The linear k-arboricity of the Mycielski graph $M(K_n)$

SHENGJIE HELiancui Zuo *College of Mathematical ScienceCollege of Mathematical ScienceTianjin Normal UniversityTianjin Normal UniversityTianjin, 300387Tianjin, 300387CHINACHINAhe1046436120@126.comlczuo@mail.tjnu.edu.cn

Abstract: A linear k-forest of an undirected graph G is a subgraph of G whose components are paths with lengths at most k. The linear k-arboricity Of G, denoted by $la_k(G)$, is the minimum number of linear k-forests needed to partition the edge set E(G) of G. In case that the lengths of paths are not restricted, we then have the linear arboricity of G, denoted by la(G). In this paper, the exact values of the linear 3-arboricity and the linear arboricity of the Mycielski graph $M(K_n)$, and the linear k-arboricity of the Mycielski graph $M(K_n)$ when n is even and $k \ge 5$, are obtained.

Key-Words: Linear k-forest; linear k-arboricity; Mycielski graph; bipartite difference

1 Introduction

All graphs considered in this paper are finite, undirected, loopless and without multiple edges. For a positive integer k and a real number x, let

$$[k] = \{1, 2, \cdots, k\},\$$

 $\lfloor x \rfloor$ and $\lceil x \rceil$ denote the smallest integer not less than xand the largest integer not greater than x, respectively. For integers $a \leq b$, let [a, b] denote the integer set

 $\{a, a+1, \cdots, b\}.$

We refer to [24] for terminology in graph theory.

In recent years, many parameters and graph classes were studied. For example, in [28], Zuo showed that a Conjecture holds for all unicyclic graphs and all bicyclic graphs, in [25], Xue, Zuo et al. studied the hamiltonicity and path *t*-coloring of Sierpiński-like graphs; In [29], Jin and Zuo gave the further ordering bicyclic graphs with respect to the Laplacian spectra radius; In [30], Lai et al. gave a survey for the more recent developments of the research on supereulerian graphs and the related problems; In [31], Jiang and Zhang studied Randomly M_t -decomposable multigraphs and M_2 -equipackable multigraphs; and in [32], Zuo et al. studied the equitable colorings of Cartesian product graphs of wheels with complete bipartite graphs.

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list. If a graph G has a decomposition G_1, G_2, \dots, G_d , then we say that G_1, G_2, \dots, G_d decompose G, or G can be decomposed into G_1, G_2, \dots, G_d . Furthermore, a linear k-forest is a forest whose components are paths of lengths at most k. The linear k-arboricity of a graph G, denoted by $la_k(G)$, is the least number of linear k-forests needed to decompose G.

An independent set in a graph is a set of pairwise nonadjacent vertices. A complete graph is a simple graph in which each pair of distinct vertices is joined by an edge. We denote one complete graph on n vertices by K_n . A bipartite graph is one graph whose vertex set can be partitioned into two subsets X and Y so that each edge has one end in X and the other end in Y; such a partition (X, Y) is called a bipartition of the graph. A complete bipartite graph is a simple bipartite graph with bipartition (X, Y) in which each vertex of X is joined to each vertex of Y; if

$$X \models m, \quad \mid Y \models n,$$

such a graph is denoted by $K_{m,n}$, which is called balanced complete bipartite graph if m = n.

The notion of linear k-arboricity of a graph was first introduced by Habib and Peroche [16]. It is a natural generalization of edge coloring. Clearly, a linear 1-forest is induced by a matching, and $la_1(G)$ is the edge chromatic number, or chromatic index, $\chi'(G)$ of a graph. Moreover, the linear k-arboricity $la_k(G)$ is also a refinement of the ordinary linear arboricity la(G) (or $la_{\infty}(G)$) which is the case when every component of each forest is a path with no length constraint.

^{*}The corresponding author:lczuo@163.com.

In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed an interesting graph transformation as follows: For a graph G with vertex set V(G) = V and edge set E(G) = E, the Mycielskian of G is the graph M(G) with vertex set

$$V \cup V' \cup \{w\},\$$

where $V' = \{x' | x \in V\}$, and edge set

$$E \cup \{xy' | xy \in E\} \cup \{y'w | y' \in V'\}.$$

The vertex x' is called the twin of the vertex x (and x is also called the twin of x'), and the vertex w is called the root of M(G). If there is no ambiguity we shall always use w as the root of M(G).

In 1982, Habib and Peroche [15] proposed the following conjecture for an upper bound on $la_k(G)$.

Conjecture 1. If G is a graph with maximum degree $\Delta(G)$ and $k \ge 2$, then

$$la_{k}(G) \leq \begin{cases} \lceil \frac{\Delta(G) \cdot |V(G)|}{2\lfloor \frac{k \cdot |V(G)|}{k+1}} \rceil, \\ when \quad \Delta(G) = \mid V(G) \mid -1, \\ \lceil \frac{\Delta(G) \cdot |V(G)| + 1}{2\lfloor \frac{k \cdot |V(G)|}{k+1}} \rceil, \\ when \quad \Delta(G) < \mid V(G) \mid -1. \end{cases}$$

For k = |V(G)| - 1, it is the Akiyama's conjecture [1].

