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Abstract: A linear k-forest of an undirected graph G is a subgraph of G whose components are paths with lengths
at most k. The linear k-arboricity Of G, denoted by lay(G), is the minimum number of linear k-forests needed
to partition the edge set F(G) of G. In case that the lengths of paths are not restricted, we then have the linear
arboricity of GG, denoted by la(G). In this paper, the exact values of the linear 3-arboricity and the linear arboricity
of the Mycielski graph M (K, ), and the linear k-arboricity of the Mycielski graph M (K, ) when n is even and

k > 5, are obtained.
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1 Introduction

All graphs considered in this paper are finite, undi-
rected, loopless and without multiple edges. For a
positive integer k£ and a real number z, let

[k] :{1727"'7k}7

|z] and [2] denote the smallest integer not less than z
and the largest integer not greater than x, respectively.
For integers a < b, let [a, b] denote the integer set

{a,a+1,---,b}.

We refer to [24] for terminology in graph theory.

In recent years, many parameters and graph
classes were studied. For example, in [28], Zuo
showed that a Conjecture holds for all unicyclic
graphs and all bicyclic graphs, in [25], Xue, Zuo et
al. studied the hamiltonicity and path ¢-coloring of
Sierpifiski-like graphs; In [29], Jin and Zuo gave the
further ordering bicyclic graphs with respect to the
Laplacian spectra radius; In [30], Lai et al. gave a
survey for the more recent developments of the re-
search on supereulerian graphs and the related prob-
lems; In [31], Jiang and Zhang studied Randomly
M;-decomposable multigraphs and Ms-equipackable
multigraphs; and in [32], Zuo et al. studied the equi-
table colorings of Cartesian product graphs of wheels
with complete bipartite graphs.

A decomposition of a graph is a list of sub-
graphs such that each edge appears in exactly one

*The corresponding author:lczuo@ 163.com.
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subgraph in the list. If a graph G has a decomposi-
tion G1,Go, - - -, G4, then we say that G1, Ga, - - -, Gy
decompose (G, or G can be decomposed into
G1,Go, -+, Gy. Furthermore, a linear k-forest is a
forest whose components are paths of lengths at most
k. The linear k-arboricity of a graph G, denoted by
lak(Q), is the least number of linear k-forests needed
to decompose G.

An independent set in a graph is a set of pairwise
nonadjacent vertices. A complete graph is a simple
graph in which each pair of distinct vertices is joined
by an edge. We denote one complete graph on n ver-
tices by K,. A bipartite graph is one graph whose ver-
tex set can be partitioned into two subsets X and Y so
that each edge has one end in X and the other end in
Y’; such a partition (X, Y) is called a bipartition of the
graph. A complete bipartite graph is a simple bipartite
graph with bipartition (X, Y") in which each vertex of
X is joined to each vertex of Y'; if

|X|:m7 |Y‘:n7

such a graph is denoted by K, 5, which is called bal-
anced complete bipartite graph if m = n.

The notion of linear k-arboricity of a graph was
first introduced by Habib and Peroche [16]. It is a nat-
ural generalization of edge coloring. Clearly, a linear
1-forest is induced by a matching, and la;(G) is the
edge chromatic number, or chromatic index, x'(G)
of a graph. Moreover, the linear k-arboricity la;(G)
is also a refinement of the ordinary linear arboricity
la(@G) (or lass (G)) which is the case when every com-
ponent of each forest is a path with no length con-
straint.
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In a search for triangle-free graphs with arbitrarily
large chromatic numbers, Mycielski developed an in-
teresting graph transformation as follows: For a graph
G with vertex set V(G) = V and edge set E(G) = E,
the Mycielskian of G is the graph M (G) with vertex
set

VuV' u{w},

where V'’ = {2/|x € V'}, and edge set
EU{zy|zy € E} U {yw|y € V'}.

The vertex 2’ is called the twin of the vertex z (and x
is also called the twin of ), and the vertex w is called
the root of M (G). If there is no ambiguity we shall
always use w as the root of M (G).

In 1982, Habib and Peroche [15] proposed the fol-
lowing conjecture for an upper bound on lay(G).

Conjecture 1. If G is a graph with maximum
degree A(G) and k > 2, then

[ ragen,
25

when A(G) =|V(G) | -1,
lak(G) <
[A(G)"V(G)H'l‘l
—pew@l) b

k+1

when A(G) <| V(G) | —-1.

