In this case,
Step 2 asserts that any r′-element of H , in particular
z, has index m in H .

Suppose now that w has index m. Observe that
any r′-element of primary order of CG(w) has in-
dex 1 or pa in CG(w), so by Lemma 10, the {p, r}-
complements of CG(w) are abelian. On the other
hand, as Tz is abelian and w ∈ Tz , we have CG(z) ⊆
CG(w), so in particular, Qz is abelian. We have just
shown that any p-complement of CG(z) is abelian.
Moreover, as |CG(w) : CG(z)| = pa, then the p-
complements of CG(z) are also p-complements of

CG(w). On the other hand, the fact that HCG(w) =
G implies that CH(w) is an (abelian) p-complement
of CG(w). Then CH(w) ⊆ CH(z) and hence,
CH(w) = CH(z). Since by Step 2, w has index 1
or m in H , we conclude that z has the same index.
But we notice that z cannot be central in H since it
has index pam in G. So this case is finished too.

Finally, assume that w has index pam. As Tz
is abelian, then CG(z) ⊆ CG(w) and by orders,
CG(z) = CG(w). Taking into account the decom-
position of CG(z) and of CG(w) given in Step 3 (w is
an r-element), we get

CG(z) = CG(w) = Qz × Pz × Tz

with the same notation given there. On the other hand,
we can take a q-element y ∈ H of index pa in G
such that y ∈ Z(H). Since w has index pam we
have CG(wy) = CG(w) ∩ CG(y) = CG(w), that
is, CG(w) ⊆ CG(y) and |CG(y) : CG(w)| = m.
This forces CG(y) = HCG(w) and accordingly, |H :
CH(w)| = m. Therefore, z also has index m in H , as
we wanted to prove.

We prove now the second part of the step. By the
first part we have mq′ = |H|q′/|CH(z)|q′ , but if we
consider the decomposition of CG(z) = QzPz × Tz ,
we also obtain mq′ = |G{p,q}′ |/|Tz|. Thus, |Tz| =
|CH(z)|q′ . If Tz ∩ H ⊆ Z(H), then Tz ∩ H ⊆
Z(H)q′ ⊆ CH(z)q′ . But, on the other hand, CH(z)q′
is clearly contained in the Hall {p, q}′-subgroup of
CG(z), that is, in Tz . We deduce that CH(z)q′ = Tz
and this forces Tz to be central in H , which is a con-
tradiction by Step 3.

It is clear that in G there exist elements of prime
orders of index m. From now on we will fix one of
these elements x, an r-element, with r ̸= p, and will
choose a p-complement ofG, sayH , such that x ∈ H .
Since G = HCG(x), then CH(x) is a p-complement
of CG(x) and by applying Lemma 10 to CG(x), we
can write CH(x) = TxRx, with Rx an r-subgroup
and Tx an abelian {p, r}′-subgroup which is normal
in CH(x). We know by Step 1 that any p′-element
of prime order of index pa commutes with any p′-
element of prime order of index m, so in particular,
every p′-element of prime order of index pa of H be-
longs to CH(x). Now, in the two following steps we
prove two properties related to CH(x).

Step 5. We may assume that Tx is not central in G.
We assume that Tx ⊆ Z(G) and work to get

a contradiction. We know that every r′-element of
prime order in H of index 1 or pa centralizes x,
and consequently, lies in Tx. Thus, there are not r′-
elements of prime orders in H of index pa, whence
there cannot exist such elements in G. Accordingly,
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there must exist some r-element y of index pa, which
can be assumed to lie in Z(H) by conjugacy.

By Step 2, any r′-element of prime order of H
has index 1 or m in H . Notice that if any r′-element
of prime order of H lies in Z(H), then H = R ×
Z(H)r′ , which is nilpotent and m would be a power
of r. In this case the theorem is proved, so we can
assume the existence of some r′-element of prime or-
der y ∈ H − Z(H) of index m in H . Then we have
mr′ = |H|r′/|CH(y)|r′ . But moreover, the structure
of CG(x) provides the equality mr′ = |H|r′/|Tx|. As
Tx = (Z(G) ∩H)r′ , this yields

|Tx| = |Z(G) ∩H|r′ = |CH(y)|r′

and consequently, (Z(G) ∩H)r′ is an r-complement
of CH(y). This contradicts the fact that y is non-
central in CH(y).