Conjecture 2. [1]
$$la(G) \leq \lceil \frac{(\Delta(G)+1)}{2} \rceil$$
.

So far, quite a few results on the verification of Conjecture 1 have been obtained in the literature, especially for graphs with particular structures, such as trees [8, 9, 16], cubic graphs [6, 19, 23], regular graphs [3, 4], planar graphs [20], balanced complete bipartite graphs [12, 14, 13], balanced complete multipartite graphs [27] and complete graphs [8, 11, 12, 26, 13]. The linear 2-arboricity, the linear 3-arboricity, and the lower bound of linear k-arboricity of balanced complete bipartite graph were obtained in [14, 13, 12], respectively. In [17, 18, 25, 28], the exact value of the linear 6-arboricity and 8-arboricity of the complete bipartite graph $K_{m,n}$, the linear (n-1)-arboricity of balanced complete multipartite graphs $K_{n(m)}$, Hamming graphs K_n^m , the Cartesian product of K_n with $K_{n,n}$, and the Cartesian product graphs C_{nt}^m were obtained. The circular chromatic numbers of Mycielski's graphs was obtained in [10].

In this paper, our attention focuss on determining the linear 3-arboricity and the linear arboricity of the Mycielski graph $M(K_n)$, as well as the linear karboricity $(k \ge 5)$ of the Mycielski graph $M(K_n)$ when n is even.

2 Some basic lemmas

Lemma 1. For any graph G, positive integers m and n, if m > n, then

$$\chi'(G) \ge la_n(G) \ge la_m(G) \ge la(G).$$

Lemma 2. If H is a subgraph of G, then $la_k(G) \ge la_k(H)$.

As for a lower bound on $la_k(G)$, since any vertex in a linear k-forest has degree at most 2 and a linear k-forest in a graph G has at most

$$\lfloor \frac{k \cdot \mid V(G) \mid}{k+1} \rfloor$$

edges, the following result is obvious.

Lemma 3. For any connected graph G with maximum degree $\triangle(G)$, we have

$$la_k(G) \ge \max\left\{ \lceil \frac{\Delta(G)}{2} \rceil, \lceil \frac{|E(G)|}{\lfloor \frac{k|V(G)|}{k+1} \rfloor} \rceil \right\}$$

Lemma 4. [12] For $n \ge 3$, the complete graph K_n is decomposable into edge-disjoint Hamilton cycles if and only if n is odd. For $n \ge 2$, the complete graph K_n is decomposable into edge-disjoint Hamilton paths if and only if n is even.

Lemma 5. [12] Let $V(K_{2n}) = \{v_0, v_1, \dots, v_{2n-1}\}$. For $0 \le i \le n-1$, put

$$P_{i} = v_{0+i}v_{1+i}v_{2n-1+i}v_{2+i}$$
$$v_{2n-2+i}\cdots v_{n+1+i}v_{n+i}$$

where the subscripts of v_j are taken modulo 2n. Then P_i , $i = 0, 1, 2, \dots, n-1$, are disjoint Hamilton paths of complete graph K_{2n} .

Lemma 6. [12] Let n = 2k + 1, $n \ge 3$, and

$$V(K_n) = \{v_0, v_1, \cdots, v_{2k-1}, u\}$$

Then K_n can be decomposed into k edge-disjoint Hamilton cycles

$$C_i = uv_{0+i}v_{1+i}v_{2k-1+i}v_{2+i}v_{2k-2+i}$$

 $\cdots v_{k+1+i}v_{k+i}u$

for $0 \le i \le k-1$, where the subscripts of v_j are taken modulo 2k.

The following result came from [21], for the sake of the completeness, we give the proof here.

Lemma 7. [21] The complete graph K_t is Hamilton cycle decomposable.

Proof. The result is trivially true for t = 1, 2. Let $t = 2m + 1 \ge 3$, and let the vertices of K_t be $v_0, v_1, v_2, \dots, v_{2m}$. Let H be the Hamilton cycle of K_t , and be given by

$$v_0v_1v_2v_{2m}v_3v_{2m-1}v_4\cdots$$

$$v_{m+3}v_mv_{m+2}v_{m+1}v_0.$$

Let σ be the permutation

$$(v_0)(v_1v_2v_3\cdots v_{2m-1}v_{2m}).$$

Then

$$H(=\sigma^0(H)), \sigma^1(H), \sigma^2(H), \cdots, \sigma^{m-1}(H)$$

is a Hamilton cycle decomposition of K_t .

Let $t = 2m \ge 4$. Let the vertices of K_t be $v_0, v_1, \cdots, v_{2m-1}$. Let H be the Hamilton cycle of K_t :

$$v_0v_1v_2v_{2m-1}v_3v_{2m-2}v_4\cdots$$

$$v_{m-1}v_{m+2}v_mv_{m+1}v_0$$

and let σ be the permutation

$$(v_0)(v_1v_2v_3\cdots v_{2m-2}v_{2m-1})$$

Then

$$H(=\sigma^0(H)), \sigma^1(H), \sigma^2(H), \cdots, \sigma^{m-2}(H)$$

are m - 1 edge-disjoint Hamilton cycles of K_t . The remaining edges

$$v_0v_m, v_1v_{2m-1}, v_2v_{2m-2},$$

 $v_3v_{2m-3}, \cdots, v_{m-1}v_{m+1}$

form a 1-factor of K_t .

