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Abstract: This paper is devoted to constructing a definite efficient scheme for non-smooth optimization. A sepa-
rating plane algorithm with additional clipping is proposed. The algorithm is used for solving the unconstrained
non-smooth convex optimization problem. The latter problem can be reformulated as the computation of the value
of a conjugate function at the origin. The algorithm convergence is proved. Encouraging results of numerical
experiments are presented.
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1 Introduction
Let x = {x1, . . . , xn} be the vector in n-dimensional
real linear space Rn. We consider the solvable uncon-
strained minimization problem

min
x∈Rn

f(x) = f(x∗) (1)

where f(x) is a non-smooth convex objective function
from Rn into R1. The objective function f(x) is given
by a black-box oracle.

Problems of kind (1) occur frequently in engi-
neering, mechanics, control theory [1], economics [2]
and many other fields. So there are many various ar-
eas of applications for methods solving these prob-
lems. Moreover, the area of large-scale optimization
will have more advantages of any improvements in the
methods for minimization of non-differentiable func-
tions.

Research in this direction has resulted in several
efficient methods [2-9], and others. Depending on
what information about the objective function is avail-
able, optimization methods can be divided into two
categories: white-box and black-box minimization. In
white-box model we have some definite facts about
the objective function’s structure and/or behaviour.
For example, a very interesting such approach for
constructing efficient schemes for non-smooth opti-
mization is proposed in [10]. The objective functions
should have explicit max-structure. Vice versa, we

know nothing about the function’s structure in black-
box model. In this paper we propose the last approach,
namely, the black-box oracle model of the objective
function. At each point x ∈ Rn we can receive the
objective function value f(x) and one subgradient g
from the subdifferential set ∂f(x).

Well-known subgradient methods [2] were the
first numerical schemes for non-smooth convex opti-
mization (see [11] for historical comments). These
methods were under intense study since 1960s. At
present these methods remain competitive over the
low complexity of each iteration. However, subgradi-
ent methods have the slow rate of convergence. It was
proved in the case black-box oracle model of the ob-
jective function that subgradient methods’ complexity
can not be better than O( 1

ε2
) iterations, where ε > 0

is the desired accuracy for the objective value [3]. So
subgradient-type methods with space dilation [2] have
been proposed. Then further development of non-
smooth optimization methods went along the lines of
cutting-plane methods, descent methods with bundle-
type approach [4], descent methods with proximal-
type approach (for example, [12], [13]), and the el-
lipsoid method ([2], [6]).

In this paper we present another class of non-
smooth convex optimization methods with solving the
corresponding Fenchel dual problem. The suggested
algorithm for solving the problem (1) belongs to a
type of separating plane algorithms [7]–[8] and im-
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proves them. As the next sections will show, the
idea to replace the problem (1) with solving the corre-
sponding Fenchel dual problem leads to some impor-
tant merits such as increasing the rate of convergence.

The rest of this paper is organized as follows. The
algorithm is proposed in Sect. 2. In Sect. 3, we present
a convergence analysis for the proposed algorithm. In
Sect. 4, we test the performance of the proposed al-
gorithm and compare it with the standard SPA [8].
Sect. 5 concludes the paper.

2 Algorithm
The basic idea of separating plane algorithms (SPA)
is to use the next to trivial identity of convex analysis
[8, 14]:

min
x

f(x) = f(x∗) = −max
x

{x·0−f(x)} = −f∗(0)

where f∗(g) = sup
x

{xg − f(x)} is the Fenchel-

Moreau conjugate of the function f(x).
In this way the problem (1) can be reformulate as

a problem of computing f∗(0) (see Figure 1). The
optimal point x∗ can be obtained as a subgradient of
f∗: x∗ ∈ ∂f∗(0).

g

f∗(g)

0

f∗(0)

(x∗,−1)

Figure 1: Graphical interpretation of the problem (1)

The SPA algorithms construct sequences of outer
and inner approximations of the epigraph of f∗

(epi f∗ = {(ν, g) : ν ≥ f∗(g)}). At each itera-
tion of the algorithm the approximations are gradu-
ally refined. Eventually we obtain converging lower
and upper bounds for f∗(0).

As the SPA algorithm [8] has no guarantee of
monotony, the following changes are suggested. At

each iteration we execute an additional step which re-
moves the upper part of epi f∗:

sup
(g, ε)∈epi f∗

{gx− ε}, (2)

ε ≤ v̄

where estimate v̄ is a solution of a linear-
programming problem

v̄ = min
(0, τ)∈co ((gk, f∗(gk)), k=1, 2, ...)+0×R+

τ. (3)

The SPA with additional clipping is illustrated in
Figure 2.

