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Abstract: This paper is concerned with the three-species diffusive systems in a periodic environment, which arises
in a one-prey and two-competing-predator population model with Beddington-Deangelis and Holling-type III
schemes. By using eigenvalue analysis, bifurcation theories and Schauder estimates, the existence of positive
periodic solutions of the single prey species system, two-species predator-prey systems with different functional
responses and three-species periodic diffusive systems are investigated. The necessary and sufficient conditions are
described by the principal eigenvalue of the periodic parabolic operators. Furthermore, the alternative sufficient
conditions characterised by the integral form of the parameters of the systems are more convenient to the biological
explanation.
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1 Introduction
The study of the dynamic relatives between preda-
tors and preys in the muti-species biological systems
has been one of the most important themes in popu-
lation dynamics because of its universal existence in
nature (see [1-11] and the references therein). Re-
cently, the three species predator-prey systems with
spatial diffusion and some functional responses have
been attracted more and more attention [8-11]. As
we all know, there are various kinds of functional re-
sponse models being constructed and investigated in
the past half century [12-14]. Among them, three dis-
tinct classes have been summed up as following: prey-
dependent, predator-dependent and ratio-dependent.
Classic “prey-dependent” models assume that the pre-
dation rate is a function of only prey density (see [13-
15]); “predator-dependent” models estimate the pre-
dation rates that depend on densities of both prey and
predator (see [16-18],[14]); “Ratio-dependent” mod-
els evaluate the predation rates that depend only on

∗Correspondence author

the prey to predator ratio (see[19],[10-11]). However,
it appears only a few models incorporated two or more
different kinds of functional responses [20-27], rarely
in the three coupled predator-prey systems. In addi-
tion, the investigations on the periodic behaviors of
the muti-species models are of theoretical and prac-
tical significance, but are more complicated than two
species system and appear not much in the literature
[6, 24-26].

On the incorporating functional responses mod-
els, Aziz-Alaoui and Nindjin et al. in [22, 23] con-
sidered earlier a predator-prey model incorporating a
modified version of the Leslie-Gower and Holling-
type II functional responses. In [20], W. Yang and
Y. Li discussed a diffusive predator-prey system with
modified Leslie-Gower and Holling-type III schemes.
The relevant dynamic behaviors of this two species
system were obtained. Some stability analysis were
investigated in [21] by Tian and Weng. The latest
model were constructed by P. J. Pal and P. K. Man-
dal in [25]. The paper was concerned with a modified
Leslie-Gower delayed predator-prey system where the
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growth of prey population is governed by Allee ef-
fect and the predator population consumes the prey
according to Beddington-DeAngelis type functional
response. To the nonconstant coefficient models, Y.
Zhu and K. Wang in [24] assumed that all of the
parameters in the system were positive T -periodic
functions except for the two parameters in the de-
nominators of the two different functional responses.
The well-posed problem of the positive periodic solu-
tions were obtained and the significance of this model
was characterized by some theorems and examples.
However, one can see that, until now, there are rel-
atively few conclusions on the periodic coefficient,
muti-species system models with different functional
response schemes.

In this paper, we study a three species periodic
predator-prey system with diffusion. We assume in a
periodic environment two consumer species compete
for the common resource following the Beddington-
DeAngelis functional response [16,17] and Holling-
type III functional response[14,18], both of them are
predator-dependent. We obtain the following periodic
reaction-diffusion equations:

ut −D1(t)∆u = u(r − au)− b1u
2v1

mv21 + u2

− b2uv2
α+ βv2 + u

,

v1t −D2(t)∆v1 = v1(−d1 − e1v1)

−f1v1v2 +
c1u

2v1
mv21 + u2

,

v2t −D3(t)∆v2 = v2(−d2 − e2v2)

−f2v1v2 +
c2uv2

α+ βv2 + u
,

in Ω× (0,+∞),
∂u
∂ν + γu = 0,
∂v1
∂ν + γv1 = 0,
∂v2
∂ν + γv2 = 0,

 on ∂Ω× (0,∞),

(u(x, 0), v1(x, 0), v2(x, 0))
= (u(x, T ), v1(x, T ), v2(x, T )) ≥ (0, 0, 0),

in Ω, (1)

where Ω is a bounded region in Rn(n ≥ 1) with suf-
ficiently smooth boundary ∂Ω and ν is the outward
unit vector on ∂Ω. The system is endowed with ho-
mogeneous Robin boundary conditions. The three
functions u(x, t), v1(x, t) and v2(x, t) represent the
densities of the prey and the two predators respec-
tively. Two predators share one prey with different
functional responses b1u2

mv21+u
2 and b2u

α+βv2+u
. The first

is Holling-type III functional response and the second
Beddington-DeAngelis. The predator v1 consumes
the prey with the rate b1uv1

mv21+u
2 and contributes to its

growth rate c1u2

mv21+u
2 , another predator v2 consumes

the prey with b2v2
α+βv2+u

and contributes to its growth
rate c2u

α+βv2+u
. As it known to all, these two functional

responses are more complex than the Lotka-Volterra
functional response or Holling-type II functional re-
sponse, as described in [8, 15, 20, 21] and the refer-
ences cited therein.