It is well known that the following result holds.

Lemma 8.
$$\chi'(K_{2n}) = \chi'(K_{2n-1}) = 2n - 1.$$

3 Main results

Before state our result, we introduce a notion bipartite difference. Let G be a bipartite graph, and V_1 , V_2 be its bipartite sets with

$$V_1 = \{u_{10}, u_{11}, \cdots, u_{1(r-1)}\},\$$

and

$$V_2 = \{u_{20}, u_{21}, \cdots, u_{2(s-1)}\}.$$

Suppose that $|V_2| = s \ge |V_1| = r$. For the edge $u_{1p}u_{2q}$ in $G(V_1, V_2)$, the value $(q - p)(mod \ s)$ is called the bipartite difference of the edge $u_{1p}u_{2q}$.

It is easy to find that, an edge set which consisted by the edges in $G(V_1, V_2)$ with the same bipartite difference must be a matching. In fact, if $G(V_1, V_2)$ is a balanced complete bipartite graph $K_{n,n}$, then such a matching is a perfect matching. Furthermore, we can decompose the edges of $K_{n,n}$ into n pairwise disjoint perfect matchings M_0, M_1, \dots, M_{n-1} such that M_i is exactly the set of edges of bipartite difference iin $K_{n,n}$ for $i = 0, 1, \dots, n-1$.

Theorem 9. $\chi'(M(K_n)) = \Delta + 1 = 2n - 1.$

Proof. Let the vertex set and edge set of the complete graph K_n be

$$V(K_n) = \{ v_i \mid i \in [1, n] \},\$$

and

$$E(K_n) = \{ v_i v_j \mid i, j \in [1, n], i \neq j \},\$$

respectively. Then by the definition of Mycielski graph, the vertex set and edge set of $M(K_n)$ are

$$V(M(K_n)) = \{v_i, u_i \mid i \in [1, n]\} \cup \{w\},\$$

and

$$E(M(K_n)) = E(K_n) \cup \{wu_i \mid i \in [1, n]\}$$
$$\cup \{u_i v_j \mid i, j \in [1, n], i \neq j\},\$$

respectively, where u_i is the *twin* of v_i for $i \in [1, n]$. Now we consider the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

first. By the definition of Mycielski graph, it is easy to find that the subgraph which induced by the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

can be considered as a subgraph which is induced by a complete bipartite graph $K_{n,n}$ get rid of a perfect matching M_0 , denoted by $K_{n,n} \setminus M_0$. It is clear that $K_{n,n} \setminus M_0$ can be decomposed into n-1 disjoint perfect matchings, denoted by M_1, M_2, \dots, M_{n-1} , respectively, where

$$M_{\alpha} = \{ v_i u_{i+\alpha \pmod{n}} \mid i \in [1, n] \}$$

for $\alpha \in [0, n-1]$. Then we can use α to color M_{α} for $\alpha \in [1, n-1]$, and use at least n-1 colors to color the edges

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}.$$

П

By Lemma 8, we can use at least n - 1 colors to color $E(K_n)$. By the fact that d(w) = n, we can use at least another n colors which are different from the n - 1 colors that colored the edges

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

to color wu_i for $i \in [1, n]$. Thus, $\chi'(M(K_n)) \ge 2n - 1$.

On the other hand, we can use n colors, say $1, 2, \dots, n$, to color wu_i for $i \in [1, n]$. By the above fact, we can use color $n + \alpha$ to color M_α for $\alpha \in [1, n - 1]$. By Lemma 8, we can use n colors, say $1, 2, \dots, n$, to color $E(K_n)$, thus $\chi'(M(K_n)) \leq 2n - 1$.

Thus, we have obtained that $\chi'(M(K_n)) = \Delta + 1 = 2n - 1$.

Theorem 10. $la_3(M(K_n)) = n$.

Proof. Similarly as in Theorem 9, let the vertex set and edge set of the complete graph K_n be $V(K_n) =$ $\{v_i \mid i \in [1,n]\}$, and $E(K_n) = \{v_iv_j \mid i, j \in [1,n], i \neq j\}$, respectively. Then the vertex set and edge set of $M(K_n)$ are

$$V(M(K_n)) = \{v_i, u_i \mid i \in [1, n]\} \cup \{w\},\$$

and

$$E(M(K_n)) = E(K_n) \cup \{wu_i \mid i \in [1, n]\}$$
$$\cup \{u_i v_j \mid i \in [1, n], j \in [1, n], i \neq j\},\$$

respectively, where u_i is the twin of v_i $(i \in [1, n])$.

We consider two cases according to the parity of n.

Case 1. n is odd. Let n = 2m + 1. By the fact that

$$\chi'(K_n) = n,$$

we can use n colors, say $1, 2, \dots, n$, to color $E(K_n)$.

