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Abstract: A linear k-forest of an undirected graph G is a subgraph of G whose components are paths with lengths
at most k. The linear k-arboricity Of G, denoted by lak(G), is the minimum number of linear k-forests needed
to partition the edge set E(G) of G. In case that the lengths of paths are not restricted, we then have the linear
arboricity of G, denoted by la(G). In this paper, the exact values of the linear 3-arboricity and the linear arboricity
of the Mycielski graph M(Kn), and the linear k-arboricity of the Mycielski graph M(Kn) when n is even and
k ≥ 5, are obtained.
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1 Introduction
All graphs considered in this paper are finite, undi-
rected, loopless and without multiple edges. For a
positive integer k and a real number x, let

[k] = {1, 2, · · · , k},

⌊x⌋ and ⌈x⌉ denote the smallest integer not less than x
and the largest integer not greater than x, respectively.
For integers a ≤ b, let [a, b] denote the integer set

{a, a+ 1, · · · , b}.

We refer to [24] for terminology in graph theory.
In recent years, many parameters and graph

classes were studied. For example, in [28], Zuo
showed that a Conjecture holds for all unicyclic
graphs and all bicyclic graphs, in [25], Xue, Zuo et
al. studied the hamiltonicity and path t-coloring of
Sierpiński-like graphs; In [29], Jin and Zuo gave the
further ordering bicyclic graphs with respect to the
Laplacian spectra radius; In [30], Lai et al. gave a
survey for the more recent developments of the re-
search on supereulerian graphs and the related prob-
lems; In [31], Jiang and Zhang studied Randomly
Mt-decomposable multigraphs and M2-equipackable
multigraphs; and in [32], Zuo et al. studied the equi-
table colorings of Cartesian product graphs of wheels
with complete bipartite graphs.

A decomposition of a graph is a list of sub-
graphs such that each edge appears in exactly one

∗The corresponding author:lczuo@163.com.

subgraph in the list. If a graph G has a decomposi-
tionG1, G2, · · · , Gd, then we say thatG1, G2, · · · , Gd
decompose G, or G can be decomposed into
G1, G2, · · · , Gd. Furthermore, a linear k-forest is a
forest whose components are paths of lengths at most
k. The linear k-arboricity of a graph G, denoted by
lak(G), is the least number of linear k-forests needed
to decompose G.

An independent set in a graph is a set of pairwise
nonadjacent vertices. A complete graph is a simple
graph in which each pair of distinct vertices is joined
by an edge. We denote one complete graph on n ver-
tices byKn. A bipartite graph is one graph whose ver-
tex set can be partitioned into two subsets X and Y so
that each edge has one end in X and the other end in
Y ; such a partition (X,Y ) is called a bipartition of the
graph. A complete bipartite graph is a simple bipartite
graph with bipartition (X,Y ) in which each vertex of
X is joined to each vertex of Y ; if

| X |= m, | Y |= n,

such a graph is denoted by Km,n, which is called bal-
anced complete bipartite graph if m = n.

The notion of linear k-arboricity of a graph was
first introduced by Habib and Peroche [16]. It is a nat-
ural generalization of edge coloring. Clearly, a linear
1-forest is induced by a matching, and la1(G) is the
edge chromatic number, or chromatic index, χ′(G)
of a graph. Moreover, the linear k-arboricity lak(G)
is also a refinement of the ordinary linear arboricity
la(G) (or la∞(G)) which is the case when every com-
ponent of each forest is a path with no length con-
straint.
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In a search for triangle-free graphs with arbitrarily
large chromatic numbers, Mycielski developed an in-
teresting graph transformation as follows: For a graph
Gwith vertex set V (G) = V and edge setE(G) = E,
the Mycielskian of G is the graph M(G) with vertex
set

V ∪ V ′ ∪ {w},
where V ′ = {x′|x ∈ V }, and edge set

E ∪ {xy′|xy ∈ E} ∪ {y′w|y′ ∈ V ′}.