For k =| V(G) | —1, it is the Akiyama’s conjec-
ture [1].

Conjecture 2. [1] la(G) < [%1.

So far, quite a few results on the verification of
Conjecture 1 have been obtained in the literature, es-
pecially for graphs with particular structures, such
as trees [8, 9, 16], cubic graphs [6, 19, 23], regular
graphs [3, 4], planar graphs [20], balanced complete
bipartite graphs [12, 14, 13], balanced complete mul-
tipartite graphs [27] and complete graphs [8, 11, 12,
26, 13]. The linear 2-arboricity, the linear 3-arboricity,
and the lower bound of linear k-arboricity of balanced
complete bipartite graph were obtained in [14, 13, 12],
respectively. In [17, 18, 25, 28], the exact value of the
linear 6-arboricity and 8-arboricity of the complete bi-
partite graph K, 5, the linear (n—1)-arboricity of bal-
anced complete multipartite graphs K, ,,), Hamming
graphs K7, the Cartesian product of K, with K, ;,,
and the Cartesian product graphs C]; were obtained.
The circular chromatic numbers of Mycielski’s graphs
was obtained in [10].

In this paper, our attention focuss on determin-
ing the linear 3-arboricity and the linear arboricity of
the Mycielski graph M (K,,), as well as the linear k-
arboricity (k > 5) of the Mycielski graph M (K,,)
when n is even.
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2 Some basic lemmas

Lemma 1. For any graph G, positive integers m and
n, if m > n, then

X(G) > lan(G) > lam(G) > la(G).

Lemma 2. If H is a subgraph of G, then lay(G) >
lak(H)

As for a lower bound on [ay (G), since any vertex
in a linear k-forest has degree at most 2 and a linear
k-forest in a graph (G has at most

k- | V(G) |
E+1

I ]

edges, the following result is obvious.

Lemma 3. For any connected graph G with maximum
degree A\ (G), we have

AG), [ IE@) ]}.
| J

lag(G) > Inax{( 5 Lk‘l‘;(?)l

Lemma 4. [12] For n > 3, the complete graph K,
is decomposable into edge-disjoint Hamilton cycles
if and only if n is odd. For n > 2, the complete
graph K, is decomposable into edge-disjoint Hamil-
ton paths if and only if n is even.

Lemma 5. [12] Let V(K3,) = {vo,v1, ", V2n-1}-
For0<i:<n—1, put

P = v014V144V2n 140244

V2n—244 * * " Un4-14+iUn+i

where the subscripts of v are taken modulo 2n. Then
P, 1=0,1,2,---,n—1, are disjoint Hamilton paths
of complete graph Ko,,.

Lemma 6. [12] Letn =2k + 1, n > 3, and
V(Kyn) = {vo,v1, -+, vop—1,u}.

Then K, can be decomposed into k edge-disjoint
Hamilton cycles

Ci = U001 4iV2k—144V2+iV2k—24i

© Uk 14 Vk 4 U

for0 <@ < k—1, where the subscripts of v are taken
modulo 2k.

The following result came from [21], for the sake
of the completeness, we give the proof here.
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Lemma 7. [21] The complete graph K, is Hamilton
cycle decomposable.

Proof. The result is trivially true for ¢ = 1,2. Let
t = 2m + 1 > 3, and let the vertices of K; be
vy, V1,02, - -, V2m. Let H be the Hamilton cycle of
K4, and be given by

VoU102V02mV3V2m—104 * * *

Um~+3UmUm~+2Um+100-

Let o be the permutation

(Uo)(vvaU?, e "Uzm—lvzm)-

is a Hamilton cycle decomposition of Kj.

Let ¢t = 2m > 4. Let the vertices of K; be
vg, V1, -, Vam—1. Let H be the Hamilton cycle of
Kti

VOUV1V2V2m—1V3V2m—2V4 * *

Um—1Um+2VmUm+100
and let o be the permutation
(v0)(v1v2V3 * - - V2 —2V2m—1)-

Then

are m — 1 edge-disjoint Hamilton cycles of K;. The
remaining edges

VoUm, V1V2m—1, V2V2m—2,

V3U2m—3; """y Um—1Um+1
form a 1-factor of K;. O
It is well known that the following result holds.

Lemma 8. X’(Kgn) = X’(Kgnfl) =2n—1.

