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Abstract: In this paper, a class of age-structured SARS epidemic model described by a set of partial differential
equations is discussed. The existence and uniqueness of global solution to the model is obtained by using the fixed
point theory. Also, the continuous dependence of the solution on the initial value and the regularity of the solution
are discussed.
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1 Introduction
It is well known that the SARS virus can spread and
infect seriously, although its further spread can be
terminated by isolation and the curer will not be in-
fected again. Recently, many researchers are inter-
ested in the fact that population’s age-structure can
influence the spread of disease, following with all
kinds of age-structured epidemic models, including
SIS model, SIR model, SEIR and SEIRS model, etc.
(On these models, see [1, 6, 7, 8]). Especially, in [1],
the authors proposed a class of SARS epidemic model
with paying special attention to the patient who ac-
cepting isolation or treatment, then considered the ex-
istence and uniqueness of the model solution by ap-
plying C0-semigroup theory and the perturbation the-
ory. In this paper, we present another method to dis-
cuss the existence and uniqueness of the global solu-
tion to this kind of model by using fixed point theory,
moreover, the regularity of model solution is also dis-
cussed. In fact, the method shown in this paper can be
applied to the study of other similar epidemic mod-
els as well as queuing models and repairable system
models.

The partial differential equations of the age-
structured SARS epidemic model interested in this pa-
per are as follows (see, [1])

∂S

∂t
+

∂S

∂a
= −(λ(t) + µ(a))S(a, t) (1)

∂I

∂t
+

∂I

∂a
= −(µ(a) + γ)I(a, t) + λ(t)S(a, t) (2)

∂R

∂t
+

∂R

∂a
= −µ(a)R(a, t) + γI(a, t) (3)

with the initial conditions

S0(a) = S(a, 0) (4)
I0(a) = I(a, 0) (5)
R0(a) = R(a, 0) (6)

and the boundary conditions

S(0, t) =

∫ A

0
[β(a)S(a, t) + β̄(a)I(a, t)

+β(a)R(a, t)]da (7)
I(0, t) = 0 (8)
R(0, t) = 0 (9)

Here (S(a, t), I(a, t), R(a, t)) denote the population
density function of the susceptible, infected and re-
covered, respectively, at time t with age a. µ(a) de-
notes the relatively natural death rate function with
age a, and it is a locally integrable function on [0, A)

satisfying
∫ A
0 µ(a)da = + ∞, where A denotes the

upper age. β(a) is the average birth rate function of
the susceptible population and the recovered popula-
tion at age a, and β̄(a) is the average birth rate func-
tion of the infected population at age a. Due to the
isolation and treatment for the patient, it is generally
assumed β̄(a) < β(a). γ−1 denotes the average infec-
tious cycle, and ρ denotes the propagation coefficient.
Then the infection rate function at time t is defined as:
λ(t) = ρ

∫ A
0 I(a, t)da.

The rest of the paper is as follows. In Section
2, some assumptions and notations are introduced for
convenience, and the partial differential problem is
transformed into integral equations by using the char-
acteristic method. In Section 3, the existence and
uniqueness of the local positive solution is obtained,
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following the existence and uniqueness of the global
solution discussed by prior estimate of the local solu-
tion. And the continuous dependence of the solution
on the initial value is also studied. The regularity of
the solution is studied in Section 4. And a brief con-
clusion is presented in Section 5.

2 Assumptions and Problem Trans-
formation

At first, we give some notations that are used through-
out this paper.

Let L1 denotes the Banach space L1([0, A]), with
norm:

∥u∥L1 =

∫ A

0
|u(a)|da.

For T ≥ 0, let V = C([0, T ], L1), with norm:

∥q∥V = sup
0≤t≤T

∫ A

0
q(a, t)da.