Throughout this paper, we assume that
(H1) the diffusion coefficients D1(t), D2(t) and

D3(t) are smooth strictly positive T -periodic func-
tions;

(H2) r = r(x, t), a = a(x, t), bi = bi(x, t), ci =
ci(x, t), di = di(x, t), ei = ei(x, t), fi = fi(x, t)
(i = 1, 2) are all smooth positive functions on Ω× R
and T -periodic, and γ = γ(x, t) is smooth positive
functions on ∂Ω× R and T -periodic;

(H3) the parameters m = m(t), α = α(t) and
β = β(t) in the functional response terms are strict
positive T -periodic.

In the next section of the present paper we will
prove the existence of positive periodic solutions for
the single prey species system. In section 3, we in-
troduce two coupled periodic predator-prey systems
with diffusion, and acquires the conditions for the ex-
istence of positive periodic solutions. Some necessary
and sufficient conditions are presented for the three-
species coupled system in Section 4 and conclusion
are drawn in the last section.

2 Solutions for the Single Prey
Species System

In this section, we will establish the existence results
of positive solutions for single species prey system:

ut −D1(t)∆u = (r − au)u, in Ω× R+,
∂u
∂ν + γ(x, t)u = 0, on ∂Ω× R+,
u(x, 0) = u(x, T ) ≥ 0, x ∈ Ω.

(2)
Firstly, we give the strictly positive solution re-

sults, which can be get by maximum principle, easily.

Lemma 1. Suppose that u = u(x, t) is a nonnegative,
nontrivial solution for the system (2). Then u > 0 for
all x ∈ Ω, t ∈ R.

Then, We prove the following estimates of u for
the system (2) by Schauder estimates.

Lemma 2. Suppose that u = u(x, t) is a positive so-
lution of the system (2). Then there exists a constant
M such that ||u||C2+µ,1+µ/2(Q̄T ) ≤M .

Proof: We know that, for an arbitrary initial-value
u0, a sufficiently large constant C1 is a supersolution
of the first equation in (2), and so ∥u∥C(Q̄T ) ≤ C1. By
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theorem 2.4 in [33], there exists a continuous function
f and g such that

∥u∥
C1+µ,

1+µ
2 (Q̄T,2T )

≤ f(∥u∥C(Q̄T ))

≤ g(∥u(r − au)∥C(Q̄2T )), (3)

where QT,2T = Ω × [T, 2T ]. Thus by
embedding theorem ∥u∥C1+µ,(1+µ)/2(Q̄T,2T ) and so
∥u∥C2+µ,1+µ/2(Q̄T,2T ) is bounded.

Since u is T−periodic, ∥u∥C2+µ,1+µ/2(Q̄T ) =

∥u∥C2+µ,1+µ/2(Q̄T,2T ), and so there exists a constant
M such that

∥u∥C2+µ,1+µ/2(Q̄T ) ≤M. (4)

Let

X := {w ∈ Cµ,µ/2(Ω×R) : w(x, t) = w(x, t+ T )}

Y :=

{
w
∣∣ w ∈ C2+µ,1+µ/2(Ω× R)
Bw = 0, on ∂Ω× R,
w(x, t) = w(x, t+ T )

}
,

where 0 < µ < 1, B := ∂/∂ν + γ is the Robin
boundary operator as given in system (1). We also
denote QT := Ω× [0, T ], and the operator

L := ∂t −D(t)∆ + q(x, t). (5)

where q ∈ X, and D ∈ Cµ/2(R) is a positive T -
periodic.

Let us introduce the properties of principal eigen-
value to this parabolic operator L. Let k ∈ R is suffi-
ciently large and q(x, t) + k > 0 for all (x, t) ∈ QT ,
then we can get from [29] that Lk = L+ k is a closed
operator with compact positive inverse and a positive
spectral radium. Thus Lk has a positive eigenvalue
corresponding to a positive eigenfunction by the Krein
Rutman theorem. So, L also has a principal eigen-
value which we denote by λ1(q). By [28], we can
state the following results, which will be used later.

Lemma 3. Let X and Y be defined as before.
(i) If there is a u ∈ Y , u > 0 such that (L−λ)u <

0, then λ1(q) < λ.
(ii) If q1, q2 ∈ X with q1 < q2, then λ1(q1) <

λ1(q2).
(iii) If qn, q ∈ X for all n ∈ N and qn → q in

C(QT ), then limn→∞ λ1(qn) = λ1(q).

The following theorem gives the existence and
uniqueness of positive periodic solutions to system
(2).

Theorem 4. The necessary and sufficient condition
for the existence of strictly positive solution of the sys-
tem (2) is λ1(−r(x, t)) < 0((x, t) ∈ Ω×R+). More-
over, if it exists, then it is unique.

Proof: Let L0 := ∂t − D(t)△ − r(x, t). Then the
first equation of (2) can be rewritten as

L0u = −au2. (6)

Suppose the system (2) has a positive solution u.
L0u = −au2 < 0, so L0 has negative eigenvalues,
therefore, λ1(−r(x, t)) < 0.

Suppose λ1(−r(x, t)) < 0, where (x, t) ∈ Ω ×
R+. Let ϕ denote a positive principal eigenfunction
of L0 corresponding to λ1(−r(x, t)). By (6), we have

λ1(−r(x, t))ϕ = L0ϕ = −aϕ2 (7)

Multiplying these equations by a sufficiently small
positive number ε, then

L0(εϕ) = λ1(−r(x, t))εϕ ≤ −aε2ϕ2. (8)

Thus εϕ is a subsolution of (2) for arbitrarily small
ε > 0. Clearly u ≡M is a supersolution, where M >
0 is an sufficiently big constant so that (r−aM)M ≤
0 for all (x, t) ∈ QT . Hence by the results in Amann
[33] there exists a solution between the sub- and su-
persolutions, that is, εϕ ≤ u ≤M . Then u > 0.