3 Main results

Before state our result, we introduce a notion bipartite
difference. Let G be a bipartite graph, and Vi, V5 be
its bipartite sets with

Vi = {uio0,v11, -, w11}

and

Vo = {ugo, u21, -+, Ug(s—1) }-
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Suppose that |Vo| = s > |Vi| = r. For the edge
uiplag in G(V1,Va), the value (¢ — p)(mod s) is
called the bipartite difference of the edge w1, u2q.

It is easy to find that, an edge set which consisted
by the edges in G(V7, V5) with the same bipartite dif-
ference must be a matching. In fact, if G(V1, V3) is
a balanced complete bipartite graph K, ,,, then such
a matching is a perfect matching. Furthermore, we
can decompose the edges of K, ;, into n pairwise dis-
joint perfect matchings My, My, - - -, My, such that
M; is exactly the set of edges of bipartite difference ¢
in K, , fori =0,1,---,n — 1.

Theorem 9. \/'(M(K,))=A+1=2n—1.

Proof. Let the vertex set and edge set of the complete
graph K, be

V(Kn) ={vi |1 € [1,n]},
and
E(K’ﬂ> - {Uivj ‘ i,J € [1,71],i 7'&]}7

respectively. Then by the definition of Mycielski
graph, the vertex set and edge set of M (K,) are

V(M(K,)) ={vi,u; | i € [1,n]} U{w},
and
E(M(K,)) = E(K,)U{wu; | i € [1,n]}

U {uz’vj ‘ Za] € [Ln]?i 7& .7}7
respectively, where w; is the twin of v; for i € [1,n].
Now we consider the edge set
{uivj ’ Z?] € [LTLLZ 7& .7}
first. By the definition of Mycielski graph, it is easy to
find that the subgraph which induced by the edge set
{uivj ’ Z?] € [177471 7& .7}

can be considered as a subgraph which is induced by
a complete bipartite graph K, ,, get rid of a perfect
matching My, denoted by K, ,, \ Mp. It is clear that
Ky, n \ My can be decomposed into n — 1 disjoint per-
fect matchings, denoted by My, Ms,---, M,_1, re-
spectively, where

M, = {UiuiJra(modn) ’ (S [17 n]}

for v € [0,n — 1]. Then we can use « to color M, for
a € [1,n — 1], and use at least n — 1 colors to color
the edges

{uivg | 4,5 € [1,n],i # j}.
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By Lemma 8, we can use at least n — 1 colors to color
E(K,). By the fact that d(w) = n, we can use at least
another n colors which are different from the n — 1
colors that colored the edges

{Ui’Uj | ’L,] € [Ln]vi 75]}

to color wu; fori € [1,n]. Thus, x' (M (K,)) > 2n—
1.

On the other hand, we can use n colors, say
1,2,--+,n, to color wu; for i € [1,n|. By the
above fact, we can use color n + « to color M, for

€ [1,n — 1]. By Lemma 8, we can use n colors,

say 1,2,--- n, to color E(K,), thus (M (K,)) <
2n — 1.

Thus, we have obtained that ' (M (K,,)) = A +

=2n— 1. O

Theorem 10. la3(M(K,)) = n.

Proof. Similarly as in Theorem 9, let the vertex set
and edge set of the complete graph K,, be V(K,,) =
{vi | i € [1,n]}, and E(K,) = {vv; | i,j €
[1,n],i # j}, respectively. Then the vertex set and
edge set of M (K,,) are

V(M(Ky)) = {vi,u; | i € [1,n]} U{w},

and
E(M(K,))=E(K,)U{wuy; |i€[l,n]}

U{uvj |i€[l,n],j€[l,n],i+#j},

respectively, where u; is the twin of v; (i € [1,n)).
We consider two cases according to the parity of
n.

Case 1. n is odd.
Let n = 2m 4 1. By the fact that

X/(Kn) =n,

we can use n colors, say 1,2, -, n, to color E(K,).