The vertex x′ is called the twin of the vertex x (and x
is also called the twin of x′), and the vertex w is called
the root of M(G). If there is no ambiguity we shall
always use w as the root of M(G).

In 1982, Habib and Peroche [15] proposed the fol-
lowing conjecture for an upper bound on lak(G).

Conjecture 1. If G is a graph with maximum
degree ∆(G) and k ≥ 2, then

lak(G) ≤



⌈∆(G)·|V (G)|
2⌊ k·|V (G)|

k+1
⌋
⌉,

when ∆(G) =| V (G) | −1,

⌈∆(G)·|V (G)|+1

2⌊ k·|V (G)|
k+1

⌋
⌉,

when ∆(G) <| V (G) | −1.

For k =| V (G) | −1, it is the Akiyama’s conjec-
ture [1].

Conjecture 2. [1] la(G) ≤ ⌈ (∆(G)+1)
2 ⌉.

So far, quite a few results on the verification of
Conjecture 1 have been obtained in the literature, es-
pecially for graphs with particular structures, such
as trees [8, 9, 16], cubic graphs [6, 19, 23], regular
graphs [3, 4], planar graphs [20], balanced complete
bipartite graphs [12, 14, 13], balanced complete mul-
tipartite graphs [27] and complete graphs [8, 11, 12,
26, 13]. The linear 2-arboricity, the linear 3-arboricity,
and the lower bound of linear k-arboricity of balanced
complete bipartite graph were obtained in [14, 13, 12],
respectively. In [17, 18, 25, 28], the exact value of the
linear 6-arboricity and 8-arboricity of the complete bi-
partite graphKm,n, the linear (n−1)-arboricity of bal-
anced complete multipartite graphs Kn(m), Hamming
graphs Km

n , the Cartesian product of Kn with Kn,n,
and the Cartesian product graphs Cmnt were obtained.
The circular chromatic numbers of Mycielski’s graphs
was obtained in [10].

In this paper, our attention focuss on determin-
ing the linear 3-arboricity and the linear arboricity of
the Mycielski graph M(Kn), as well as the linear k-
arboricity (k ≥ 5) of the Mycielski graph M(Kn)
when n is even.

2 Some basic lemmas
Lemma 1. For any graph G, positive integers m and
n, if m > n, then

χ′(G) ≥ lan(G) ≥ lam(G) ≥ la(G).

Lemma 2. If H is a subgraph of G, then lak(G) ≥
lak(H).

As for a lower bound on lak(G), since any vertex
in a linear k-forest has degree at most 2 and a linear
k-forest in a graph G has at most

⌊k· | V (G) |
k + 1

⌋

edges, the following result is obvious.

Lemma 3. For any connected graphGwith maximum
degree △(G), we have

lak(G) ≥ max

{
⌈∆(G)

2
⌉, ⌈ |E(G)|

⌊k|V (G)|
k+1 ⌋

⌉

}
.

Lemma 4. [12] For n ≥ 3, the complete graph Kn

is decomposable into edge-disjoint Hamilton cycles
if and only if n is odd. For n ≥ 2, the complete
graph Kn is decomposable into edge-disjoint Hamil-
ton paths if and only if n is even.

Lemma 5. [12] Let V (K2n) = {v0, v1, · · · , v2n−1}.
For 0 ≤ i ≤ n− 1, put

Pi = v0+iv1+iv2n−1+iv2+i

v2n−2+i · · · vn+1+ivn+i

where the subscripts of vj are taken modulo 2n. Then
Pi, i = 0, 1, 2, · · · , n− 1, are disjoint Hamilton paths
of complete graph K2n.

Lemma 6. [12] Let n = 2k + 1, n ≥ 3, and

V (Kn) = {v0, v1, · · · , v2k−1, u}.

Then Kn can be decomposed into k edge-disjoint
Hamilton cycles

Ci = uv0+iv1+iv2k−1+iv2+iv2k−2+i

· · · vk+1+ivk+iu

for 0 ≤ i ≤ k−1, where the subscripts of vj are taken
modulo 2k.