Let us consider the set

{co ((gk, f∗(gk)), k = 1, 2, ...) + 0×R+} (4)

where coS denotes the convex hull of a set S (the in-
tersection of all convex sets which contain the set S).
It is clear that the set (4) is contained in epi f∗(g).

g

f∗(g)

0

f∗(0)

(gk, f
∗(gk))

Inner approximation –
polyhedron D

Current
record –
ω

v̄

Figure 2: kth iteration of separating plane algorithm
with additional clipping

Lagrangian function for the problem (2) is

L(g, λ) = gx− ε+ λ(v̄ − ε).

Further, we reduce (2) to a line-search problem:

sup
(g, ε)∈epi f∗; ε≤ v̄

{gx− ε}

= sup
ε≥ f∗(g)

inf
λ≥ 0

L(g, λ)
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= sup
g

inf
λ≥ 0

{gx− f∗(g) + λ(v̄ − f∗(g))}

= inf
λ≥ 0

{λv̄ + sup
g
{gx− (λ+ 1)f∗(g)}}

= inf
λ≥ 0

{
λv̄ + (1 + λ) f

(
x

1 + λ

)}
.

Finally, after the change of variables and excluding an
independent of θ summand −v̄:

inf
0<θ≤1

1

θ

(
f(θx) + v̄

)
= inf

0<θ≤1
φ(θ). (5)

It is easy to prove that if f(x) is a convex func-
tion, then the function of the single variable φ(θ) is a
convex function too.

It is suggested to solve the one-dimensional non-
smooth optimization problem (5) by means of a
new modification of line-search algorithm for non-
smooth convex optimization (see [15] for the original
scheme). Convergence of this algorithm is quadratic.

Finally we come to the following algorithmic
scheme.

Step 0. Initialization:
Set iteration counter k := 0, Given a starting

point x0 ∈ dom f of minimizing sequence.

Step 1. Compute

inf
0∈Uk(ω)

ω = ωk

where Uk is the k-th outer approximation of the epi-
graph of f∗. The latter problem can be solved recur-
rently:

ωk = inf
0∈Uk(ω)

ω

= inf
0 ∈ Uk−1(ω)∩{(g, ω) | gxk−1−ω≤ f(xk−1)}

ω

= max { inf
0∈Uk−1(ω)

ω, inf
ω≥−f(xk−1)

ω}

= max {ωk−1, −f(xk−1)}. (6)

And ω0 := −∞ for k = 0.

Step 2. Determine z. The point z is a projection of
a point (0, ωk) onto the polyhedron D. As mentioned
above, the polyhedron D is inner approximations of
the epigraph of f∗ .

Step 3. Update.

Compute

xk := −z(1 : n) / z(n+ 1).

Then the last component of a vector

z̄ = −z / z(n+ 1) = (xk,−1)

is equal to −1. That is needed (see Figure 1).

Step 4. Determine a cutting level of the upper part
of epi f∗, i.e., v̄. The value v̄ is found by solving the
LP problem (3). If (3) has no solution, then go to the
Step 7.

Step 5. Solve the one-dimensional non-smooth
minimization problem (5). By θk denote the com-
puted at the kth iteration solution of (5).

Step 6. Update 2. Compute xk := θkxk.

Step 7. Add a pair (gk ∈ ∂f(xk), f
∗(gk)) to the

inner approximation, i.e., the polyhedron D.

Step 8. If stopping criterion is satisfied, then quit.
Else increase iteration counter k and go to the Step 1.

3 Convergence Analysis

In this section we present a simple convergence anal-
ysis for the SPA with additional clipping.

Throughout the section, ∥.∥ denotes the Eu-
clidean norm of vectors.

Theorem 1 Let f(x) be a convex finite function,
f(0) = 0, ω∗ = −min f(x) < < Ω < ∞. Then
lim
k→∞

ωk = ω∗.

Proof: Using induction on k, it can be shown that for
any k, we have ωk ≤ f∗(0).

Indeed, basis step: ω0 = −∞ < f∗(0). Accord-
ing to (6),

ωk = max{ωk−1, −f(xk−1)}

Inductive step. Besides,

−f(xk−1) = 0 · xk−1 − f(xk−1)

≤ sup
x

{0 · x− f(x)} = f∗(0)

Let us consider two cases.

Case 1: ωk = −f(xk−1). Then ωk ≤ f∗(0).

Case 2: ωk = ωk−1. By the inductive assump-
tion, ωk ≤ f∗(0), which was to be proved.
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Since ωk ≤ f∗(0) and z̄k + (0, ωk) ∈ co{Dk},
we only need to show that

∥z̄k∥ → 0, when k → ∞

In order to prove decrease of the norm ∥z̄k∥, let
us consider several cases.

Case 1: The problem (3) at Step 4 has no solution.
Then the SPA with additional clipping turns into the
standard SPA. The convergence of the latter algorithm
was proved in [7].