In the following, we show that there exists an
edge coloring of K, such that for any two vertices of
V(K,,) the color sets appear on the edges which are
adjacent with them are different. We can consider the
vertices of K, as the vertices of an n-regular polygon,
label them by 1,2, - - - | n ordered, and label the edges
by the labels of the vertices in the n-regular polygon
which are parallel with them. Then we can consider
the labels of the edges are just their coloring, and it
is easy to find that this is a proper edge coloring of
K, and for any two vertices of V' (K,) the color sets
appear on the edges which are adjacent with them are
different.
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Then by the fact that x'(K,) = n, the above col-
oring is just a normal edge coloring. Since d,, (v;) =
n — 1 for any vertex v;, there exists just one color
that does not appear on the edges which are adjacent
with v;, where i € [1,n]. If color j does not ap-
pear on the edges which are adjacent with v;, then we
can denote v; as vo; where 2j is taken modulo n and
mod (27) € [1,n], since n is odd. Accordingly, u; is
denoted by ug; for every i € [1,n].

Now we color the edge set

{uv; | 4,5 € [1,n],i # j}.

It is easy to find that the subgraph which induced by
the edge set

{wivj | 4,5 € [1,n],i# j}

can be regarded as a subgraph which induced by a
complete bipartite graph K, , get rid of a perfect
matching M), denoted by K, ,, \ M. It is easy to find
that K, », \ Mo can be decomposed into n — 1 disjoint
perfect matchings, denoted by My, Ms,---, My_1,
where

My = {uivi+a(modn) |i€[1,n]}

fora € [0,n —
a€[l,n—1].

By the definition of Mycielski graph, the degree
of the vertex w in M (K,) is n, then we can use i to
color the edge wu; fori € [1,n).

Thus, by the edge coloring of K, because wu;
and wjve are colored by 1, there does not exist an
edge vov; for j € [1,n] with color 1. Similarly, since
wu,; and u;v9; are colored by ¢, there does not exist an
edge vo;v; with color ¢ for ¢ € [2,n — 1]. Hence it
is easy to find that every component of the subgraph
which induced by the edges with the same color is just
a path with length no more than three. Thus we have
lag(M(K,)) < n immediately. On the other hand,
by Lemma 3, we have

1], then we can use « to color M, for

laa(M(K,)) = [y
|
n(3n —1) (2m+1)(6m + 2)

= ’V L 2n+1)J~| = ’V 2L3(4WZ+3)J -‘

=2m+1=n.
Thus, lag(M(K,)) = n, and the result is proved. O

Case 2. n is even.

Let n = 2m, by the fact that x'(K,) = n — 1,
then we can use n — 1 colors, say 1,2,---,n — 1, to
color the E(K,).
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In the following, we give an edge coloring of K,
with n — 1 colors. We can consider the n — 1 vertices
of K, as the vertices of a (n—1)-regular polygon, and
label them by

1,2,---,n—1

ordered, and label the edges by the labels of the ver-
tices of the (n — 1)-regular polygon which are parallel
with them. Then we put the last vertex of K, in the
center of the (n — 1)-regular polygon, denoted by v,
and it is easy to find that it is adjacent to the other n—1
vertices of K, then we label the edge which connect
v and the vertex which label with ¢ by <. Thus we can
consider the labels of the edges are just their coloring.
It is easy to find that this is a proper edge coloring of
K.
Now we color the edge set

{Uﬂ]j | Za] € [Ln]ai #]}

It is easy to find that the subgraph which induced by
the edge set {w;v; | 4,5 € [1,n],% # j} can be re-
garded as a subgraph which induced by a complete
bipartite graph K, , get rid of a perfect matching
My, denoted by K, \ My. It is easy to find that
K\ My can be decomposed into n — 1 disjoint per-
fect matchings, denoted by My, My, --, M,_1, re-
spectively, where

M, = {uivi+a(modn) ‘ i € [1,71}}

for o € [0,n — 1]. Then we can use j to color M; for
jel,n—1].

By the definition of Mycielski graph, the degree
of the vertex w in M (K,) is n, then we can use i to
color wu; for i € [1,n/2], use j + 1 to color wu; for
j €[n/2+1,n— 1], and use n to color wu,.

At last, we recolor some edges. We can use color
n to color the edges

U1V2, U2V4, " -+, ugvna U%+1U3,

Un 4205, U4 3V7, ) Up—2Un—3.