The following result came from [21], for the sake
of the completeness, we give the proof here.
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Lemma 7. [21] The complete graph Kt is Hamilton
cycle decomposable.

Proof. The result is trivially true for t = 1, 2. Let
t = 2m + 1 ≥ 3, and let the vertices of Kt be
v0, v1, v2, · · · , v2m. Let H be the Hamilton cycle of
Kt, and be given by

v0v1v2v2mv3v2m−1v4 · · ·

vm+3vmvm+2vm+1v0.

Let σ be the permutation

(v0)(v1v2v3 · · · v2m−1v2m).

Then

H(= σ0(H)), σ1(H), σ2(H), · · · , σm−1(H)

is a Hamilton cycle decomposition of Kt.

Let t = 2m ≥ 4. Let the vertices of Kt be
v0, v1, · · · , v2m−1. Let H be the Hamilton cycle of
Kt:

v0v1v2v2m−1v3v2m−2v4 · · ·

vm−1vm+2vmvm+1v0

and let σ be the permutation

(v0)(v1v2v3 · · · v2m−2v2m−1).

Then

H(= σ0(H)), σ1(H), σ2(H), · · · , σm−2(H)

are m − 1 edge-disjoint Hamilton cycles of Kt. The
remaining edges

v0vm, v1v2m−1, v2v2m−2,

v3v2m−3, · · · , vm−1vm+1

form a 1-factor of Kt. ⊓⊔
It is well known that the following result holds.

Lemma 8. χ′(K2n) = χ′(K2n−1) = 2n− 1.

3 Main results
Before state our result, we introduce a notion bipartite
difference. Let G be a bipartite graph, and V1, V2 be
its bipartite sets with

V1 = {u10, u11, · · · , u1(r−1)},

and
V2 = {u20, u21, · · · , u2(s−1)}.

Suppose that |V2| = s ≥ |V1| = r. For the edge
u1pu2q in G(V1, V2), the value (q − p)(mod s) is
called the bipartite difference of the edge u1pu2q.

It is easy to find that, an edge set which consisted
by the edges in G(V1, V2) with the same bipartite dif-
ference must be a matching. In fact, if G(V1, V2) is
a balanced complete bipartite graph Kn,n, then such
a matching is a perfect matching. Furthermore, we
can decompose the edges of Kn,n into n pairwise dis-
joint perfect matchings M0,M1, · · · ,Mn−1 such that
Mi is exactly the set of edges of bipartite difference i
in Kn,n for i = 0, 1, · · ·, n− 1.

Theorem 9. χ′(M(Kn)) = ∆+ 1 = 2n− 1.

Proof. Let the vertex set and edge set of the complete
graph Kn be

V (Kn) = {vi | i ∈ [1, n]},

and

E(Kn) = {vivj | i, j ∈ [1, n], i ̸= j},

respectively. Then by the definition of Mycielski
graph, the vertex set and edge set of M(Kn) are

V (M(Kn)) = {vi, ui | i ∈ [1, n]} ∪ {w},

and

E(M(Kn)) = E(Kn) ∪ {wui | i ∈ [1, n]}

∪ {uivj | i, j ∈ [1, n], i ≠ j},
respectively, where ui is the twin of vi for i ∈ [1, n].

Now we consider the edge set

{uivj | i, j ∈ [1, n], i ̸= j}

first. By the definition of Mycielski graph, it is easy to
find that the subgraph which induced by the edge set

{uivj | i, j ∈ [1, n], i ̸= j}

can be considered as a subgraph which is induced by
a complete bipartite graph Kn,n get rid of a perfect
matching M0, denoted by Kn,n \M0. It is clear that
Kn,n \M0 can be decomposed into n−1 disjoint per-
fect matchings, denoted by M1,M2, · · · ,Mn−1, re-
spectively, where

Mα = {viui+α(modn) | i ∈ [1, n]}

for α ∈ [0, n− 1]. Then we can use α to color Mα for
α ∈ [1, n − 1], and use at least n − 1 colors to color
the edges

{uivj | i, j ∈ [1, n], i ̸= j}.
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By Lemma 8, we can use at least n− 1 colors to color
E(Kn). By the fact that d(w) = n, we can use at least
another n colors which are different from the n − 1
colors that colored the edges

{uivj | i, j ∈ [1, n], i ̸= j}

to color wui for i ∈ [1, n]. Thus, χ′(M(Kn)) ≥ 2n−
1.