Furthermore, by iterative methods, the solution is
unique for the Hölder continuity on x, t and Lipschitz
continuity on u of nonhomogeneous term in the right
of the equation (2). The Theorem is proved. ⊓⊔

we now give the useful results for a generalized
system from (2), which are shown by global bifurca-
tion theory [31].

Theorem 5. λ1(−r(x, t)) < 0((x, t) ∈ Ω × R) is a
necessary and sufficient condition for the existence of
strictly positive solutions of the equation{

wt −D(t)∆w = w(r − aw −H(x, t, w)),
w ∈ Y,

(9)

where H : X → X is a continuous, increasing func-
tion of w and H(x, t, 0) = 0 on Ω̄×R+.

Proof: The necessity can be proved similarly as in
Theorem 4. We now prove the sufficiency of the con-
dition by the global bifurcation theories.

Suppose λ1(−r(x, t)) < 0. Choose a sufficiently
large fixed constantK0 > 0 such that −r(x, t)+K0 >
0 in QT . Consider the problem

wt −D(t)∆w + (−r(x, t) +K0)w
= λw − (aw +H(x, t, w))w,
w ∈ Y,

(10)

which may be expressed in operator form in the space
Y as w = λSw − SN (w). We let

f(λ,w) := w − λSw + SN (w) = 0, (11)
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where S : X → Y is the inverse of the linear operator
LK0 := L0 +K0 = ∂t − D(t)∆ + (−r(x, t) +K0)
and N : X → X is given by N (w) = (aw +
H(x, t, w))w.

Let

L01(λ̄, 0)w = D2f(λ̄, 0)w = (1− λ̄S)w, (12)

L11(λ̄, 0)w = D1D2f(λ̄, 0)w = (−S)w. (13)

Then L01(λ̄, 0)w = 0 implies wt − D(t)∆w +
(−r(x, t)+K0)w = λw. So there exists w = w0 > 0
as the principal eigenfunction of λ. Hence, the null
space of L01(λ, 0),

N (L01(λ, 0)) = spans{w0}

Since the linearized operator of (L01 is self-adjoint, it
follows by Fredholm alternative axiom that

R(L01(λ, 0)) = (N (L∗
01(λ, 0)))

⊥

=

{
w
∣∣ ∫ w · w0 = 0

}
. (14)

where,the operator L∗
01(λ, 0) is the adjoint operator

of L01(λ, 0), and R(L01(λ, 0)) has codimension one.
Obviously, L11(λ̄, 0)w0 ̸∈ R(L01(λ̄, 0)). Hence, ac-
cording to theorem 13.5 of [30], there exists a δ > 0
and a C1-curve

(λ, ϕ) : (−δ, δ) → R× Z (Z = {w0}⊥)

such that (i) λ(0) = λ̄; (ii) ϕ(0) = 0; and (iii)
f(λ(s), w(s)) = 0 for |s| < δ. Therefore, C =
{(λ(s), w(s))|w(s) = s(w0 + ϕ(s)), |s| < δ} is the
solution branch of equation (11), and

C+ := C − {(λ(s), s(w0 + ϕ(s))) : −δ < s < 0}
(15)

contains a positive solution branch of (11).
By the theories of global bifurcation (see [31-

30]), the continuum C+ − {(λ, 0)} must satisfy one
of the two alternatives (i) joining up with (λ̂, 0),
whereλ̂ ̸= λ and 1/λ̂ is an eigenvalue of S; (ii) join-
ing up with ∞.

Firstly, we suppose (i) holds. Let

P = {w ∈ X|w(x, t) > 0, (x, t) ∈ Q̄T }. (16)

Then C+ − {(λ, 0)} ̸⊆ P . Thanks to standard
Schauder estimates and Sobolev embedding theorem,
we find that ∥w∥ is uniformly bounded in C2,1(QT ),
and so there exists (λ̂, 0) ∈ (C+ − {(λ, 0)})

∩
∂P

which is the limit of a sequence

{(λm, wm)} ⊂ C+

∩
P, wm > 0 on QT . (17)

Since S is compact on X , S has a discrete spectrum
and 0 is unique a limit point of the spectrum. Thus ∞
is unique a limit point of the spectrum ofLK0(= S−1)

and so λm = λ̂ for sufficiently large m, say m ≥ m0.
Thus, by Schauder estimates and Sobolev embedding
theorem, the systems

wmt −D(t)∆wm + (K0 − r(x, t))wm
= λ̂wm, in QT ,
∂wm
∂ν + γ(x, t)wm = 0, on ∂Ω× [0, T ],

(18)

exists a convergent subsequence of {wm}, which still
denote by {wm} for the sake of convenience, such that
wm → w∗ asm→ ∞, andw∗ ≥ 0, ̸≡ 0, (x, t) ∈ Q̄T .
So taking the limit in (18) as m→ ∞, we get

w∗
t −D(t)∆w∗ + (K0 − r(x, t))w∗

= λ̂w∗, in QT ,
∂w∗

∂ν + γ(x, t)w∗ = 0, on ∂Ω× [0, T ].
(19)

It follows from the maximum principle thatw∗ > 0 on
Q̄T which implies λ̂ = λ̄, a contradiction. Therefore
(ii) is right, that is, the continuum C+−{(λ, 0)} joins
up with ∞.