Further, we assume some conditions on data as
follows:

(H1): S0(a), I0(a), R0(a), λ(t), β(a), β̄(a), µ(a)
are nonnegative and continuous functions satisfying

S0(A) = 0, I0(A) = 0, R0(A) = 0;

(H2):
λ0 = sup

0≤t≤T
λ(t) < ∞;

β0 = sup
0≤a≤A

β(a) < ∞;

(H3): For any given positive constant δ, there is

lim
a→A−

∫ a

a−δ
µ(ξ)dξ = +∞;

(H4): The compatibility conditions hold

S0(0) =

∫ A

0
[β(a)S0(a) + β̄(a)I0(a)

+ β(a)R0(a)]da;

I0(0) = 0, R0(0) = 0;

(H5): The first order compatibility conditions
hold

S′
0(0) = −(λ(0) + µ(0))S0(0)

−
A∫
0

[β(a)S′
0(a) + β̄(a)I ′0(a) + β(a)R′

0(a)]da

I ′0(0) = λ(0)S0(0), R′
0(0) = 0.

By direct computation, we can transform the
problem (1)-(9) into an integral problem with the char-
acteristic method (see, [2]). In the following, we give
it as a lemma and its proof is omitted.

Lemma 1 Assume the conditions (H1)-(H2) hold.
For each given positive constant T > 0, S(a, t),
I(a, t), R(a, t) ∈ V is the solution to (1)-(9) if and
only if S(a, t), I(a, t), R(a, t) is the solution to the
following integral equations:

S(a, t) =

S0(a− t) exp[−
∫ t

0
(λ(ξ) + µ(a+ ξ − t))dξ],

for a > t∫ A

0
[β(η)S(η, t− a) + β̄(η)I(η, t− a)

+ β(η)R(η, t− a)]dη

· exp[−
∫ t

t−a
(λ(ξ) + µ(a+ ξ − t))dξ],

for a ≤ t

(10)

I(a, t) =

I0(a− t) exp[−
∫ t

0
(µ(a+ ξ − t) + γ)dξ]

+

∫ t

0
λ(s)S(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds,

for a > t∫ t

t−a
λ(s)S(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds,

for a ≤ t

(11)

R(a, t) =

R0(a− t) exp[−
∫ t

0
µ(a+ ξ − t)dξ]

+

∫ t

0
γI(a+s−t, s) exp[−

∫ t

s
µ(a+ξ−t)dξ]ds,

for a > t∫ t

t−a
γI(a+s−t, s) exp[−

∫ t

s
µ(a+ξ−t)dξ]ds,

for a ≤ t

(12)
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In view of Lemma 1, it is obvious that to get
the existence and uniqueness of positive solution to
problem (1)-(9), we need to study the existence and
uniqueness of positive solution to the above integral
equations (10)-(12). In what follows, we will discuss
the existence and uniqueness of positive solution to
(10)-(12) by using fixed point theory.

To do so, for ∀q ∈ V , based on the inte-
gral equations (10)-(12), we define three operators
KI , KR, KS : V → V as follows:

KI(q)(a, t) =

I0(a− t) exp[−
∫ t

0
(µ(a+ ξ − t) + γ)dξ]

+

∫ t

0
λ(s)q(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds,

for a > t∫ t

t−a
λ(s)q(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds,

for a ≤ t

(13)

KR(q)(a, t) =

R0(a− t) exp[−
∫ t

0
µ(a+ ξ − t)dξ]

+

∫ t

0
γKI(a+ s− t, s)

· exp[−
∫ t

s
µ(a+ ξ − t)dξ]ds,

for a > t∫ t

t−a
γKI(a+s−t, s) exp[−

∫ t

s
µ(a+ξ−t)dξ]ds,

for a ≤ t

(14)

KS(q)(a, t) =

S0(a− t) exp[−
∫ t

0
(λ(ξ) + µ(a+ξ−t))dξ],

for a > t∫ A

0
[β(η)q(η, t− a) + β̄(η)KI(η, t− a)

+ β(η)KR(η, t− a)]dη

· exp[−
∫ t

t−a
(λ(ξ) + µ(a+ ξ − t))dξ],

for a ≤ t

(15)

Remark 2 We can easily see from (13)-(15) that if
the operators KI ,KR are well defined, then in order
to get the unique solution to (1)-(9), we only need to
prove that KS in (15) has a unique fixed point.

3 The Well-posedness of System So-
lution

In this section, we will prove that the operator KS in
(15) has unique a fixed point, which leads to the ex-
istence and uniqueness of the local solution to prob-
lem (1)-(9). And the existence and uniqueness of the
global solution to problem (1)-(9) is further obtained
by a uniform priori estimate. Meanwhile, we give the
continuous dependence of the solution on the initial
value.