On the other hand, we can use n colors, say
1, 2, · · · , n, to color wui for i ∈ [1, n]. By the
above fact, we can use color n + α to color Mα for
α ∈ [1, n − 1]. By Lemma 8, we can use n colors,
say 1, 2, · · · , n, to color E(Kn), thus χ′(M(Kn)) ≤
2n− 1.

Thus, we have obtained that χ′(M(Kn)) = ∆ +
1 = 2n− 1. ⊓⊔

Theorem 10. la3(M(Kn)) = n.

Proof. Similarly as in Theorem 9, let the vertex set
and edge set of the complete graph Kn be V (Kn) =
{vi | i ∈ [1, n]}, and E(Kn) = {vivj | i, j ∈
[1, n], i ≠ j}, respectively. Then the vertex set and
edge set of M(Kn) are

V (M(Kn)) = {vi, ui | i ∈ [1, n]} ∪ {w},

and

E(M(Kn)) = E(Kn) ∪ {wui | i ∈ [1, n]}

∪ {uivj | i ∈ [1, n], j ∈ [1, n], i ̸= j},

respectively, where ui is the twin of vi (i ∈ [1, n]).
We consider two cases according to the parity of

n.

Case 1. n is odd.
Let n = 2m+ 1. By the fact that

χ′(Kn) = n,

we can use n colors, say 1, 2, · · · , n, to color E(Kn).
In the following, we show that there exists an

edge coloring of Kn such that for any two vertices of
V (Kn) the color sets appear on the edges which are
adjacent with them are different. We can consider the
vertices ofKn as the vertices of an n-regular polygon,
label them by 1, 2, · · · , n ordered, and label the edges
by the labels of the vertices in the n-regular polygon
which are parallel with them. Then we can consider
the labels of the edges are just their coloring, and it
is easy to find that this is a proper edge coloring of
Kn, and for any two vertices of V (Kn) the color sets
appear on the edges which are adjacent with them are
different.

Then by the fact that χ′(Kn) = n, the above col-
oring is just a normal edge coloring. Since dKn(vi) =
n − 1 for any vertex vi, there exists just one color
that does not appear on the edges which are adjacent
with vi, where i ∈ [1, n]. If color j does not ap-
pear on the edges which are adjacent with vi, then we
can denote vi as v2j where 2j is taken modulo n and
mod (2j) ∈ [1, n], since n is odd. Accordingly, ui is
denoted by u2j for every i ∈ [1, n].

Now we color the edge set

{uivj | i, j ∈ [1, n], i ≠ j}.

It is easy to find that the subgraph which induced by
the edge set

{uivj | i, j ∈ [1, n], i ̸= j}

can be regarded as a subgraph which induced by a
complete bipartite graph Kn,n get rid of a perfect
matchingM0, denoted byKn,n \M0. It is easy to find
that Kn,n \M0 can be decomposed into n− 1 disjoint
perfect matchings, denoted by M1,M2, · · · ,Mn−1,
where

Mα = {uivi+α(modn) | i ∈ [1, n]}

for α ∈ [0, n− 1], then we can use α to color Mα for
α ∈ [1, n− 1].

By the definition of Mycielski graph, the degree
of the vertex w in M(Kn) is n, then we can use i to
color the edge wui for i ∈ [1, n].