Case 2: The problem (3) at Step 4 has a solution.
By x̄k denote a solution of (2), x̄k = θkxk, 0 < θk ≤
1. In this case, zk can be represented as follows:

z̄k = −rk(θkxk, −1)

Two cases can occur, depending on whether or
not a current record of the objective function −ωk

changes at the k-th iteration.

Case 2.1: ωk = ωk−1. Then the projection is
found from the same point:

∥z̄k∥2 = min
z+(0, ωk)∈co{D′

k}
∥z∥2

= min
z+(0, ωk−1)∈co{D′

k−1}
∥z∥2

Here D′
k is a polyhedron that is computed at the kth

iteration, after the clipping (2).
And the following inequality holds:

∥z̄k∥2 ≤ min
λ∈[0, 1]

∥z̄k−1 + λ ((gk, f
∗(gk))− z̄k−1) ∥2.

The solution of the problem

min
λ∈[0, 1]

∥z̄k−1 + λ ((gk, f
∗(gk))− z̄k−1) ∥2

is a projection of the minimum of a one-dimensional
quadratic function on the interval [0, 1]:

λ∗ = min
{(

z̄k−1 − (gk, f
∗(gk))

)
z̄k−1 /

/ ∥(gk, f∗(gk))− z̄k−1∥2, 1
}
.

It now follows that

∥z̄k∥2 ≤ ∥z̄k−1 + λ ((gk, f
∗(gk))− z̄k−1) ∥2

for any

λ ≤
(
z̄k−1 − (gk, f

∗(gk))
)
z̄k−1

∥(gk, f∗(gk))− z̄k−1∥2
. (7)

Expanding an expression in (7) yields

∥z̄k∥2 ≤ ∥z̄k−1∥2

−2λ
((

z̄k−1 − (gk, f
∗(gk))

)
× z̄k−1

−λ

2
∥(gk, f∗(gk))− z̄k−1∥2

)
. (8)

Using (7), we get(
z̄k−1 − (gk, f

∗(gk))
)
z̄k−1

−λ

2
∥(gk, f∗(gk))−−z̄k−1∥2

≥ λ

2
∥(gk, f∗(gk))− z̄k−1∥2 > 0

for λ ̸= 0.
To conclude the proof of decrease of the norm

∥z̄k∥ in the case 2.1, it remains to combine (8) and
the latter inequality: ∥z̄k∥2 < ∥z̄k−1∥2.

Case 2.2: ωk = −f(xk−1) > ωk−1.
We have

∥z̄k∥2 = min
z+(0, ωk)∈co{D′

k}
∥z∥2 ≤ ∥z̄λ∥2, (9)

where

z̄λ =
Ω − ωk

Ω − ωk−1
z̄k−1 < z̄k−1.

It follows easily that the latter inequality in (9)
holds for such z̄λ. Therefore ∥z̄k∥2 < ∥z̄k−1∥2.

Now it follows from the monotonicity that there
is a limit lim

k→∞
∥z̄k∥ = ρ.

Let us prove that ρ = 0. Assume the converse.
Then ∥z̄k∥ ≥ τrk for any τ > 0.

Besides, it can be proved that

lim
k→∞

((gk+1, f
∗(gk+1))− (0, ωk))z̄k − ∥z̄k∥2 = 0.

Indeed, assume the converse. Suppose that

((gk′+1, f
∗(gk′+1))− (0, ωk′))z̄k′ ≤ ∥z̄k′∥2 − γ

with γ > 0 for some subsequence.
Then

∥z̄k′+1∥2 =
min

z+(0,ωk′ )∈co
{
(gi,f∗(gi)),i=0,1,··· ,k′+1},(0,Ω)

} ∥z̄∥2
≤ min

z+(0, ωk′ )=λg̃k′ +(1−λ)(gk′+1, f
∗(gk′+1))

∥z̄∥2,
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with λ ∈ [0, 1].
Since g̃k′ = (0, ωk′) + z̄k′ , it follows that

∥z̄k′+1∥2

≤ min
λ∈ [0, 1]

{
∥λz̄k′ + (1− λ)((gk′+1, f

∗(gk′+1))

−(0, ωk′))∥2
}

= min
λ∈ [0, 1]

{
λ2∥z̄k′∥2

+2λ(1− λ)z̄k′((gk′+1, f
∗(gk′+1))− (0, ωk′))

+(1− λ)2 ∥((gk′+1, f
∗(gk′+1))− (0, ωk′))∥2

}
≤ min

λ∈ [0, 1]

{
λ∥z̄k′∥2 + 2λ(1− λ)∥z̄k′∥2

−2γλ(1− λ)

+(1− λ)2∥((gk′+1, f
∗(gk′+1))− (0, ωk′))∥2

}
= min

λ∈ [0, 1]