Because wu; has been colored by 1, there does not
exist an edge uj vy, with color 1 for k& € [2,n]. Since
wu; is colored by ¢, there does not exist an edge ;v
with color i € [2, 5], for k € [1,n]\{i}. Because
wuzn 1y is colored by 5 + 2, there does not exist an
edge un v with 5 + 2 for k 7 n/2 + 1. Since wu;
is colored by j + 1, there does not exist an edge u;vy,
with color j + 1, for

n
j6[§+2,n—1],

and any k£ € [1,n]\{j}. Soitis easy to find that ev-
ery component of the subgraph which induced by the
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edges with the same color is just a path with length no
more than three. Thus we have lag(M(K,)) < n im-
mediately. On the other hand, by Lemma 3, we have

EG)]
)

laz(M(Ky)) = |

n(3n —1)
2|_3(22+1)J

(2m)(6m — 1)

2 L3(4TZ+1) J

>

1> |

=2m =n.
Thus, lag(M(K,,)) = n, and the result is proved. O
Theorem 11. [a(M(K,)) =n — 1.

Proof. Similarly as in Theorem 9, let the vertex set
and edge set of the complete graph K, be

V(Ky) ={vi|i€[1,n]},
and
E(Kn) = {vivj | i,j € [1,n],i # j}.
Then the vertex set and edge set of M (K,,) are, re-
spectively,
V(M(Ky)) ={vi,u; | i € [1,n]} U{w},
and

E(M(K,)) = E(K,) U {wui € [1,n]}

W{wiv; [ i € [1,n],j € [1,n],i # j},

where w; is the twin of v; for i € [1,n].
We consider two cases according to the parity of
n.

Case 1. n = 2m is even.

By Lemma 7, we know that the edge set of the
complete graph K, can be decomposed into m — 1
disjoint Hamilton cycles

Hj, = 09V 4k V24 kV2m— 14k V34 kV2m—24k * * -
Um+2+4+kUm+EUm+1+kU2m,
for 0 < k < m — 2, and a 1-factor
F = {09y, v1V2m—1, V2V2m—2, U3V2m—3,

Tty Um—lvm+1}7

where the subscripts of v; are taken modulo 2m — 1
and mod j € [1,2m — 1] in Hy, except the terminal
and end vertex. Clearly, every even cycle Hy, can be
decomposed into two 1-factors:

{V2m V14K, V24 kV2m—14ks V34+£V2m—2+k)
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ce a’Um+k’Um+1+k}
and
{'U1+kU2+ka Vom—14+kU3+k, " "

Um+4-24+kVUm+k, Um+1+kv2m}7

for 0 < k < m—2. Thus, E(K,,) can be decomposed
into 2(m —1)+1 = n—1 1-factors, and we can color
a 1-factor by one color, and color F’' by color 1, so we
can color this (n — 1) 1-factors by n — 1 colors, say
1,2,---,n— 1.

Now we color the edge set

{uvj 4,5 € [1,n],1 # j}.

The subgraph which induced by the edge set

{uivy | 4,7 € [1,n],i # j}

can be considered as a subgraph which induced by
a complete bipartite graph K, ,, get rid of a perfect
matching My, denoted by K, ,, \ Mp. It is clear that
K, 5 \ M can be decomposed into n — 1 disjoint per-
fect matchings, denoted by My, Ms,---, M,_1, re-
spectively, where

Ma = {uivi+a(mod n) | (NS [Ln]}

for a € [0, n — 1], then we can use color 7 to color M;
fori e [1,n —1].

According to the definition of Mycielski graph,
the degree of the vertex w in M (K,) is n, then we
can use ¢ to color wu; fori € [1,n — 1], and use 1 to
color wuy,.

Since wuy, Wiy, U1V, u,v1 are colored by 1, and
the color of vivg is not 1, it is easy to find that ev-
ery component of the subgraph which induced by the
edges with the same color is just a path. Thus we have
la(M(K,)) < n — 1immediately.

On the other hand, by Lemma 3, we have

ta(u(K,)) > ()
= [72(71_ 1)—| =n—1.

2
Hence we obtain that la(M (K,,)) = n — 1..

Case 2. n = 2m + 1 is odd.

Subcase 2.1. m is odd.