Step 6. If Tx has an element of index m or pam, then
CH(x) is abelian.

Suppose first that there is an element w ∈ Tx of
index m. By considering the primary decomposition
of w we can assume without loss that w is a q-element
for some prime q ̸= p, r, since CG(w) must be equal
to the centralizer of some primary component of w.
Notice that each {p, q}′-element of prime order of
CG(w) has index 1 or pa in CG(w), and that CH(w)
is a p-complement of CG(w). So by applying Lemma
10, we can write CH(w) = QwTw where Qw is a q-
subgroup and Tw an abelian {p, q}′-subgroup which
is normal in CH(w). We also notice that |CH(w)| =
|CH(x)|, as both subgroups have index pam inG. We
will prove that in fact both centralizers are equal. As
w ∈ Tx, we have that Tx ⊆ CH(w). On the other
hand, x lies in some Sylow r-subgroup of CH(w), say
Rw, which is abelian, so Rw ⊆ CH(x). Therefore,
TxRw ⊆ CH(x) and TxRw ⊆ CH(w). By order con-
siderations, we conclude CH(w) = CH(x) = TxRw.
But we know thatRw is abelian and normal inCH(w),
so CH(x) = Tx ×Rw, whence CH(x) is abelian.

Suppose now that there is an element of prime or-
der w ∈ Tx of index pam. Notice that any r-element
z ∈ CG(w) satisfies CG(zw) = CG(w) ∩ CG(z) =
CG(w) by the maximality of the index of w. This
means that z is central in CG(w), so we can write
CG(w) = TwPw × Rw, with Pw a p-subgroup, Tw
a {p, r}′-subgroup and Rw an abelian r-subgroup.
Moreover, as Tx is abelian, then Tx ⊆ CG(w), so Tx
centralizes Rw. On the other hand, x ∈ CG(w), so
x ∈ Rw and Rw ⊆ CH(x). By order considerations
Rw is a Sylow r-subgroup of CH(x), whence we con-
clude that CH(x) = Rw × Tx and CH(x) is abelian
too.

For the rest of the proof we are going to define and
work with certain subgroup Lq for any prime q ̸= p, r.

When these subgroups are central for all q we will
define and work with a subgroup associated to r.

Step 7. For any prime q ̸= p, r, let

Lq = ⟨y|y is a q−element inH with |yG| = 1 or pa⟩.

Then Lq is an abelian normal q-subgroup of H .
Suppose that Lq ⊆ Z(G) for all q ≠ p, r. Then

we define

Lr = ⟨y|y is an r−element inH with |yG| = 1 or pa⟩.

and it is a non-central abelian normal r-subgroup of
H . Furthermore, in this case CH(x) is abelian.

For any prime q ≠ p, r, we know that CH(x) has
an abelian normal Sylow q-subgroupQ. Likewise, we
know by Step 1 that

{y|y is a q−element in H with |yG| = 1 or pa}
⊆ CH(x).

As a consequence, Lq ⊆ Q and thus, Lq is an abelian
q-subgroup of H . The fact that Lq EH is trivial.

Suppose now that Lq ⊆ Z(G) for all q ≠ p, r.
This implies that there are no q-elements of index pa
for all such primes and hence, there must be an r-
element in G (and in H) of index pa. In particular,
Lr * Z(G). On the other hand, by applying Step 5,
we deduce that in Tx there must be elements of pri-
mary orders of index m or pam, so by Step 6, CH(x)
is abelian. But by Step 1, we have

{y|y is an r−element in H with |yG| = 1 or pa}
⊆ CH(x).

so Lr is contained in the Sylow r-subgroup of CH(x).
Therefore, Lr is an abelian r-subgroup of H which is
trivially normal in H .

Step 8. Every q-element of H centralizes Lq for any
prime q ̸= p, r. If Lq ⊆ Z(G) for any q ≠ p, r, then
any r-element of H centralizes Lr.

Let s be any prime distinct from p and let z be
an s-element of H . We will prove that z ∈ M =
CH(Ls) (we remark that when s = r then we are
assuming that Lq ⊆ Z(G) for all q ≠ p, r).

If z has index pa, then by definition z ∈ Ls, so
trivially z ∈ M . If z has index m, we know by Step
1 that z centralizes any element of primary order of
index pa, so z also lies in M .