3.1 The unique existence of local solution
In this subsection, we study the existence and unique-
ness of the local solution to (1)-(9). Some notations
used in this section are presented as follows

L = max

2

A∫
0

S0(a)da,

A∫
0

I0(a)da,

A∫
0

R0(a)da


M =

{
q ∈ V

∣∣ q(a, 0) = S0(a), q ≥ 0, ∥q∥V ≤ L
}

and clearly, M is a closed subspace of V .
The following Lemma is concerned with the op-

erators KI(q),KR(q) defined in (13)-(14).

Lemma 3 Assume conditions (H1)-(H2) hold. For
each given constant T > 0, ∀q ∈ V , there exist
unique KI(q),KR(q) ∈ V satisfying (13)-(14), and
if q is nonnegative, KI(q),KR(q) are also nonnega-
tive.

Lemma 3 is obvious from the expressions of
KI(q) and KR(q) in (13)-(14). Therefore, the oper-
ators KI ,KR are well defined.

Further, we give another two lemmas which are
useful to prove the main result of this subsection.

Lemma 4 For each given constant T > 0, assume
the conditions (H1)-(H2) hold, then for ∀q ∈ M , and
0 ≤ t ≤ T , we can get∫ A

0
KI(q)(a, t)da ≤ (1 + λ0T )L∫ A

0
KR(q)(a, t)da ≤ (1 + γT + λ0γT

2)L
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Proof: From the expressions of KI(q) and KR(q) in
(13)-(14), we have the following estimations∫ A

0
KI(q)(a, t)da

≤
∫ A

t
I0(a−t)da+

∫ A

t

∫ t

0
λ(s)q(a+s−t, s)dsda

+

∫ t

0

∫ t

t−a
λ(s)q(a+ s− t, s)dsda

≤
∫ A

0
I0(a)da+

∫ A

t

∫ t

0
λ(s)q(a+ s− t, s)dsda

+

∫ t

0

∫ t

0
λ(s)q(a+ s− t, s)dsda

≤
∫ A

0
I0(a)da+

∫ A

0

∫ t

0
λ(s)q(a+ s− t, s)dsda

≤ L+ λ0

∫ t

0

∫ A

0
q(a, s)dads ≤ (1 + λ0T )L

and ∫ A

0
KR(q)(a, t)da

≤
∫ A

t
R0(a−t)da+

∫ A

t

∫ t

0
γKI(q)(a+s−t, s)dsda

+

∫ t

0

∫ t

t−a
γKI(q)(a+ s− t, s)dsda

≤
∫ A

0
R0(a)da+

∫ A

0

∫ t

0
γKI(q)(a+s−t, s)dsda

≤ L+

∫ t

0

∫ A

0
γKI(q)(a+ s− t, s)dads

≤ L+

∫ t

0

∫ A

0
γKI(q)(a, s)dads

≤ (1 + γT + λ0γT
2)L.

The proof of Lemma 4 is completed. ⊓⊔

Lemma 5 For each given positive constant T > 0,
assume the conditions (H1)-(H2) hold, then ∀q, q̃ ∈
M , and 0 ≤ t ≤ T , we have∫ A

0
|KI(q)(a, t)−KI(q̃)(a, t)|da

≤ λ0T ∥q − q̃∥V∫ A

0
|KR(q)(a, t)−KR(q̃)(a, t)|da

≤ λ0γT
2 ∥q − q̃∥V

Proof: From (13)-(14), the expressions of KI(q) and
KR(q), we have∫ A

0
|KI(q)(a, t)−KI(q̃)(a, t)|da

≤
∫ A

t

∫ t

0
λ(s) |q(a+ s− t, s)

−q̃(a+ s− t, s)|dsda

+

∫ t

0

∫ t

t−a
λ(s) |q(a+ s− t, s)

−q̃(a+ s− t, s)|dsda

≤
∫ A

0

∫ t

0
λ(s) |q(a+ s− t, s)