Thus, by the edge coloring of Kn, because wu1
and u1v2 are colored by 1, there does not exist an
edge v2vj for j ∈ [1, n] with color 1. Similarly, since
wui and uiv2i are colored by i, there does not exist an
edge v2ivj with color i for i ∈ [2, n − 1]. Hence it
is easy to find that every component of the subgraph
which induced by the edges with the same color is just
a path with length no more than three. Thus we have
la3(M(Kn)) ≤ n immediately. On the other hand,
by Lemma 3, we have

la3(M(Kn)) ≥ ⌈ |E(G)|
⌊k|V (G)|

k+1 ⌋
⌉

≥ ⌈ n(3n− 1)

2⌊3(2n+1)
4 ⌋

⌉ ≥ ⌈(2m+ 1)(6m+ 2)

2⌊3(4m+3)
4 ⌋

⌉

= 2m+ 1 = n.

Thus, la3(M(Kn)) = n, and the result is proved. ⊓⊔
Case 2. n is even.
Let n = 2m, by the fact that χ′(Kn) = n − 1,

then we can use n − 1 colors, say 1, 2, · · · , n − 1, to
color the E(Kn).
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In the following, we give an edge coloring of Kn

with n− 1 colors. We can consider the n− 1 vertices
ofKn as the vertices of a (n−1)-regular polygon, and
label them by

1, 2, · · · , n− 1

ordered, and label the edges by the labels of the ver-
tices of the (n−1)-regular polygon which are parallel
with them. Then we put the last vertex of Kn in the
center of the (n − 1)-regular polygon, denoted by v,
and it is easy to find that it is adjacent to the other n−1
vertices of Kn, then we label the edge which connect
v and the vertex which label with i by i. Thus we can
consider the labels of the edges are just their coloring.
It is easy to find that this is a proper edge coloring of
Kn.

Now we color the edge set

{uivj | i, j ∈ [1, n], i ̸= j}.

It is easy to find that the subgraph which induced by
the edge set {uivj | i, j ∈ [1, n], i ̸= j} can be re-
garded as a subgraph which induced by a complete
bipartite graph Kn,n get rid of a perfect matching
M0, denoted by Kn,n \ M0. It is easy to find that
Kn,n \M0 can be decomposed into n−1 disjoint per-
fect matchings, denoted by M1,M2, · · · ,Mn−1, re-
spectively, where

Mα = {uivi+α(modn) | i ∈ [1, n]}

for α ∈ [0, n− 1]. Then we can use j to color Mj for
j ∈ [1, n− 1].

By the definition of Mycielski graph, the degree
of the vertex w in M(Kn) is n, then we can use i to
color wui for i ∈ [1, n/2], use j + 1 to color wuj for
j ∈ [n/2 + 1, n− 1], and use n to color wun.

At last, we recolor some edges. We can use color
n to color the edges

u1v2, u2v4, · · · , un
2
vn, un

2
+1v3,

un
2
+2v5, un

2
+3v7, · · · , un−2vn−3.

Because wu1 has been colored by 1, there does not
exist an edge u1vk with color 1 for k ∈ [2, n]. Since
wui is colored by i, there does not exist an edge uivk
with color i ∈ [2, n2 ], for k ∈ [1, n]\{i}. Because
wun

2
+1 is colored by n

2 + 2, there does not exist an
edge un

2
+1vk with n

2 + 2 for k ̸= n/2 + 1. Since wuj
is colored by j + 1, there does not exist an edge ujvk
with color j + 1, for

j ∈ [
n

2
+ 2, n− 1],

and any k ∈ [1, n]\{j}. So it is easy to find that ev-
ery component of the subgraph which induced by the

edges with the same color is just a path with length no
more than three. Thus we have la3(M(Kn)) ≤ n im-
mediately. On the other hand, by Lemma 3, we have

la3(M(Kn)) ≥ ⌈ |E(G)|
⌊k|V (G)|

k+1 ⌋
⌉

≥ ⌈ n(3n− 1)

2⌊3(2n+1)
4 ⌋

⌉ ≥ ⌈(2m)(6m− 1)

2⌊3(4m+1)
4 ⌋

⌉

= 2m = n.