By lemma 2, ∥w∥C(QT ) is bounded, and there ex-
ists a continuous function g′ such that

∥w∥
C1+µ,

1+µ
2 (Q̄T,2T )

≤ g′(∥(λ−K0 + r − aw −H(x, t, w))w∥C(Q̄2T )).
(20)

Since H(x, t, w) is a continuous, increasing func-
tion of w, ∥H(x, t, w)∥C(Q̄2T ) can be bounded
by a function depending on ∥w∥C(Q̄T ). Hence
∥w∥C1+µ,(1+µ)/2(Q̄T,2T ) can be bounded solely by a
constant depending on λ,K0,max r(x, t). By simi-
lar analysis of lemma 2, we get that the solution of
(10) has standard Schauder estimates

∥w∥c2+µ,1+µ/2(Q̄T ) ≤M1, (21)

where M1 is a constant depending only on
λ,K0,max r(x, t).

Suppose (w, λ) ∈ C+ and w ̸≡ 0. Then w > 0.
Sincewt−D(t)∆w+(K0−r(x, t)−λ)w = −(−aw+
H(x, t, w))w < 0, so λ1(K0 − r(x, t) − λ) < 0,
i.e., λ > λ̄. Hence C+ ⊂ Y × R lies in the half
plane λ ≥ λ̄ and can approach ∞ only as λ → +∞.
Therefore for all λ > λ̄ = λ1(−r(x, t)) + K0, in
particular for λ = K0, there exists (w, λ) ∈ C+, i.e.,
there exists a positive solution w of the system (9), the
proof is then complete. ⊓⊔

Remark 6. In Theorem 5 we suppose the function
H(x, t, w) satisfy condition H(x, t, 0) = 0 on Ω̄ ×
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R+. If H is bounded by some increasing function
of u, or itself a continuous, nonnegative bounded
function, then the results of Theorem 5 are true. In
fact, from the in equation (20), ∥w∥C1+µ,(1+µ)/2(Q̄T,2T )

can be bounded by a constant only depending on
λ,K0,max r(x, t). The proof can be carried out sim-
ilarly.

3 Two coupled species equations
Denote by λ1,i(q)(i = 1, 2, 3) the principal eigen-
value of the operator L : ∂t−Di(t)∆+ q(i = 1, 2, 3)
for the convenience. Then the Theorem 4 can be de-
scribed by another form as following.

Theorem 4∗. The single species system (2) has
a strict positive periodic solution if and only if
λ1,1(−r(x, t)) < 0. Moreover, this solution is unique.

We denote by u+(x, t) this unique strict positive
periodic solution. So (u+, 0, 0) is one kind of the so-
lutions of three species system (1), which is usually
called a semi-trival solution.

In this section, we introduce the another kinds of
semi-trival solutions, that is, the existence of the solu-
tion (ũ+, ṽ1+, 0) and (ũ+, 0, ṽ2+) of the system (1).

Consider the following coupled species systems,
two kinds of predator-prey models degenerated from
system (1):

ut −D1(t)∆u = u(r − au)− b1u2v1
mv21+u

2 ,

v1t −D2(t)∆v1 = v1(−d1 − e1v1) +
c1u2v1
mv21+u

2 ,
∂u
∂ν + γu = 0, ∂v1

∂ν + γv1 = 0,
u(x, 0) = u(x, T ), v1(x, 0) = v1(x, T ),

(22)
ut −D1(t)∆u = u(r − au)− b2uv2

α+βv2+u
,

v2t −D3(t)∆v2 = v2(−d2 − e2v2) +
c2uv2

α+βv2+u
,

∂u
∂ν + γu = 0, ∂v2

∂ν + γv2 = 0,
u(x, 0) = u(x, T ), v2(x, 0) = v2(x, T ).

(23)
where, all of the parameters satisfy the assumptions
(H1)-(H3).

We also denote by (ũ+, ṽ1+) and (ũ+, ṽ2+) the
strict positive solutions of the above two species sys-
tems (22) and (23), where ũ+ > 0, ṽ1+ > 0 and
ṽ2+ > 0. We will discuss the coexistence of the sys-
tems (22) and (23). That is, the necessary and suf-
ficient conditions of the strict positive periodic solu-
tions of these coupled species systems are to be con-
sidered.

Theorem 7. The two principal eigenvalues on Ω×R
satisfying:

(i) λ1,1(−r(x, t)) < 0;

(ii) λ1,2(d1(x, t)− c1(x, t)) < 0,
are the necessary and sufficient conditions for

coexistence of the strictly positive periodic solutions
(ũ+, ṽ1+) of the system (22).

Proof: Since (ũ+, ṽ1+) is the positive periodic solu-
tion of (22), that is, there are the coupled u > 0 and
v1 > 0(Ω × R) satisfying the equations (22), and the
parameters as D1, D2, r, a, b1, c1, d1 andm satisfy the
assumptions (H1)-(H3). We get

ut −D1(t)∆u+ (−r(x, t))u
= u(−au− b1uv1

mv21+u
2 ) < 0,

(24)

v1t −D2(t)∆v1 + (d1(x, t)− c1(x, t))v1
= v1(−e1v1 + c1u2

mv21+u
2 − c1) < 0.