Thus, we only have to show that if z has index
pam, then it lies in M too. By Step 3, we write
CG(z) = SzPz × Tz with the notation given there
and Tz abelian. Also, by Step 4, there exists some ele-
ment of primary order t ∈ Tz∩H−Z(H), so we have
CG(z) ⊆ CG(t). In particular CLs(z) ⊆ CLs(t), and
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by applying Lemma 3, we conclude that t ∈M . Now
we distinguish three cases for the index of t in G. If
t has index pam, then CG(t) = CG(z), so z lies triv-
ially in M . If t has index pa, as t is non-central in H
then by Step 2 (notice that there are s-elements of in-
dex pa), we get |H : CH(t)| = m. On the other hand,
by Step 4, we have |H : CH(z)| = m, and since
CH(z) ⊆ CH(t) we obtain by order considerations
that CH(z) = CH(t). It follows that z ∈ M . Finally,
suppose that t has index m. There is no loss if we as-
sume that t is an l-element, for some prime l ̸= s, p,
since we can replace t by some of its components in
the primary decomposition, with the same index m.
By applying Lemma 10 to CG(t), we get that CG(t)
has abelian {p, l}-complements, so CH(t), which is
a p-complement of CG(t), has an abelian normal s-
complement, say Tt. Then z ∈ Tt and Tt ⊆ CH(z).
Therefore, |CH(t) : CH(z)| is an l-number. As Ls
is a normal s-subgroup of CH(t), we conclude that
Ls ⊆ CH(z).

Step 9.We can assume that for any prime q ̸= p, r,
we have Lq ⊆ Z(H). If Lq ⊆ Z(G) for all prime
q ̸= p, r, then Lr ⊆ Z(H).

Let s be a prime distinct from p. Notice that
Ls ⊆ CH(x) by Step 1. We will consider the fol-
lowing cases:

(a) s = r. In this case notice that we are assum-
ing by definition of Lr in Step 7 that Lq ⊆ Z(G) for
all prime q ≠ p, r. Also in this case, as Tx is non-
central by Step 5 and there are no {p, r}′-elements of
primary orders of index pa, then Tx has elements of
primary orders of index m or pam and by Step 6 we
have that CH(x) is abelian.

(b) s ≠ p, r. We will distinguish two possibili-
ties:

(1) there are no r-elements of index pa; and
(2) there are r-elements of index pa.

In cases (a) and (b)(1) we will see that if w ∈ H
of primary order, then w ∈ CH(Ls), so Ls ⊆ Z(H).
In case (b)(2) we have by Step 2 that every r′-element
of primary order of H has index 1 or m in H . We
will prove that if w ∈ H of primary order, then w ∈
RgxCH(Ls) with g ∈ CH(x). Once this is proved, we
have

H =
∪
g∈H

RgxCH(Ls),

which forces that H = RxCH(Ls) and |H : CH(Ls)|
is an r-number. Let y ∈ Ls − Z(H), then CH(Ls) ⊆
CH(y) ⊆ H and |H : CH(y)| = m. Thus m is a r-
power and the theorem would be proved. Therefore,
Ls ⊆ Z(H) as we want to prove.

Now we prove the properties stated in the above
paragraph. Let w ∈ H and consider the {s, s′}-

decomposition of w. By Step 8 we know that the s-
part of w lies in CH(Ls), so we can assume without
loss of generality w is an s′-element of primary order.
If w has index m, then w ∈ CH(Ls) by Step 1. So we
will study the cases in which w has index pa or mpa.

Suppose first that w is an element of primary or-
der and w has index pa. Using Step 1 again we get
w ∈ CH(x). In case (a) we know that CH(x) is
abelian and Lr ⊆ CH(x), so clearly w ∈ CH(Lr).
In case (b), we have s ̸= r and thus, Ls ⊆ Tx. We
consider the {r, r′}-decomposition of w = wrwr′ ,
where wr and wr′ are elements of primary orders, so
wr′ ∈ Tx by Step 1. Since Tx is abelian, we obtain
wr′ ∈ CH(Ls). In case (b)(1), wr is central in G, so
w ∈ CH(Ls). In case (b)(2), as wr ∈ CH(x) =
TxRx, then wr ∈ Rgx, for some g ∈ CH(x). So
w ∈ RgxCH(Ls).