In the following, we show that there exists an edge coloring of K_n such that for any two vertices of $V(K_n)$ the color sets appear on the edges which are adjacent with them are different. We can consider the vertices of K_n as the vertices of an *n*-regular polygon, label them by $1, 2, \dots, n$ ordered, and label the edges by the labels of the vertices in the *n*-regular polygon which are parallel with them. Then we can consider the labels of the edges are just their coloring, and it is easy to find that this is a proper edge coloring of K_n , and for any two vertices of $V(K_n)$ the color sets appear on the edges which are adjacent with them are different.

Then by the fact that $\chi'(K_n) = n$, the above coloring is just a normal edge coloring. Since $d_{K_n}(v_i) = n - 1$ for any vertex v_i , there exists just one color that does not appear on the edges which are adjacent with v_i , where $i \in [1, n]$. If color j does not appear on the edges which are adjacent with v_i , then we can denote v_i as v_{2j} where 2j is taken modulo n and $mod(2j) \in [1, n]$, since n is odd. Accordingly, u_i is denoted by u_{2j} for every $i \in [1, n]$.

Now we color the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}.$$

It is easy to find that the subgraph which induced by the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

can be regarded as a subgraph which induced by a complete bipartite graph $K_{n,n}$ get rid of a perfect matching M_0 , denoted by $K_{n,n} \setminus M_0$. It is easy to find that $K_{n,n} \setminus M_0$ can be decomposed into n-1 disjoint perfect matchings, denoted by M_1, M_2, \dots, M_{n-1} , where

$$M_{\alpha} = \{u_i v_{i+\alpha(mod\,n)} \mid i \in [1,n]\}$$

for $\alpha \in [0, n - 1]$, then we can use α to color M_{α} for $\alpha \in [1, n - 1]$.

By the definition of Mycielski graph, the degree of the vertex w in $M(K_n)$ is n, then we can use i to color the edge wu_i for $i \in [1, n]$.

Thus, by the edge coloring of K_n , because wu_1 and u_1v_2 are colored by 1, there does not exist an edge v_2v_j for $j \in [1, n]$ with color 1. Similarly, since wu_i and u_iv_{2i} are colored by *i*, there does not exist an edge $v_{2i}v_j$ with color *i* for $i \in [2, n - 1]$. Hence it is easy to find that every component of the subgraph which induced by the edges with the same color is just a path with length no more than three. Thus we have $la_3(M(K_n)) \leq n$ immediately. On the other hand, by Lemma 3, we have

$$la_{3}(M(K_{n})) \geq \left\lceil \frac{|E(G)|}{\lfloor \frac{k|V(G)|}{k+1} \rfloor} \right\rceil$$
$$\geq \left\lceil \frac{n(3n-1)}{2\lfloor \frac{3(2n+1)}{4} \rfloor} \right\rceil \geq \left\lceil \frac{(2m+1)(6m+2)}{2\lfloor \frac{3(4m+3)}{4} \rfloor} \right\rceil$$
$$= 2m+1=n.$$

Thus, $la_3(M(K_n)) = n$, and the result is proved. \Box

Case 2. *n* is even.

Let n = 2m, by the fact that $\chi'(K_n) = n - 1$, then we can use n - 1 colors, say $1, 2, \dots, n - 1$, to color the $E(K_n)$. In the following, we give an edge coloring of K_n with n-1 colors. We can consider the n-1 vertices of K_n as the vertices of a (n-1)-regular polygon, and label them by

$$1, 2, \cdots, n-1$$

ordered, and label the edges by the labels of the vertices of the (n-1)-regular polygon which are parallel with them. Then we put the last vertex of K_n in the center of the (n-1)-regular polygon, denoted by v, and it is easy to find that it is adjacent to the other n-1vertices of K_n , then we label the edge which connect v and the vertex which label with i by i. Thus we can consider the labels of the edges are just their coloring. It is easy to find that this is a proper edge coloring of K_n .

Now we color the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}.$$

It is easy to find that the subgraph which induced by the edge set $\{u_i v_j \mid i, j \in [1, n], i \neq j\}$ can be regarded as a subgraph which induced by a complete bipartite graph $K_{n,n}$ get rid of a perfect matching M_0 , denoted by $K_{n,n} \setminus M_0$. It is easy to find that $K_{n,n} \setminus M_0$ can be decomposed into n-1 disjoint perfect matchings, denoted by M_1, M_2, \dots, M_{n-1} , respectively, where

$$M_{\alpha} = \{u_i v_{i+\alpha(modn)} \mid i \in [1, n]\}$$

for $\alpha \in [0, n-1]$. Then we can use j to color M_j for $j \in [1, n-1]$.

By the definition of Mycielski graph, the degree of the vertex w in $M(K_n)$ is n, then we can use i to color wu_i for $i \in [1, n/2]$, use j + 1 to color wu_j for $j \in [n/2 + 1, n - 1]$, and use n to color wu_n .