(25)

So we have λ1,1(−r(x, t)) < 0 and λ1,2(d1(x, t) −
c1(x, t)) < 0. We finished the necessity.

In what follows, we prove the sufficiency. Firstly,
we consider a system:{

v1t −D2(t)∆v1 = v1(−d1 − e1v1 +
c1u2

mv21+u
2 ),

v1 ∈ Y.
(26)

which is the predator equation with Holling Type-III
functional response with the arbitrary given u ∈ X .
We rewrite it as

v1t −D2(t)∆v1 + (d1 − c1)v1
= v1(−e1v1 − (c1 − c1u2

mv21+u
2 )).

(27)

Let Ld1−c1 := ∂t−D2+(d1−c1). We know that
Ld1−c1 is a linear operator, and the second factor in
the right of the equation (27), −e1v1−(c1− c1u2

mv21+u
2 ),

is a decreasing function of v1. So, if λ1,2(d1(x, t) −
c1(x, t)) < 0, by the similar discussion as in Theorem
5, we show the existence of the unique strictly positive
solution, noted by ṽ1(u)+ or ṽ1+.

Consider the another system:{
ut −D1(t)∆u = u(r − au− b1uṽ1(u)+

mṽ1(u)2++u2
),

u ∈ Y.
(28)

which is the prey equation only with the Holling Type-
III functional response, and the predator v1 is given as
the unique strictly positive solution ṽ1(u)+.

Let

H(x, t, u) =
b1uṽ1(u)+

mṽ1(u)2+ + u2
.

Clearly,

H(x, t, u) =
b1√
m

(
√
mṽ1(u)+)u

(
√
mṽ1(u)+)2 + u2

≤ b1
2
√
m

in Q̄T
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so H is bounded on Ω̄ × R+ for the continuous and
T− periodical hypothesis H1 and H2. By the Re-
mark 6 after Theorem 5, we know that if and only
if λ1,1(−r(x, t)) < 0, the system (28) has a unique
strictly positive solution ũ+ for the unique strictly
positive solution ṽ1+. That is, we get the coupled pos-
itive periodic solution (ũ+, ṽ1+) of the system (22).
This completes the proof. ⊓⊔

Theorem 8. The necessary and sufficient conditions
for the existence of strictly positive periodic solu-
tions (ũ+, ṽ2+) of the system (23) is the two principal
eigenvalues on Ω× R satisfying:

(i) λ1,1(−r(x, t)) < 0;
(ii) λ1,3(d2(x, t) − c2(x,t)u+

α(t)+u+
) < 0, where u+ =

u+(x, t) is the unique positive solution of (2) in The-
orem 4.

Proof: Suppose u > 0 and v2 > 0. Then

ut −D1(t)∆u+ (−r(x, t))u
= u(−au− b2v2

α+βv2+u
) < 0,

(29)

so we can claim that λ1,1(−r(x, t)) < 0.
Since ut −D1(t)∆u = u(r − au− b2uv2

α+βv2+u
) ≤

u(r−au), it is clear that u is a subsolution for the sys-
tem (2). The unique solution u+ of (2) in Theorem 4
must lie between this subsolution and a supersolution
corresponding to any sufficiently large positive con-
stant. Thus 0 < u ≤ u+. By the following equation

v2t −D3(t)∆v2 + (d2 − c2u+
α+u+

)v2
≤ v2t −D3(t)∆v2 + (d2 − c2u

α+u)v2
= v2(−e2v2 + c2u

α+βv2+u
− c2u

α+u)

< 0,

(30)

we get λ1,3(d2(x, t)− c2(x,t)u+
α(t)+u+

) < 0.
We now consider the sufficient proof. Sup-

pose that λ1,1(−r(x, t)) < 0 and λ1,3(d2(x, t) −
c2(x,t)u+
α(t)+u+

) < 0. Rewrite the second equation of (23)
as

v2t −D3(t)∆v2 + (d2 − c2u+
α+u+

)v2
= v2(−e2v2 + c2u

α+βv2+u
− c2u+

α+u+
).

(31)
By the similar argument as in the Theorem 4, or the
upper and lower solutions methods in Amann [33],
when λ1,3(d2(x, t) − c2(x,t)u+

α(t)+u+
) < 0, there exists

unique positive solution v2(u) for any given u in X .
Here, we use the decoupling method as in [29].

We can get, easily, if λ1,3(d2− c2u
α+u) < 0, the equation

v2t −D3(t)∆v2
= v2(−d2 − e2v2 +

c2u
α+βv2+u

− c2u
α+u)

(32)

has a unique positive solution. Define

v2(u) =


0, if λ1,3(d2 − c2u

α+u) ≥ 0

unique positive solution of (31),
if λ1,3(d2 − c2u

α+u) < 0.
(33)

This function v2(u) is continuous from X to X
shown as in [29]. Here, we get its increasing when
u > −α on Ω × R. In fact, suppose −α < u1 ≤ u2.
if λ1,3(d2 − c2u1

α+u1
) ≥ 0, then v2(u1) = 0 and so

v2(u1) ≤ v2(u2). Ifλ1,3(d2 − c2u1
α+u1

) < 0, then
λ1,3(d2 − c2u2

α+u2
) ≤ λ1,3(d2 − c2u1

α+u1
) < 0, the fol-

lowing equation

v2t −D3(t)∆v2 = v2(−d2 − e2v2 +
c2u2

α+ βv2 + u2
)

(34)
has the unique positive solution v2(u2). And v2(u1)
is a subsolution of (34) for c2u1

α+βv2+u1
≤ c2u2

α+βv2+u2
, so

v2(u1) ≤ v2(u2). In addition, we can get v2(0) = 0
in Y by maximum principle.