It is obvious that the complete graph Ko, 11, with
V(Kaom+1) = {v1,v2, -+, Vam, Vam+1},

can be decomposed into m edge-disjoint Hamilton cy-
cles

Ci = V2m+1V1+3iV2+4iV2m+iV3+iV2m—1+i
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© Um 24 Um4+-1+4iU2m+1

for 0 < 7 < m — 1, where the subscripts of v; are
taken modulo 2m + 1 and the subscripts of v; belong
to [1, 2m] except vo,+1-

Next, we take away the (m+1)-th edge from each
Hamilton cycle C; for i € [0,m — 1]. After taking
away the (m + 1)-th edge from each Hamilton cycle
C; (i € [0,m — 1]), we have m Hamilton paths and
the edges we taken away are

V1Um+1, V2Um+2, V3Um4-3, -+, UmU2m.-

If the (m + 1)-th edge of a Hamilton cycle is
V1Um+1, then after taking away the edge v1v,,+1 from
this Hamilton cycle, we can color it by color 1. Sim-
ilarly, if the (m + 1)th edge of a Hamilton cycle is
V;Um+i, then after taking away the edge v;vy,+; from
this Hamilton cycle, we can color it by color ¢ for
i€[2,m].

Now we color the edge set

{Ui?)j ‘ 27,7 € [1777‘]7@ 7é j}
The subgraph which induced by the edge set

{Uivj | i»j € [17’”}71' 7&]}

can be viewed as a subgraph which induced by a com-
plete bipartite graph K, ,, get rid of a perfect match-
ing My, denoted by K, , \ Mpy. It is easy to find that
Ky, \ My can be decomposed into n — 1 disjoint per-
fect matchings, denoted by Mj, Ma,---, M,_1, re-
spectively, where

M, = {uivz’foz(modn) li € [1,n]},

for @ € [0,n — 1], so these edges can be decomposed
into My, Mo, - - -, Moy,.

It is easy to see that the edges of My and M, 41
can just form a cycle, after taking away two edges
uov1 and U, +2Um+1 in this cycle, we can color other
edges by one color, say m + 1. It is clear that we
can give the edge v1v,,,41 color m + 1. Similarly, the
edges of My and M, ;2 can just form a cycle, after
taking away two edges

U4V2, Um4+-4Vm+2

from this cycle, we can color other edges by one
color, say m + 2. It is obvious that we can give
the edge vavy,+2 color m + 2. So the edges of M;
and M,,4; can just form a cycle, after taking away
U2 Vi, Um+2iUm+i from this cycle, we can color other
edges by m + 7. It is easy to find that we can give
the edge v; v+, the color m + i for i € [3, m|. Thus
we can color usvy and Up,4+2Um41 by 1, color ugvg
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and Uy, +4Vm 42 by 2, and color ug;v; and Uy, 42U+
by i for i € [3,m]. By the fact that m is odd, 2i is
even and m + 2 is odd, we can color wus and wu; by
1, and color wug; and wug;—1 by i for i € [2, mT“]
We can color wuy,+2 by m + 1, color wuy,4+3 and
W44 DY mTH, and color wusg; and wug; 11 by j for
J€E [mT“’, m], where the subscripts are all taken mod-
ulo 2m + 1 and mod j € [1,2m + 1].

It is easy to find that every component of the sub-
graph which induced by the edges with the same color
is just a path. Thus we have

la(M(K,)) <n—1

immediately. On the other hand, by Lemma 3, we
have

ta(M(K,)) > ()
= [72(71_ 1>—| =n—1.

2
Hence la(M (K,)) =n — 1.

Subcase 2.2. m is even.
Clearly, the complete graph K, 41, with

V(Kam+1) = {v1,v2, -+, Vam, Vam+1},

can be decomposed into m edge-disjoint Hamilton cy-
cles

Ci = V2m+1V144V24iU2m+iU34+iV2m—1+4

o Um24iUm+14+iU2m+1

for 0 < 7 < m — 1, where the subscripts of v; are
taken modulo 2m + 1 and the subscripts of v; belong
to [1, 2m] except vy +1-

Next, after taking away the (m + 1)-th edge from
each Hamilton cycle C; for i € [0, m — 1], we obtain
m Hamilton paths and all the edges we taken away are

V1Vm41, V2Vm42, V3Um43, -+, AN Uy U2y,

If the (m + 1)th edge of a Hamilton cycle is
V1Um+1, then after taking away vivy,4+1 from this
Hamilton cycle, we can color it by color 1. Similarly,
if the (m + 1)th edge of a Hamilton cycle is v;vy44,
then after taking away v;vy,4; from this Hamilton cy-
cle, we can color it by color ¢ for i € [2,m].