Thus, la3(M(Kn)) = n, and the result is proved. ⊓⊔

Theorem 11. la(M(Kn)) = n− 1.

Proof. Similarly as in Theorem 9, let the vertex set
and edge set of the complete graph Kn be

V (Kn) = {vi | i ∈ [1, n]},

and

E(Kn) = {vivj | i, j ∈ [1, n], i ̸= j}.

Then the vertex set and edge set of M(Kn) are, re-
spectively,

V (M(Kn)) = {vi, ui | i ∈ [1, n]} ∪ {w},

and

E(M(Kn)) = E(Kn) ∪ {wui|i ∈ [1, n]}

∪{uivj | i ∈ [1, n], j ∈ [1, n], i ≠ j},
where ui is the twin of vi for i ∈ [1, n].

We consider two cases according to the parity of
n.

Case 1. n = 2m is even.
By Lemma 7, we know that the edge set of the

complete graph Kn can be decomposed into m − 1
disjoint Hamilton cycles

Hk = v2mv1+kv2+kv2m−1+kv3+kv2m−2+k · · ·

vm+2+kvm+kvm+1+kv2m,

for 0 ≤ k ≤ m− 2, and a 1-factor

F = {v0vm, v1v2m−1, v2v2m−2, v3v2m−3,

· · · , vm−1vm+1},
where the subscripts of vj are taken modulo 2m − 1
and mod j ∈ [1, 2m − 1] in Hk except the terminal
and end vertex. Clearly, every even cycle Hk can be
decomposed into two 1-factors:

{v2mv1+k, v2+kv2m−1+k, v3+kv2m−2+k,
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· · · , vm+kvm+1+k}
and

{v1+kv2+k, v2m−1+kv3+k, · · · ,
vm+2+kvm+k, vm+1+kv2m},

for 0 ≤ k ≤ m−2. Thus, E(Kn) can be decomposed
into 2(m−1)+1 = n−1 1-factors, and we can color
a 1-factor by one color, and color F by color 1, so we
can color this (n − 1) 1-factors by n − 1 colors, say
1, 2, · · · , n− 1.

Now we color the edge set

{uivj | i, j ∈ [1, n], i ̸= j}.

The subgraph which induced by the edge set

{uivj | i, j ∈ [1, n], i ̸= j}

can be considered as a subgraph which induced by
a complete bipartite graph Kn,n get rid of a perfect
matching M0, denoted by Kn,n \M0. It is clear that
Kn,n \M0 can be decomposed into n−1 disjoint per-
fect matchings, denoted by M1,M2, · · · ,Mn−1, re-
spectively, where

Mα = {uivi+α(mod n) | i ∈ [1, n]}

for α ∈ [0, n− 1], then we can use color i to color Mi

for i ∈ [1, n− 1].
According to the definition of Mycielski graph,

the degree of the vertex w in M(Kn) is n, then we
can use i to color wui for i ∈ [1, n − 1], and use 1 to
color wun.

Sincewu1, wun, u1v2, unv1 are colored by 1, and
the color of v1v2 is not 1, it is easy to find that ev-
ery component of the subgraph which induced by the
edges with the same color is just a path. Thus we have
la(M(Kn)) ≤ n− 1 immediately.

On the other hand, by Lemma 3, we have

la(M(Kn)) ≥ ⌈∆(M(Kn))

2
⌉

= ⌈2(n− 1)

2
⌉ = n− 1.

Hence we obtain that la(M(Kn)) = n− 1..

Case 2. n = 2m+ 1 is odd.

Subcase 2.1. m is odd.

It is obvious that the complete graphK2m+1, with

V (K2m+1) = {v1, v2, · · · , v2m, v2m+1},

can be decomposed intom edge-disjoint Hamilton cy-
cles

Ci = v2m+1v1+iv2+iv2m+iv3+iv2m−1+i

· · · vm+2+ivm+1+iv2m+1

for 0 ≤ i ≤ m − 1, where the subscripts of vj are
taken modulo 2m+ 1 and the subscripts of vj belong
to [1, 2m] except v2m+1.