Clearly (u, v2(u)) will be a coexistence solution
of the system (23) if and only if u is a positive solution
of

ut−D1(t)∆u = u(r−au− b2v2(u)

α+ βv2(u) + u
), u ∈ Y.

(35)
That is to say, if u > 0, then there must be v2(u) > 0.
Otherwise,

ut −D1(t)∆u

= u(r − au− b2v2(u)
α+βv2(u)+u

) ≥ u(r − au).

(36)
For v2(u) increasing on u and v2(0) = 0, we get that
u is a upper solution of (22), a contradiction.

Let H = b2v2(u)
α+βv2(u)+u

. Then H is continuous, in-
creasing function of u in (35). By Theorem 5, we have
u > 0 if and only if λ1,1(−r(x, t)) < 0 on Ω × R.
Thus the sufficient proof is complete. ⊓⊔

We can also obtain the alternative sufficient con-
ditions for the existence of the system (22) and (23)
by integral form of some parameters, which are more
convenient to the biological explanation.

Corollary 9. Suppose the system (22) satisfy the fol-
lowing two inequations:

(i)
∫ T
0

∫
Ω r(x, t)dxdt > 0, and

(ii)
∫ T
0

∫
Ω [d1(x, t)− c1(x, t)] dxdt < 0.

Then, there exists positive T− periodic solutions of
system (22).

Proof: Let ϕ be a eigenfunction of λ1,1(−r(x, t)),
which is the principal eigenvalue of the operator ∂t −
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D1(t)∆ + (−r(x, t)). Then ϕ(x, t) > 0 on QT by
maximum principle. Since

ϕt −D1(t)∆ϕ+ (−r(x, t))ϕ = λ1,1(−r(x, t))ϕ,
(37)

dividing by ϕ and integrating over QT , we can obtain
that ∫

Ω

∫ T

0

ϕt
ϕ
dtdx−

∫ T

0
D1(t)

∫
Ω

∆ϕ

ϕ
dxdt

−
∫ T

0

∫
Ω
r(x, t)dxdt

= λ1,1(−r(x, t))|QT |, (38)

where |QT | is the Lebesgue measure ofQT . Since ϕ is
T− periodic,

∫ T
0

ϕt
ϕ dt = 0. By the periodic properties

of γ(x, t) and D1(t), we have∫ T

0
D1(t)

∫
Ω

∆ϕ

ϕ
dxdt

=

∫ T

0
D1(t)

(∫
∂Ω

1

ϕ
∇ϕ · dS +

∫
Ω

|∇ϕ|2

ϕ2
dx

)
dt

=

∫ T

0
D1(t)

(
−
∫
∂Ω
γ(x, t)dx+

∫
Ω

|∇ϕ|2

ϕ2
dx

)
dt

= −
∫
∂Ω

(∫ T

0
D1(t)γ(x, t)dt

)
dx

+

∫ T

0

∫
Ω
D1(t)

|∇ϕ|2

ϕ2
dxdt

≥ 0. (39)

It follows from (38) and the condition (i), i.e.,∫ T
0

∫
Ω r(x, t)dxdt > 0 that λ1,1(−r(x, t)) < 0.
By the analogous discussion to the operator ∂t −

D1(t)∆+(d1(x, t)−c1(x, t)), we can get the principle
eigenvalue λ1,2(d1(x, t) − c1(x, t)) < 0 easily. So,
by Theorem 7, the system (22) has the positive T−
periodic solutions. The proof is completed. ⊓⊔

We also can get the following results for the sys-
tem (23), the proof is omitted.

Corollary 10. Suppose the system (23) satisfy the fol-
lowing two inequations:

(i)
∫ T
0

∫
Ω r(x, t)dxdt > 0, and

(ii)
∫ T
0

∫
Ω

[
d2(x, t)− c2(x,t)u+

α(t)+u+

]
dxdt < 0.

Then, there exists positive T− periodic solutions of
system (23).

4 Three coupled species systems
In this section, we investigate the coexistence of the
three coupled species periodic diffusive system (1).
By the properties of period parabolic operator, prin-
cipal eigenvalue, decoupled methods and the simi-
lar argument of the former sections, the necessary

and sufficiency conditions for the existence of posi-
tive solutions can be given. Note these positive solu-
tions of the coupled system by (u∗+, v

∗
1+, v

∗
2+), that is,

u∗+ > 0, v∗1+ > 0, v∗2+ > 0 on Ω× R.
We decoupled the equations of system (1) in order

to show the main results of this section. Let u ∈ X ,
v1 ∈ X and consider the following equation for v2
derived from the system (1)

v2t −D3(t)∆v2
= v2(−d2 − e2v2 − f2v1 +

c2u
α+βv2+u

), in X,
v2 ∈ Y.