Suppose now that w has index pam and consider
the primary decomposition of w, that is, w = wrwr′
for some prime r′. If wr′ has index pa or m then, by
the above paragraphs, we have wr′ ∈ CH(Ls). On
the other hand, if wr has index m, then wr ∈ CH(Ls)
by Step 1 and w ∈ CH(Ls). If wr has index pa then,
again by the above paragraph, we deduce in cases (a)
and (b)(1) that wr ∈ CH(Ls) and, in case (b)(2), we
obtain wr ∈ RgxCH(Ls), so w ∈ RgxCH(Ls), for
some g ∈ CH(Ls). Thus, we can assume that either
wr or wr′ , for some prime r′, has index pam inG. We
will prove that w ∈ CH(Ls) in all cases (a), (b)(1)
and (b)(2).

Let us consider wl (with l either equal to r′ or
r) such that |wGl | = pam. Notice that l ̸= s and
CG(w) = CG(wl). Suppose that Ls * Z(H) and
take y ∈ Ls−Z(H). As y has index pa, by conjugacy
we can assume without loss that H ⊆ CG(y). Then
w centralizes y and CG(wy) = CG(w) ∩ CG(y) =
CG(w) = CG(wl) ⊆ CG(y). Since CG(y) =
HCG(wl), it follows that CH(wl) is a p-complement
of CG(wl). On the other hand, arguing in a similar
way as in the first part of Step 3, we get CG(wl) =
Lwl

Pwl
× Awl

, with Lwl
an l-group, Pwl

a p-group
and Awl

an abelian {p, l}′-group, whence y ∈ Awl
.

As Lwl
×Awl

is also a p-complement of CG(wl), then
we can assume up to conjugacy that CH(wl) = Lwl

×
Awl

⊆ H . Thus ms = |G|s/|Awl
|s ≤ |G|s/|Z(H)|s.

If |Awl
|s = |Z(H)|s, then |G|s/|Z(H)|s = ms.

Moreover, as Ls ⊆ CG(x), then |G|s/|Ls| ≥ ms.
Since Z(H)s ⊆ Ls, we obtain Ls = Z(H)s, which
contradicts our assumption. So we can assume that
there are s-elements in Awl

which are not central in
H . We distinguish the following three cases.

Suppose first that there is an s-element z ∈ Awl

of index pam. Then CG(z) = CG(wl) = CG(w).
By Step 7, we have that z ∈ CH(Ls) and then
Ls ⊆ CG(z) = CG(w). In this case, we obtain
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w ∈ CG(Ls).
Suppose now that there is an s-element z ∈ Awl

of index m. As z, y ∈ Awl
, then CG(wl) = CG(w) ⊆

CG(y) ∩ CG(z) = CG(yz) and thus, CG(yz) =
CG(w). Again by Step 7, Ls ⊆ CH(z) = CH(w),
so w ∈ CH(Ls).

Finally, assume that every s-element of Awl
has

index pa, and consequently, that all of them belong
to Ls. Then |Awl

|s ≤ |Ls|, so ms ≤ |G|s/|Ls| ≤
|G|s/|Awl

|s = ms. Therefore, Ls ⊆ Awl
. As Awl

is abelian, we conclude that wl ∈ Awl
⊆ CH(Ls),

whence Ls ⊆ CH(wl) = CH(w) and w ∈ CG(Ls) as
we wanted to prove.

We remark that whenever there exists some s-
element of index m in G for some prime s ̸= p, then
Step 9 also holds for s, just by arguing with s instead
of r as we have made it in Steps 5-9.

Step 10.(Conclusion).
We know that there are p′-elements of primary or-

ders of index pa, so there is some prime s ̸= p such
that Ls * Z(G). By Step 9, we have Ls ⊆ Z(H).
Notice that if s = r, then we are also assuming that
Lq ⊆ Z(G) for all prime q ̸= p, r. We claim first that
any s-element w ∈ H has index 1 or m in H . We
distinguish three possibilities according to the index
of w in G. If w has index pa, then w ∈ Ls ⊆ Z(H).
If w has index m, then HCG(w) = G and it clearly
follows that w has index m in H . Finally, if w has
index pam in G, then by Step 4, w has index m in H ,
and the claim is proved.