Now we color the edge set

{uivj ‘ 7’7.7 € [1777’]72 7é J}
The subgraph which induced by the edge set

{ujvj | i,j € [1,n],i # j}
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can be regarded as a subgraph which induced by
a complete bipartite graph K, , get rid of a per-
fect matching My, denote it by K, , \ My. It is
obvious that K, , \ My can be decomposed into
n — 1 disjoint perfect matchings, denote them by
Mlu M27 o 7Mn—17 where

M, = {uivi—a(modn) | (S [17n]}

for & € [0,n — 1]. Thus these edges can be decom-
posed into My, Ma, - - -, Moy,.

It is easy to find that the edges of M7 and M, +1
can just form a cycle. After taking away edges

U201, Um+4-2Vm+1

from this cycle, we can color other edges by one color,
say m+1. Itis clear that we can give the edge v1 vy, 41
color m + 1. The edges of My and M, 2 can just
form a cycle, after taking away edges

U4V2; Um+4VUm+2

from this cycle, we can color other edges by m + 2. It
is easy to find that we can give the edge vovy, 42 color
m + 2. So the edges of M; and M,,,1; can just form a
cycle for every i € [3, m — 1], after taking away edges

U2iViy Um+2iUm-+i

from this cycle, we can color other edges by m + 4,
and it is easy to find that we can give the edge v; vy, +;
color m + i for i € [3,m — 1]. Hence the edges of
M,,, and Ms,, can just form a cycle, after taking away
edges

U2mUm, Um—1U2m

from this cycle, we can color other edges by 2m. It
is easy to find that we can give the edge v;,va2,, color
2m.

Thus we can color edges usv1 and Uy, +2Um+1 by
1, color uqvs and y,+4vm42 by 2, color ug;v; and
Um+2iVm+; by color i for ¢ € [3,m — 1], and color
U2 U, aNd Uy — 1 V24, by m.

By the fact that m is even, 2i is even and m — 1
is odd, we can color wus and wu; by 1, color wuo;
and wug;—1 by i for i € [2, mT_Q] color wu,, 1 by
2m, color wu,, and wum,i1 by 5, and color wug;
and wua;j4+1 by color j for j € [mT“, m.

It is easy to find that every component of the sub-
graph which induced by the edges with the same color
is just a path. Thus we have la(M (K,,)) < n—1,im-
mediately. On the other hand, by Lemma 3, we have

A(M(Kn))

la(M(Ky) = [

|
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Hence we obtain that la(M (K,)) = n — 1. 0

l=n-1

Theorem 12. la;(M(K,)) = n — 1, when n is even
and k > 5.

Proof. By the proof of the Theorem 11 in the case
when n is even, it is easy to find that every component
of the subgraph which induced by the edges with the
same color is just a path with length no more than 5,
so lap(M(K,)) <n—1. By Lemma 3, we have

AM(Ky))

Loy (M(K,)) = [ ==

|

=[——=

hence, lay(M(K,)) = n — 1 when n is even and
k > 5. O

Acknowledgements: The research is supported by
NSFC for youth with code 61103073.

References:

[1] J. Akiyama, Three Developing Topics in Graph
Theory, Doctoral Dissertation, University of
Toyo, 1980.

[2] R. E. L. Aldred, N. C. Wormald, More on the
linear k-arboricity of regular graphs, Austral. J.
Combin., 18,(1998), p;.97-104.

[3] R. E. L. Aldred, N. C. Wormald, More on the
linear k-arboricity of regular graphs, Austral. J.
Combin., 18,(1998), pp.97-104.

[4] N. Alon, V. J. Teague, N. C. Wormald, Lin-
ear arboricity and linear k-arboricity of regular
graphs, Graphs Combin., 17, (2001), pp.11-16.

[5] B. Alspach, J. C. Bermond, D. Sottean, De-
composition into cycles I: Hamilton decomposi-
tion, in: G. Hahn et al.(Eds.), Cycles and Rays,
Kluwer Academic Publishers, Dordrecht, 1990,
pp- 9-18.

[6] J. C. Bermond, J. L. Fouquet, M. habib, B. Per-
oche, On linear k-arboricity, Discrete Math., 52,
(1984), pp.123-132.

[7] Béla Bollobas. Graph Theory, An Introductory
Course, Springer-Verlag, New York INC, 1979.

[8] G. J. Chang, Algorithmic aspects of linear k-
arboricity, Taiwanese J. Math., 3, (1999), pp.73-
81.