(40)
If λ1,3(d2 − c2u

α+u + f2v1) < 0, then (40) has a unique
positive solution by Theorem 4. We define a map from
X ×X to X by

v2(u) =


0, if λ1,3(d2 − c2u

α+u + f2v1) ≥ 0

unique positive solution of (40),
if λ1,3(d2 − c2u

α+u + f2v1) < 0.
(41)

Lemma 11. v2(u, v1) is a monotone increasing func-
tion of u when u > −α on Ω × R, and monotone
decreasing function of v1 on Ω× R.

Proof: Firstly, By the similar arguments of lemma
4.2 of [29], we can get the continuity of v2(u, v1) on
u and v1, respectively. Suppose −α < u1 ≤ u2 to
fixed v1 in X , v2(u, ·) is an increasing function of u
shown in the discussion of theorem 8.

Now, suppose v1 ≤ v1 to any given u in X . If
λ1,3(d2− c2u

α+u+f2v1) ≥ 0, then v2(u, v1) = 0 and so
v2(u, v1) ≥ v2(u, v1). If λ1,3(d2− c2u

α+u + f2v1) < 0,
then

v2t −D3(t)∆v2
= v2(−d2 − e2v2 − f2v1 +

c2u
α+βv2+u

)

≤ v2(−d2 − e2v2 − f2v1 +
c2u

α+βv2+u
),

(42)

it follows that v2(u, v1) is a subsolution of

v2t −D3(t)∆v2
= v2(−d2 − e2v2 − f2v1 +

c2u
α+βv2+u

).
(43)

Clearly (43) has arbitrarily large constant supersolu-
tions. Since v2(u, v1) is the unique positive solution
of (43), it must lie between the subsolution v2(u, v1)
and a sufficiently large constant supersolution, i.e.
v2(u, v1) ≥ v2(u, v1). This completes the proof. ⊓⊔

To any nonnegative, nontrivial solution u of sys-
tem (1), we know that u is smaller than the solution u
of system (2),which is the single prey species system
without predators. So 0 < u ≤ u+, where u+ is the
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unique positive solution in Theorem 4. If v2(u, v1)
is one solution of system (1) and u ≥ 0, v1 ≥ 0, by
lemma 11, we get, easily, that

v2(u, v1) ≤ v2(u+, 0) ≤ ṽ2(u+)+. (44)

Here, v2(u+, 0) is acted as a degenerated solution of
(1) and so a solution of the coupled system (23).

By the similar discussion, v1(u, v2) is a mono-
tone increasing function of u when u ≥ 0 on Ω × R,
monotone decreasing function of v2 on Ω×R, and we
have

v1(u, v2) ≤ v1(u+, 0) ≤ ṽ1(u+)+. (45)

Lemma 12. Suppose the system (1) have a posi-
tive solution (u∗+, v

∗
1+, v

∗
2+). Then the three principal

eigenvalues on Ω×R satisfy
(i) λ1,1(−r(x, t)) < 0;
(ii) λ1,2(d1(x, t)− c1(x, t) + f1ṽ2(u+)+) < 0;
(iii) λ1,3(d2(x, t)− c2(x,t)u+

α(t)+u+
+ f2ṽ1(u+)+) < 0.

Proof: Since u > 0, v1 > 0 and v2 > 0, then

ut −D1(t)∆u+ (−r)u
= u(−au− b1uv1

mv21+u
2 − b2v2

α+βv2+u
) < 0,

(46)

it follows that λ1,1(−r(x, t)) < 0. To the other two
species v1 and v2, we have

v1t −D2(t)∆v1 + (d1 − c1 + f1ṽ2(u+)+)v1

= v1(−e1v1 − f1(v2 − ṽ2(u+)+)−
c1mv21
mv21+u

2 ) < 0,

(47)
v2t −D3(t)∆v2

+(d2 − c2u+
α+u+

+ f2ṽ1(u+)+)v2

= v2

(
− e2v2 − f2(v1 − ṽ1(u+)+)

−( c2uv2
α+βv2+u

− c2u+
α+u+

)

)
< 0.

(48)

Then the principal eigenvalues on Ω × R satisfy
λ1,2(d1(x, t) − c1(x, t) + f1ṽ2(u+)+) < 0 and
λ1,3(d2(x, t) − c2(x,t)u+

α(t)+u+
+ f2ṽ1(u+)+) < 0 and so

the proof is complete. ⊓⊔

Theorem 13. The following three principal eigenval-
ues on Ω×R satisfying:

(i)λ1,1(−r(x, t)) < 0;
(ii)λ1,2(d1(x, t)− c1(x, t) + f1ṽ2(u+)+) < 0,
(iii)λ1,3(d2(x, t)− c2(x,t)u+

α(t)+u+
+ f2ṽ1(u+)+) < 0,

are the necessary and sufficient conditions for co-
existence of the strictly positive periodic solutions
(u∗+, v

∗
1+, v

∗
2+) of the system (1).

Proof: The necessity of the conditions is proved in
lemma 12.

Suppose that λ1,1(−r) < 0, λ1,2(d1 − c1 +
f1ṽ2(u+)+) < 0 and λ1,3(d2− c2u+

α+u+
+f2ṽ1(u+)+) <

0 on Ω× R.
We affirm that (u, v1(u, v2), v2)will be a coexis-

tence solution of the system (1) if and only if (u, v2)
is a positive solution of

ut −D1(t)∆u

= u(r − au− b1uv1(u,v2)
mv21(u,v2)+u

2 − b2v2
α+βv2+u

),

v2t −D3(t)∆v2
= v2(−d2 − e2v2 − f2v1(u, v2) +

c2u
α+βv2+u

).