{
(2λ− λ2)∥z̄k′∥2 − 2γλ(1− λ)

+(1− λ)2 ∥((gk′+1, f
∗(gk′+1))− (0, ωk′))∥2

}
= min

λ∈ [0, 1]

{
∥z̄k′∥2 − 2γλ(1− λ)

+(1− λ)2
(
∥(gk′+1, f

∗(gk′+1))− (0, ωk′)∥2

−∥z̄k′∥2
)}

≤ ∥z̄k′∥2 − 2γλ(1− λ) + (1− λ)2 δ2

for any λ ∈ [0, 1].
If we replace λ by (δ2 + γ)/(δ2 + 2γ) > 0, we

obtain

∥z̄k′+1∥2 ≤ ∥z̄k′∥2 − γ2(δ2 + γ)/(δ2 + 2γ). (10)

Taking the limit as k′ → ∞ in (10), we have a contra-
diction. Therefore

lim
k→∞

(
(gk+1, f

∗(gk+1))− (0, ωk)
)
z̄k − ∥z̄k∥2 = 0.

Using

0 ≤ (z̄k + (0, ωk)z̄k − (gk+1, f
∗(gk+1))z̄k → 0

as k → ∞, we get

(z̄k + (0, ωk))z̄k − (gk+1, f
∗(gk+1))z̄k ≤ r2kε

2

for any ε > 0 and sufficiently large k. Hence,

(0, ωk+1)z̄k ≥ (gk+1, f
∗(gk+1))z̄k

≥ (0, ωk)z̄k + ∥z̄k∥2 − rkε

≥ (0, ωk)z̄k + r2kτ
2 − r2kε

2

≥ (0, ωk)z̄k + r2kτ
2/2

for any ε ≤ τ/
√
2. That is,

rk(0, ωk+1) ≥ rk(0, ωk) + r2kτ
2/2.

Further,

f∗(0) ≥ (0, ωk+1) ≥ (0, ωk)rkτ
2 ≥ (0, ωk) + δ

where δ ≥ rkτ
2 ≥ 0. But this is impossible as

k → ∞. This contradiction proves the equality
lim
k→∞

∥z̄k∥ = 0. ⊓⊔

4 Numerical Experiments

We conclude this paper with the results of numerical
experiments. Numerical experiments demonstrated
quite satisfactory computational performance of the
separating plane algorithm with additional clipping.
Moreover, the algorithm described above is compared
with the standard SPA [8]. The both codes were writ-
ten by the author in Octave programming language
[16] under a Linux operating system.

4.1 Half-and-half function
The half-and-half function was created by Lewis and
Overton [17] to analyze some optimization method
behavior when minimizing a non-smooth function.
The objective function to be minimized is given by

f(x) =
√
xTAx+ xTBx, n = 8. (11)

The matrix A is with all elements zero, except for ones
on the diagonal at odd numbered locations; the matrix
B is diagonal with elements B(i, i) = 1/i2 for i =
1, ..., 8. Initial point x0 is randomly chosen for every
test.

To show the efficiency of the SPA with addi-
tional clipping, we adopt the performance profiles in-
troduced in [18] to evaluate the number of iterations.
The performance profile for a method is a nondecreas-
ing, piecewise constant function, continuous from the
right at each breakpoint. These profiles are very con-
venient for the performance evaluation of optimiza-
tion methods. The relative efficiency of each method
can be directly seen from graphs: the higher the par-
ticular curve, the better the corresponding method.

The results (see Figures 3–5) show that the
SPA with additional clipping performs best, and this
method is a more and more efficient with respect to
computational times when the tolerance is increased.
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Figure 3: Performance profiles, the tolerance ε =
10−3, the objective function (11)

4.2 MAXQUAD problem
Further, tests were made with the MAXQUAD func-
tion [19]:

f(x) = max {xTBk x+ bkx | k = 1, ..., 5},
x ∈ Rn, n = 10; (12)

where

Bk(i, j) = ei/j cos(i ∗ j) sin(k), i < j;

Bk(i, i) =
i
n | sin(k)| +

∑
j ̸=i

|Bk(i, j)|;

bk(i) = ei/k sin(i ∗ k).

Matrices Bk are symmetrical. As is known, a symmet-
ric diagonally dominant matrix with real non-negative
diagonal entries is positive semi-definite.

Figure 6 shows speeds of descent to the minimum
for the both methods. It is seen that SPA with clipping
is better after ∼ 40th iteration.

5 Conclusions

The projective separating plane method with addi-
tional clipping for non-smooth optimization is pre-
sented in this paper. Both the theoretical substantia-
tion and investigation of the method and the results
of numerical experiments suggest that this method is
effective and widely applicable to non-smooth opti-
mization problems with convex objective functions.
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Figure 4: Performance profiles, the tolerance ε =
10−8, the objective function (11)
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