[9] G. J. Chang, B. L. Chen, H. L. Fu, K. C.
Huang, Linear k-arboricity on trees, Discrete
Appl. Math., 103, (2000), pp.281-287.

E-ISSN: 2224-2880

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

Shengjie He, Liancui Zuo

G. J. Chang, L. Huang, X. Zhu, Circular chro-
matic numbers of Mycielski’s graphs, Disc.
Math., 205, (1999), pp.23-37.

B. L. Chen, H. L. Fu, K. C. Huang, Decompos-
ing graphs into forests of paths with size less
than three, Austral. J. Combin., 3, (1991), pp.55-
73.

B. L. Chen, K. C. Huang, On the linear k-
arboricity of K, and K, ;,, Discrete Math., 254,
(2002), pp. 51-61.

H. L. Fu, K. C. Huang, C. H. Yen, The linear 3-
arboricity of K, ,, and K,,, Discrete Math., 308,
(2008), pp-3816-3823.

H. L. Fu, K. C. Huang, The linear 2-arboricity
of complete bipartite graphs, Ars Combin., 38,
(1994), pp.309-318.

M. Habib, B. Peroche, Some problems about
linear arboricity, Discrete Math., 41, (1982),
pp-219-220.

M. Habib, B. Peroche, La k-arboricité linéaire
des arbres, Ann. Discrete Math., 17, (1983),
pp-307-317.

S. He and L. Zuo, The linear 6-arboricity of the
complete bipartite graph K, ,,, Discrete math-
ematics, algorithms and applications, 5, No.4,

(2013), 1350029 (10 pages).

S. He and L. Zuo, The linear 8-arboricity
of the complete bipartite graph K, p,
Advances in  mathematics,(in  Chinese),
doi:10.11845/sxjz.2013051b.

B. Jackson, N. C. Wormald, On the linear k-
arboricity of cubic graphs, Discrete Math., 162,
(1996), pp.293-297.

K. W. Lih, L. D. Tong, W. F. Wang, The linear
2-arboricity of planar graphs, Graphs Combin.,
19, (2003), pp.241-248.

A. Muthusamy, P. Paulraja, Path factorizations
of complete multipartite graphs, Discrete. Math.,
195, (1999), pp.181-201.

G. Sabidussi, Graphs with given group and given
graph-theoretical properties, Canad. J. Math., 9,
(1957), pp.515-525.

C. Thomassen, Two-coloring the edges of a cu-
bic graph such that each monochromatic com-
ponent is a path of length at most 5, J.Combin.
Theory, Ser B., 75, (1999), pp.100-109.

D. B. West, Introduction to Graph Theory, sec-
ond ed., Prentice. Hall, Upper Saddle River, NJ,
2001.

B. Xue and L. Zuo, On the linear (n — 1)-
arboricity of Ky, (,,), Discr. Appl. Math., 158,
(2010), pp.1546-1550.

Volume 14, 2015



[26]

[27]

[28]

[29]

[30]

[31]

[32]

WSEAS TRANSACTIONS on MATHEMATICS

C. H. Yen, H. L. Fu, Linear 2-arboricity of the
complete graph, Taiwanese J. Math., 14, (2010),
pp-273-286.

C. H. Yen, H. L. Fu, Linear 3-arboricity of the
balanced complete multipartite graph, J. Com-
bin. Math. Combin. Comput., 60, (2007), pp.33-
46.

L. Zuo, S. He and B. Xue, The linear (n — 1)-
arboricity of Cartesian product graphs, submit-
ted.

G. Jin and L. Zuo, On further ordering bi-
cyclic graphs with respect to the Laplacian spec-
tra radius, WSEAS Transactions on Mathematics,
12(10), 2013, pp.979-991.

H. Lai, Y. Shao, and H. Yan, An update supereu-
lerian graphs, WSEAS Transactions on Mathe-
matics, 12 (9), 2013, pp.926-940.

X. Jiang and Y. Zhang, Randomly M;- de-
composable multigraphs and M>s- equipackable
multigraphs, WSEAS Transactions on Mathe-
matics, 12 (2), 2013, pp.211-220.

L. Zuo, F. Wu and S. Zhang, Equitable color-
ings of Cartesian product graphs of wheels with

complete bipartite graphs, WSEAS Transactions
on Mathematics, 13,2014, pp.236-245.

E-ISSN: 2224-2880

Shengjie He, Liancui Zuo

Volume 14, 2015