(49)
That is, if u > 0, and v2 > 0, then we must have
v1(u, v2) > 0, or else we get a contradiction.

In fact, if v1(u, v2) ≤ 0, we have

ut −D1(t)∆u

= u(r − au− b1uv1(u,v2)
mv21(u,v2)+u

2 − b2v2
α+βv2+u

)

≤ u(r − au− b2v2
α+βv2+u

),

v2t −D3(t)∆v2
= v2(−d2 − e2v2 − f2v1(u, v2) +

c2u
α+βv2+u

)

≤ v2(−d2 − e2v2 +
c2u

α+βv2+u
),

(50)
and (u, v2) is one subsolution of the two coupled
system (23) by comparison theorem. On the other
hand, by the inequation results of (44) and (45), if
λ1,3(d2 − c2u+

α+u+
+ f2ṽ1(u+)+) < 0 on Ω × R then

λ1,3(d2 − c2u+
α+u+

) < 0 and so the system (23) has
the strictly positive solution (ũ+, ṽ2+) by theorem 8.
We get 0 < (u, v2) ≤ (ũ+, ṽ2+). Furthermore, by
the hypothesis (H1)-(H3), the nonhomogeneous terms
of system (23) satisfy Hölder continuity on x, t and
Lipschitz continuity on u, v2, the positive solution
(ũ+, ṽ2+) is unique. So we have (u, v2) ≡ (ũ+, ṽ2+),
the problem is degenerated to the system (23).

So we need only prove the system (49) has a pos-
itive solution (u, v2). Using the inequation results of
(44) and (45), if λ1,3(d2 − c2u+

α+u+
+ f2ṽ1(u+)+) < 0

then λ1,3(d2 − c2u
α+u + f2v1) < 0 and so there ex-

ists a unique positive solution of the equation v2t −
D3(t)∆v2 = v2(−d2−e2v2−f2v1(u, v2)+ c2u

α+βv2+u
)

for any u in X by Theorem 4. We get that if u > 0
then v2(u) > 0, otherwise a contradiction shown by
analogue method in theorem 8. For λ1,1(−r) < 0,
v2(u) is increasing on u, the equation

ut −D1(t)∆u

= u(r − au− b1uv1(u,v2(u))
mv21(u,v2(u))+u

2 − b2v2(u)
α+βv2(u)+u

),

u ∈ Y,
(51)
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has a unique solution u > 0 by the Remark 2.6 after
the Theorem 5, where H(x, t, 0) = 0 for v2(0) = 0
as in the discussion of theorem 8, and H(x, t, u) =
b1uv1(u,v2(u))
mv21(u,v2(u))+u

2 + b2v2(u)
α+βv2(u)+u

≤ b1
2
√
m

+ b2v2(u)
α+βv2(u)+u

bounded by some increasing function of u in X . So
there is a positive solution (u, v1, v2) of the system (1)
and the sufficiency proof is complete. ⊓⊔

We can also obtain the following alternative suffi-
cient conditions for the existence of positive periodic
solutions of the three coupled species system (1) by
the analogous discussion as Corollary 9 and Corollary
10. Here we omitted the proof.

Corollary 14. Suppose the hypothesis conditions
(H1)-(H2) be satisfied. The system (1) has positive
T−periodic solutions provided

(i)
∫∫
QT

r(x, t)dxdt > 0,
(ii)

∫∫
QT

[d1(x, t)−c1(x, t)+f1ṽ2(u+)+]dxdt <
0,

(iii)
∫∫
QT

[d2(x, t)−c2(x,t)u+
α(t)+u+

+f2ṽ1(u+)+]dxdt <

0.

5 Conclusion
In this paper, we have investigated the existence of
positive periodic solutions for a one-prey and two-
competing-predator diffusive model with Beddington-
Deangelis and Holling-type III schemes. In the sys-
tem (1), one knows that there are two types of com-
petition between the two predators: the first type is
direct interference where individuals of each predator
species act with aggression against individuals of the
other predator species, which is described by the coef-
ficients f1(x, t) and f2(x, t). The second type of com-
petition is interference competition that occurs during
hunting prey with different functional responses. By
use of the properties of the periodic parabolic opera-
tors, theories of global bifurcation and Schauder esti-
mates, the existence and uniqueness of positive peri-
odic solutions to single prey system are given firstly.
By decoupling and calculous technique, the existence
of time-periodic solutions to the two-coupled, espe-
cially, the three-species systems are investigated. The
necessary and sufficient conditions for the positive pe-
riodic solutions are obtained in Section 3 and Section
4.

Furthermore, the three Corollaries 9, 10 and 14
can give us reasonable biological explanations. In the
case of Robin boundary conditions, the sufficient con-
ditions require that the birth-rate of the prey u is on
average positive and the average death-rates of two
predators are not too large and controlled by the com-
petition coefficients and other factors derived by cou-
pled.

For our model, we only consider the existence of
positive periodic solutions for the coupled systems.
The asymptotic behaviors, the properties on steady
state system and the optimal control problems are also
important topics for us, which will be pursued in fu-
ture works.
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