At last, we recolor some edges. We can use color n to color the edges

$$u_1v_2, u_2v_4, \cdots, u_{\frac{n}{2}}v_n, u_{\frac{n}{2}+1}v_3,$$

 $u_{\frac{n}{2}+2}v_5, u_{\frac{n}{2}+3}v_7, \cdots, u_{n-2}v_{n-3}.$

Because wu_1 has been colored by 1, there does not exist an edge u_1v_k with color 1 for $k \in [2, n]$. Since wu_i is colored by *i*, there does not exist an edge u_iv_k with color $i \in [2, \frac{n}{2}]$, for $k \in [1, n] \setminus \{i\}$. Because $wu_{\frac{n}{2}+1}$ is colored by $\frac{n}{2} + 2$, there does not exist an edge $u_{\frac{n}{2}+1}v_k$ with $\frac{n}{2} + 2$ for $k \neq n/2 + 1$. Since wu_j is colored by j + 1, there does not exist an edge u_jv_k with color j + 1, for

$$j \in [\frac{n}{2} + 2, n - 1],$$

and any $k \in [1, n] \setminus \{j\}$. So it is easy to find that every component of the subgraph which induced by the

edges with the same color is just a path with length no more than three. Thus we have $la_3(M(K_n)) \le n$ immediately. On the other hand, by Lemma 3, we have

$$la_{3}(M(K_{n})) \geq \lceil \frac{|E(G)|}{\lfloor \frac{k|V(G)|}{k+1} \rfloor} \rceil$$
$$\geq \lceil \frac{n(3n-1)}{2\lfloor \frac{3(2n+1)}{4} \rfloor} \rceil \geq \lceil \frac{(2m)(6m-1)}{2\lfloor \frac{3(4m+1)}{4} \rfloor} \rceil$$
$$= 2m = n.$$

Thus, $la_3(M(K_n)) = n$, and the result is proved. \Box

Theorem 11. $la(M(K_n)) = n - 1$.

Proof. Similarly as in Theorem 9, let the vertex set and edge set of the complete graph K_n be

$$V(K_n) = \{ v_i \mid i \in [1, n] \},\$$

and

$$E(K_n) = \{ v_i v_j \mid i, j \in [1, n], i \neq j \}.$$

Then the vertex set and edge set of $M(K_n)$ are, respectively,

$$V(M(K_n)) = \{v_i, u_i \mid i \in [1, n]\} \cup \{w\},\$$

and

$$E(M(K_n)) = E(K_n) \cup \{wu_i | i \in [1, n]\}$$
$$\cup \{u_i v_j \mid i \in [1, n], j \in [1, n], i \neq j\},\$$

where u_i is the *twin* of v_i for $i \in [1, n]$.

We consider two cases according to the parity of n.

Case 1. n = 2m is even.

By Lemma 7, we know that the edge set of the complete graph K_n can be decomposed into m - 1 disjoint Hamilton cycles

$$H_k = v_{2m}v_{1+k}v_{2+k}v_{2m-1+k}v_{3+k}v_{2m-2+k}\cdots$$

 $v_{m+2+k}v_{m+k}v_{m+1+k}v_{2m},$

for $0 \le k \le m - 2$, and a 1-factor

$$F = \{v_0 v_m, v_1 v_{2m-1}, v_2 v_{2m-2}, v_3 v_{2m-3}, v_3 v_{2m-3},$$

$$\cdots, v_{m-1}v_{m+1}\},$$

where the subscripts of v_j are taken modulo 2m - 1and $mod \ j \in [1, 2m - 1]$ in H_k except the terminal and end vertex. Clearly, every even cycle H_k can be decomposed into two 1-factors:

$$\{v_{2m}v_{1+k}, v_{2+k}v_{2m-1+k}, v_{3+k}v_{2m-2+k}, v_{3+k}v_{2m-2+k}, v_{3+k}v_{3$$

$$\cdots, v_{m+k}v_{m+1}$$

and

$$\{v_{1+k}v_{2+k}, v_{2m-1+k}v_{3+k}, \cdots,$$

 $_{+k}$

$$v_{m+2+k}v_{m+k}, v_{m+1+k}v_{2m}$$

for $0 \le k \le m-2$. Thus, $E(K_n)$ can be decomposed into 2(m-1)+1 = n-1 1-factors, and we can color a 1-factor by one color, and color F by color 1, so we can color this (n-1) 1-factors by n-1 colors, say $1, 2, \dots, n-1$.

Now we color the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}.$$

The subgraph which induced by the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

can be considered as a subgraph which induced by a complete bipartite graph $K_{n,n}$ get rid of a perfect matching M_0 , denoted by $K_{n,n} \setminus M_0$. It is clear that $K_{n,n} \setminus M_0$ can be decomposed into n-1 disjoint perfect matchings, denoted by M_1, M_2, \dots, M_{n-1} , respectively, where

$$M_{\alpha} = \{ u_i v_{i+\alpha \pmod{n}} \mid i \in [1, n] \}$$

for $\alpha \in [0, n-1]$, then we can use color *i* to color M_i for $i \in [1, n-1]$.

According to the definition of Mycielski graph, the degree of the vertex w in $M(K_n)$ is n, then we can use i to color wu_i for $i \in [1, n - 1]$, and use 1 to color wu_n .

Since $wu_1, wu_n, u_1v_2, u_nv_1$ are colored by 1, and the color of v_1v_2 is not 1, it is easy to find that every component of the subgraph which induced by the edges with the same color is just a path. Thus we have $la(M(K_n)) \leq n-1$ immediately.