On the other hand, by Step 2, we also have that
any s′-element of primary order of H has index 1 or
m inH . The rest of the proof consists of showing that
any element of primary order of H has index 1 or m
too. Then, by applying Lemma 11, we get that H is
nilpotent and m is a prime power, so the proof of the
theorem will be finished.

Let us take any z ∈ H inG∗ and factor z = zszs′ ,
where zs and zs′ are elements of primary orders. If
one of these factors is central in H , then z would have
the same index in H as the other factor, and conse-
quently, z would have index 1 or m in H . Therefore,
we will assume that both zs and zs′ are not central in
H . We distinguish three cases for the index of z in
G. If z has index pa in G, then as CG(z) ⊆ CG(zs)
and since zs cannot be central in G, it follows that
CG(z) = CG(zs), whence z has the same index in
H as zs, that is, m. If z has index m in G, since
HCG(z) = G, we easily deduce that z has index m
in H too. Thus, we will suppose that z has index pam
in G.

We have the following possibilities for the index
of zs in G. If zs has index pa, then it would be central
in H by Step 9, but we are assuming that it is not

so. If zs has index pam in G, we certainly have that
CG(z) = CG(zs) and then z has the same index in H
as zs. We will assume then that zs has index m in G.

On the other hand, we analyze the index of zs′
in G. Suppose first that zs′ has index pa. If we let
zs′ = zqi for some prime qi ≠ r, s, it is clear that
zqi has index pa or 1, whence if qi ̸= r, then by
Step 9, zqi ∈ Z(H). Hence, zqi = zs′ is central in
H , so all s′-elements are central in H , contradicting
our assumption. Therefore, we can assume that there
is some i such that qi = r and that zs′ = zry with
y ∈ Z(H) and y of primary order. As r ≠ s and zs
has index m, by the remark above this step, we know
that Step 9 holds for s, that is, any s′-element of index
pa is central in H . In particular, zr ∈ Z(H) and con-
sequently, zs′ ∈ Z(H) too, which is a contradiction.

Suppose now that zs′ has index pam. Then
CG(zs′) = CG(z), so z has index 1 or m in H .

Finally, let us assume that zs′ has index m and
consider again the primary decomposition, we can as-
sume zs′ = zl. It follows that CG(zs) = CG(zl) for
some prime l ̸= p, r. Then

CG(z) = CG(zs) ∩ CG(zs′)
= CG(zs) ∩ CG(zl) = CG(zszl)

and accordingly we can assume that z = zszl, know-
ing that both factors have index m in G. Now, by ap-
plying Lemma 10, we have that CG(zs) has abelian
{p, s}-complements, so we can write CH(zs) =
T1S1, where S1 is an s-subgroup and T1 an abelian
{p, s}′-subgroup, with zl ∈ T1. Notice that T1 ⊆
CH(zl). Arguing in the same way with CG(zl), it has
abelian {p, l}-complements, so in particular we may
write CH(zl) = T2S2, where T2 is a {p, s}-subgroup
and S2 is an abelian s-subgroup, with zs ∈ S2. No-
tice that S2 ⊆ CH(zs) = T2S2. Also, up to con-
jugacy and by order considerations we can assume
that S2 = S1, so CH(zs) = S1T1 ⊆ CH(zl). As
both subgroups have the same order, we conclude that
CH(zs) = CH(zl). Therefore,

CH(z) = CH(zs) ∩ CH(zl) = CH(zl) = CH(zs),

whence z has index m in H , as we wanted to prove.
Now the proof of the theorem is finished.

Remark 13 In Theorem 12, we only use p′-elements
of primary and biprimary orders of G to guarantee
the nilpotency of the p-complements, it can be seen a
complete extension of Theorem A in [12].

4 Conclusion and an application
The results explained in the previous sections show
that the method that we replace conditions for all con-
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jugacy classes by conditions referring to only some
of the classes in order to investigate the structure of
a finite group is very useful. Results of this type
are interesting since they can be used to simplify the
proofs of new or known properties related to conju-
gacy classes. Recently, Kang in [17] and [18] char-
acterized the structure of a finite group by using this
method. In addition, according to the parallel prop-
erty of conjugacy class sizes and character degrees in
[19] and [20], we may consider using the character de-
grees to characterize the structure of finite groups. As
an application, we can investigate the structure of a fi-
nite group when its character degrees of G are exactly
{1,m, pa,mpa}, where m is an integer not divisible
by p.
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