Next, we take away the (m+1)-th edge from each
Hamilton cycle Ci for i ∈ [0,m − 1]. After taking
away the (m + 1)-th edge from each Hamilton cycle
Ci (i ∈ [0,m − 1]), we have m Hamilton paths and
the edges we taken away are

v1vm+1, v2vm+2, v3vm+3, · · · , vmv2m.

If the (m + 1)-th edge of a Hamilton cycle is
v1vm+1, then after taking away the edge v1vm+1 from
this Hamilton cycle, we can color it by color 1. Sim-
ilarly, if the (m + 1)th edge of a Hamilton cycle is
vivm+i, then after taking away the edge vivm+i from
this Hamilton cycle, we can color it by color i for
i ∈ [2,m].

Now we color the edge set

{uivj | i, j ∈ [1, n], i ̸= j}.

The subgraph which induced by the edge set

{uivj | i, j ∈ [1, n], i ̸= j}

can be viewed as a subgraph which induced by a com-
plete bipartite graph Kn,n get rid of a perfect match-
ing M0, denoted by Kn,n \M0. It is easy to find that
Kn,n \M0 can be decomposed into n−1 disjoint per-
fect matchings, denoted by M1,M2, · · · ,Mn−1, re-
spectively, where

Mα = {uivi−α(modn) | i ∈ [1, n]},

for α ∈ [0, n− 1], so these edges can be decomposed
into M1,M2, · · · ,M2m.

It is easy to see that the edges of M1 and Mm+1

can just form a cycle, after taking away two edges
u2v1 and um+2vm+1 in this cycle, we can color other
edges by one color, say m + 1. It is clear that we
can give the edge v1vm+1 color m+ 1. Similarly, the
edges of M2 and Mm+2 can just form a cycle, after
taking away two edges

u4v2, um+4vm+2

from this cycle, we can color other edges by one
color, say m + 2. It is obvious that we can give
the edge v2vm+2 color m + 2. So the edges of Mi

and Mm+i can just form a cycle, after taking away
u2ivi, um+2ivm+i from this cycle, we can color other
edges by m + i. It is easy to find that we can give
the edge vivm+i the color m + i for i ∈ [3,m]. Thus
we can color u2v1 and um+2vm+1 by 1, color u4v2
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and um+4vm+2 by 2, and color u2ivi and um+2ivm+i

by i for i ∈ [3,m]. By the fact that m is odd, 2i is
even and m+2 is odd, we can color wu2 and wu1 by
1, and color wu2i and wu2i−1 by i for i ∈ [2, m+1

2 ].
We can color wum+2 by m + 1, color wum+3 and
wum+4 by m+3

2 , and color wu2j and wu2j+1 by j for
j ∈ [m+5

2 ,m], where the subscripts are all taken mod-
ulo 2m+ 1 and mod j ∈ [1, 2m+ 1].

It is easy to find that every component of the sub-
graph which induced by the edges with the same color
is just a path. Thus we have

la(M(Kn)) ≤ n− 1

immediately. On the other hand, by Lemma 3, we
have

la(M(Kn)) ≥ ⌈∆(M(Kn))

2
⌉

= ⌈2(n− 1)

2
⌉ = n− 1.

Hence la(M(Kn)) = n− 1.

Subcase 2.2. m is even.
Clearly, the complete graph K2m+1, with

V (K2m+1) = {v1, v2, · · · , v2m, v2m+1},

can be decomposed intom edge-disjoint Hamilton cy-
cles

Ci = v2m+1v1+iv2+iv2m+iv3+iv2m−1+i

· · · vm+2+ivm+1+iv2m+1

for 0 ≤ i ≤ m − 1, where the subscripts of vj are
taken modulo 2m+ 1 and the subscripts of vj belong
to [1, 2m] except v2m+1.