On the other hand, by Lemma 3, we have

$$la(M(K_n)) \ge \lceil \frac{\Delta(M(K_n))}{2} \rceil$$
$$= \lceil \frac{2(n-1)}{2} \rceil = n-1.$$

Hence we obtain that $la(M(K_n)) = n - 1$..

Case 2. n = 2m + 1 is odd.

Subcase 2.1. *m* is odd.

It is obvious that the complete graph K_{2m+1} , with

$$V(K_{2m+1}) = \{v_1, v_2, \cdots, v_{2m}, v_{2m+1}\},\$$

can be decomposed into m edge-disjoint Hamilton cycles

$$C_i = v_{2m+1}v_{1+i}v_{2+i}v_{2m+i}v_{3+i}v_{2m-1+i}$$

 $\cdots v_{m+2+i}v_{m+1+i}v_{2m+1}$

for $0 \le i \le m - 1$, where the subscripts of v_j are taken modulo 2m + 1 and the subscripts of v_j belong to [1, 2m] except v_{2m+1} .

Next, we take away the (m+1)-th edge from each Hamilton cycle C_i for $i \in [0, m-1]$. After taking away the (m + 1)-th edge from each Hamilton cycle C_i $(i \in [0, m-1])$, we have m Hamilton paths and the edges we taken away are

$$v_1v_{m+1}, v_2v_{m+2}, v_3v_{m+3}, \cdots, v_mv_{2m}$$

If the (m + 1)-th edge of a Hamilton cycle is v_1v_{m+1} , then after taking away the edge v_1v_{m+1} from this Hamilton cycle, we can color it by color 1. Similarly, if the (m + 1)th edge of a Hamilton cycle is v_iv_{m+i} , then after taking away the edge v_iv_{m+i} from this Hamilton cycle, we can color it by color i for $i \in [2, m]$.

Now we color the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}.$$

The subgraph which induced by the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

can be viewed as a subgraph which induced by a complete bipartite graph $K_{n,n}$ get rid of a perfect matching M_0 , denoted by $K_{n,n} \setminus M_0$. It is easy to find that $K_{n,n} \setminus M_0$ can be decomposed into n-1 disjoint perfect matchings, denoted by M_1, M_2, \dots, M_{n-1} , respectively, where

$$M_{\alpha} = \{ u_i v_{i-\alpha(modn)} \mid i \in [1, n] \},\$$

for $\alpha \in [0, n-1]$, so these edges can be decomposed into M_1, M_2, \dots, M_{2m} .

It is easy to see that the edges of M_1 and M_{m+1} can just form a cycle, after taking away two edges u_2v_1 and $u_{m+2}v_{m+1}$ in this cycle, we can color other edges by one color, say m + 1. It is clear that we can give the edge v_1v_{m+1} color m + 1. Similarly, the edges of M_2 and M_{m+2} can just form a cycle, after taking away two edges

$u_4v_2, u_{m+4}v_{m+2}$

from this cycle, we can color other edges by one color, say m + 2. It is obvious that we can give the edge v_2v_{m+2} color m + 2. So the edges of M_i and M_{m+i} can just form a cycle, after taking away $u_{2i}v_i, u_{m+2i}v_{m+i}$ from this cycle, we can color other edges by m + i. It is easy to find that we can give the edge v_iv_{m+i} the color m + i for $i \in [3, m]$. Thus we can color u_2v_1 and $u_{m+2}v_{m+1}$ by 1, color u_4v_2 and $u_{m+4}v_{m+2}$ by 2, and color $u_{2i}v_i$ and $u_{m+2i}v_{m+i}$ by *i* for $i \in [3, m]$. By the fact that *m* is odd, 2*i* is even and m + 2 is odd, we can color wu_2 and wu_1 by 1, and color wu_{2i} and wu_{2i-1} by *i* for $i \in [2, \frac{m+1}{2}]$. We can color wu_{m+2} by m + 1, color wu_{m+3} and wu_{m+4} by $\frac{m+3}{2}$, and color wu_{2j} and wu_{2j+1} by *j* for $j \in [\frac{m+5}{2}, m]$, where the subscripts are all taken modulo 2m + 1 and $mod \ j \in [1, 2m + 1]$.

It is easy to find that every component of the subgraph which induced by the edges with the same color is just a path. Thus we have

$$la(M(K_n)) \le n - 1$$

immediately. On the other hand, by Lemma 3, we have

$$la(M(K_n)) \ge \lceil \frac{\Delta(M(K_n))}{2} \rceil$$
$$= \lceil \frac{2(n-1)}{2} \rceil = n-1.$$

Hence $la(M(K_n)) = n - 1$.

Subcase 2.2. *m* is even. Clearly, the complete graph K_{2m+1} , with

$$V(K_{2m+1}) = \{v_1, v_2, \cdots, v_{2m}, v_{2m+1}\},\$$

can be decomposed into m edge-disjoint Hamilton cycles $% \mathcal{M}_{m}^{(m)}(\mathbf{r})$

$$C_i = v_{2m+1}v_{1+i}v_{2+i}v_{2m+i}v_{3+i}v_{2m-1+i}$$

$$\cdots v_{m+2+i}v_{m+1+i}v_{2m+1}$$

for $0 \le i \le m-1$, where the subscripts of v_j are taken modulo 2m + 1 and the subscripts of v_j belong to [1, 2m] except v_{2m+1} .