Next, after taking away the (m+1)-th edge from
each Hamilton cycle Ci for i ∈ [0,m − 1], we obtain
mHamilton paths and all the edges we taken away are

v1vm+1, v2vm+2, v3vm+3, · · · , and vmv2m.

If the (m + 1)th edge of a Hamilton cycle is
v1vm+1, then after taking away v1vm+1 from this
Hamilton cycle, we can color it by color 1. Similarly,
if the (m + 1)th edge of a Hamilton cycle is vivm+i,
then after taking away vivm+i from this Hamilton cy-
cle, we can color it by color i for i ∈ [2,m].

Now we color the edge set

{uivj | i, j ∈ [1, n], i ̸= j}.

The subgraph which induced by the edge set

{uivj | i, j ∈ [1, n], i ̸= j}

can be regarded as a subgraph which induced by
a complete bipartite graph Kn,n get rid of a per-
fect matching M0, denote it by Kn,n \ M0. It is
obvious that Kn,n \ M0 can be decomposed into
n − 1 disjoint perfect matchings, denote them by
M1,M2, · · · ,Mn−1, where

Mα = {uivi−α(modn) | i ∈ [1, n]}

for α ∈ [0, n − 1]. Thus these edges can be decom-
posed into M1,M2, · · · ,M2m.

It is easy to find that the edges of M1 and Mm+1

can just form a cycle. After taking away edges

u2v1, um+2vm+1

from this cycle, we can color other edges by one color,
saym+1. It is clear that we can give the edge v1vm+1

color m + 1. The edges of M2 and Mm+2 can just
form a cycle, after taking away edges

u4v2, um+4vm+2

from this cycle, we can color other edges by m+2. It
is easy to find that we can give the edge v2vm+2 color
m+ 2. So the edges of Mi and Mm+i can just form a
cycle for every i ∈ [3,m−1], after taking away edges

u2ivi, um+2ivm+i

from this cycle, we can color other edges by m + i,
and it is easy to find that we can give the edge vivm+i

color m + i for i ∈ [3,m − 1]. Hence the edges of
Mm andM2m can just form a cycle, after taking away
edges

u2mvm, um−1v2m

from this cycle, we can color other edges by 2m. It
is easy to find that we can give the edge vmv2m color
2m.

Thus we can color edges u2v1 and um+2vm+1 by
1, color u4v2 and um+4vm+2 by 2, color u2ivi and
um+2ivm+i by color i for i ∈ [3,m − 1], and color
u2mvm and um−1v2m by m.

By the fact that m is even, 2i is even and m − 1
is odd, we can color wu2 and wu1 by 1, color wu2i
and wu2i−1 by i for i ∈ [2, m−2

2 ], color wum−1 by
2m, color wum and wum+1 by m

2 , and color wu2j
and wu2j+1 by color j for j ∈ [m+2

2 ,m].
It is easy to find that every component of the sub-

graph which induced by the edges with the same color
is just a path. Thus we have la(M(Kn)) ≤ n−1, im-
mediately. On the other hand, by Lemma 3, we have

la(M(Kn)) ≥ ⌈∆(M(Kn))

2
⌉
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= ⌈2(n− 1)

2
⌉ = n− 1.

Hence we obtain that la(M(Kn)) = n− 1. ⊓⊔

Theorem 12. lak(M(Kn)) = n − 1, when n is even
and k ≥ 5.

Proof. By the proof of the Theorem 11 in the case
when n is even, it is easy to find that every component
of the subgraph which induced by the edges with the
same color is just a path with length no more than 5,
so lak(M(Kn)) ≤ n− 1. By Lemma 3, we have

lak(M(Kn)) ≥ ⌈∆(M(Kn))

2
⌉

= ⌈2(n− 1)

2
⌉ = n− 1,

hence, lak(M(Kn)) = n − 1 when n is even and
k ≥ 5. ⊓⊔
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