Next, after taking away the (m + 1)-th edge from each Hamilton cycle C_i for $i \in [0, m - 1]$, we obtain m Hamilton paths and all the edges we taken away are

$$v_1v_{m+1}, v_2v_{m+2}, v_3v_{m+3}, \cdots, and v_mv_{2m}.$$

If the (m + 1)th edge of a Hamilton cycle is v_1v_{m+1} , then after taking away v_1v_{m+1} from this Hamilton cycle, we can color it by color 1. Similarly, if the (m + 1)th edge of a Hamilton cycle is v_iv_{m+i} , then after taking away v_iv_{m+i} from this Hamilton cycle, we can color it by color i for $i \in [2, m]$.

Now we color the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}.$$

The subgraph which induced by the edge set

$$\{u_i v_j \mid i, j \in [1, n], i \neq j\}$$

can be regarded as a subgraph which induced by a complete bipartite graph $K_{n,n}$ get rid of a perfect matching M_0 , denote it by $K_{n,n} \setminus M_0$. It is obvious that $K_{n,n} \setminus M_0$ can be decomposed into n-1 disjoint perfect matchings, denote them by M_1, M_2, \dots, M_{n-1} , where

$$M_{\alpha} = \{u_i v_{i-\alpha(modn)} \mid i \in [1, n]\}$$

for $\alpha \in [0, n-1]$. Thus these edges can be decomposed into M_1, M_2, \dots, M_{2m} .

It is easy to find that the edges of M_1 and M_{m+1} can just form a cycle. After taking away edges

$$u_2v_1, u_{m+2}v_{m+1}$$

from this cycle, we can color other edges by one color, say m+1. It is clear that we can give the edge v_1v_{m+1} color m+1. The edges of M_2 and M_{m+2} can just form a cycle, after taking away edges

$$u_4v_2, u_{m+4}v_{m+2}$$

from this cycle, we can color other edges by m+2. It is easy to find that we can give the edge v_2v_{m+2} color m+2. So the edges of M_i and M_{m+i} can just form a cycle for every $i \in [3, m-1]$, after taking away edges

$$u_{2i}v_i, u_{m+2i}v_{m+i}$$

from this cycle, we can color other edges by m + i, and it is easy to find that we can give the edge $v_i v_{m+i}$ color m + i for $i \in [3, m - 1]$. Hence the edges of M_m and M_{2m} can just form a cycle, after taking away edges

$$u_{2m}v_m, u_{m-1}v_{2m}$$

from this cycle, we can color other edges by 2m. It is easy to find that we can give the edge $v_m v_{2m}$ color 2m.

Thus we can color edges u_2v_1 and $u_{m+2}v_{m+1}$ by 1, color u_4v_2 and $u_{m+4}v_{m+2}$ by 2, color $u_{2i}v_i$ and $u_{m+2i}v_{m+i}$ by color *i* for $i \in [3, m-1]$, and color $u_{2m}v_m$ and $u_{m-1}v_{2m}$ by *m*.

By the fact that m is even, 2i is even and m-1is odd, we can color wu_2 and wu_1 by 1, color wu_{2i} and wu_{2i-1} by i for $i \in [2, \frac{m-2}{2}]$, color wu_{m-1} by 2m, color wu_m and wu_{m+1} by $\frac{m}{2}$, and color wu_{2j} and wu_{2j+1} by color j for $j \in [\frac{m+2}{2}, m]$.

It is easy to find that every component of the subgraph which induced by the edges with the same color is just a path. Thus we have $la(M(K_n)) \le n-1$, immediately. On the other hand, by Lemma 3, we have

$$la(M(K_n)) \ge \lceil \frac{\Delta(M(K_n))}{2} \rceil$$

$$= \lceil \frac{2(n-1)}{2} \rceil = n-1.$$

Hence we obtain that $la(M(K_n)) = n - 1$.

Theorem 12. $la_k(M(K_n)) = n - 1$, when n is even and $k \ge 5$.

Proof. By the proof of the Theorem 11 in the case when n is even, it is easy to find that every component of the subgraph which induced by the edges with the same color is just a path with length no more than 5, so $la_k(M(K_n)) \le n - 1$. By Lemma 3, we have

$$la_k(M(K_n)) \ge \lceil \frac{\Delta(M(K_n))}{2} \rceil$$
$$= \lceil \frac{2(n-1)}{2} \rceil = n-1,$$

hence, $la_k(M(K_n)) = n - 1$ when n is even and $k \ge 5$.

Acknowledgements: The research is supported by NSFC for youth with code 61103073.

References:

- J. Akiyama, *Three Developing Topics in Graph Theory*, Doctoral Dissertation, University of Toyo, 1980.
- [2] R. E. L. Aldred, N. C. Wormald, More on the linear k-arboricity of regular graphs, *Austral. J. Combin.*, 18,(1998), p;.97-104.
- [3] R. E. L. Aldred, N. C. Wormald, More on the linear *k*-arboricity of regular graphs, *Austral. J. Combin.*, 18,(1998), pp.97-104.
- [4] N. Alon, V. J. Teague, N. C. Wormald, Linear arboricity and linear k-arboricity of regular graphs, *Graphs Combin.*, 17, (2001), pp.11-16.
- [5] B. Alspach, J. C. Bermond, D. Sottean, *Decomposition into cycles I: Hamilton decomposition*, in: G. Hahn et al.(Eds.), *Cycles and Rays*, Kluwer Academic Publishers, Dordrecht, 1990, pp. 9-18.
- [6] J. C. Bermond, J. L. Fouquet, M. habib, B. Peroche, On linear *k*-arboricity, *Discrete Math.*, 52, (1984), pp.123-132.
- [7] Béla Bollobás. *Graph Theory, An Introductory Course*, Springer-Verlag, New York INC, 1979.
- [8] G. J. Chang, Algorithmic aspects of linear karboricity, *Taiwanese J. Math.*, 3, (1999), pp.73-81.
- [9] G. J. Chang, B. L. Chen, H. L. Fu, K. C. Huang, Linear k-arboricity on trees, *Discrete Appl. Math.*, 103, (2000), pp.281-287.

- [10] G. J. Chang, L. Huang, X. Zhu, Circular chromatic numbers of Mycielski's graphs, *Disc. Math.*, 205, (1999), pp.23-37.
- [11] B. L. Chen, H. L. Fu, K. C. Huang, Decomposing graphs into forests of paths with size less than three, *Austral. J. Combin.*, 3, (1991), pp.55-73.
- [12] B. L. Chen, K. C. Huang, On the linear k-arboricity of K_n and $K_{n,n}$, Discrete Math., 254, (2002), pp. 51-61.
- [13] H. L. Fu, K. C. Huang, C. H. Yen, The linear 3arboricity of $K_{n,n}$ and K_n , *Discrete Math.*, 308, (2008), pp.3816-3823.
- [14] H. L. Fu, K. C. Huang, The linear 2-arboricity of complete bipartite graphs, *Ars Combin.*, 38, (1994), pp.309-318.
- [15] M. Habib, B. Peroche, Some problems about linear arboricity, *Discrete Math.*, 41, (1982), pp.219-220.
- [16] M. Habib, B. Peroche, La k-arboricité linéaire des arbres, Ann. Discrete Math., 17, (1983), pp.307-317.
- [17] S. He and L. Zuo, The linear 6-arboricity of the complete bipartite graph $K_{m,n}$, Discrete mathematics, algorithms and applications, 5, No.4, (2013), 1350029 (10 pages).
- [18] S. He and L. Zuo, The linear 8-arboricity of the complete bipartite graph $K_{m,n}$, *Advances in mathematics*,(in Chinese), doi:10.11845/sxjz.2013051b.
- [19] B. Jackson, N. C. Wormald, On the linear karboricity of cubic graphs, *Discrete Math.*, 162, (1996), pp.293-297.
- [20] K. W. Lih, L. D. Tong, W. F. Wang, The linear 2-arboricity of planar graphs, *Graphs Combin.*, 19, (2003), pp.241-248.
- [21] A. Muthusamy, P. Paulraja, Path factorizations of complete multipartite graphs, *Discrete. Math.*, 195, (1999), pp.181-201.
- [22] G. Sabidussi, Graphs with given group and given graph-theoretical properties, *Canad. J. Math.*, 9, (1957), pp.515-525.
- [23] C. Thomassen, Two-coloring the edges of a cubic graph such that each monochromatic component is a path of length at most 5, *J.Combin. Theory, Ser B.*, 75, (1999), pp.100-109.
- [24] D. B. West, *Introduction to Graph Theory*, second ed., Prentice. Hall, Upper Saddle River, NJ, 2001.
- [25] B. Xue and L. Zuo, On the linear (n 1)arboricity of $K_{n(m)}$, *Discr. Appl. Math.*, 158, (2010), pp.1546-1550.

- [26] C. H. Yen, H. L. Fu, Linear 2-arboricity of the complete graph, *Taiwanese J. Math.*, 14, (2010), pp.273-286.
- [27] C. H. Yen, H. L. Fu, Linear 3-arboricity of the balanced complete multipartite graph, *J. Combin. Math. Combin. Comput.*, 60, (2007), pp.33-46.
- [28] L. Zuo, S. He and B. Xue, The linear (n 1)-arboricity of Cartesian product graphs, submitted.
- [29] G. Jin and L. Zuo, On further ordering bicyclic graphs with respect to the Laplacian spectra radius, *WSEAS Transactions on Mathematics*, 12(10), 2013, pp.979-991.
- [30] H. Lai, Y. Shao, and H. Yan, An update supereulerian graphs, *WSEAS Transactions on Mathematics*, 12 (9), 2013, pp.926-940.
- [31] X. Jiang and Y. Zhang, Randomly M_t decomposable multigraphs and M_2 - equipackable multigraphs, WSEAS Transactions on Mathematics, 12 (2), 2013, pp.211-220.
- [32] L. Zuo, F. Wu and S. Zhang, Equitable colorings of Cartesian product graphs of wheels with complete bipartite graphs, *WSEAS Transactions on Mathematics*, 13,2014, pp.236-245.