−q̃(a+ s− t, s)|dsda

≤ λ0

∫ t

0

∫ A

0
|q(a, s)− q̃(a, s)|dads

≤ λ0T ∥q − q̃∥V
and ∫ A

0
|KR(q)(a, t)−KR(q̃)(a, t)|da

≤
∫ A

t

∫ t

0
γ |KI(q)(a+ s− t, s)

−KI(q̃)(a+ s− t, s)|dsda

+

∫ t

0

∫ t

t−a
γ |KI(q)(a+ s− t, s)

−KI(q̃)(a+ s− t, s)|dsda

≤
∫ A

0

∫ t

0
γ |KI(q)(a+ s− t, s)

−KI(q̃)(a+ s− t, s)|dsda

≤ γ

∫ t

0

∫ A

0
|KI(q)(a, s)−KI(q̃)(a, s)|dads

≤ λ0γT
2 ∥q − q̃∥V

The proof of Lemma 5 is then completed. ⊓⊔
With the above preparations, we will prove the

main result of this subsection.

Theorem 6 Assume the conditions (H1)-(H2) hold,
then there exists a positive constant T0 > 0, which
only depends on the L1 norm of the initial value, such
that for t ∈ [0, T0], the problem (1)-(9) has a unique
local positive solution.

Proof: Let T0 satisfy 0 < T0 < 1 and

T0β0(3 + λ0 + γ + λ0γ) <
1

2
.

Firstly, we prove that operator KS is a mapping
from M to M . From the expression of KS in (15),
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it is easy to know that ∀q ∈ M,KS(q) ∈ V , and
KS(q)(a, 0) = S0(a). Then by (15) and Lemma 4,
we have the following estimation:∫ A

0
KS(q)(a, t)da

≤
∫ A

t
S0(a−t)da+

∫ t

0

∫ A

0
[β(η)q(η, t−a)+β̄(η)

·KI(q)(η, t−a) + β(η)KR(q)(η, t−a)]dηda

≤
∫ A

0
S0(a)da+ β0

∫ t

0

∫ A

0
[q(η, t− a)

+KI(q)(η, t− a) +KR(q)(η, t− a)]dηda

≤ L

2
+ β0

∫ t

0

∫ A

0
[q(η, s) +KI(q)(η, s)

+KR(q)(η, s)]dηds

≤ L

2
+ β0T0(3 + λ0 + γ + λ0γ)L ≤ L

which implies that KS(q) ∈ M .
Secondly, we prove that KS is a strictly com-

pressed mapping on M . For ∀q, q̃ ∈ M, we can see
from (15) and Lemma 5 that∫ A

0
|KS(q)(a, t)−KS(q̃)(a, t)|da

≤
∫ t

0

∫ A

0
[β(η) |q(η, t− a)− q̃(η, t− a)|

+β̄(η) |KI(q)(η, t−a)−KI(q̃)(η, t−a)|
+β(η) |KR(q)(η, t−a)−KR(q̃)(η, t−a)|]dηda

≤ β0

∫ t

0

∫ A

0
[|q(η, t− a)− q̃(η, t− a)|

+ |KI(q)(η, t− a)−KI(q̃)(η, t− a)|
+ |KR(q)(η, t− a)−KR(q̃)(η, t− a)|]dηda

≤ β0

∫ t

0

∫ A

0
[|q(η, s)− q̃(η, s)|

+|KI(q)(η, s)−KI(q̃)(η, s)|
+|KR(q)(η, s)−KR(q̃)(η, s)|]dηds

≤ β0T0(1 + λ0 + λ0γ) ∥q − q̃∥V
≤ 1

2
∥q − q̃∥V

it follows that

∥KS(q)−KS(q̃)∥V ≤ 1

2
∥q − q̃∥V

Hence, by the Banach contraction principle, KS has
unique a fixed point on M , which follows that the in-
tegral equations (10)-(12) has a unique positive solu-
tion. And by Lemma 1 and Lemma 3, the problem
(1)-(9) has a unique local positive solution. Thus, the
proof of Theorem 6 is completed. ⊓⊔

3.2 The unique existence of global solution
In this subsection, we will prove the existence and
uniqueness of the global solution to problem (1)-(9).
For simplicity, set

W =

{
ϕ ∈ L1

∣∣∣ ∫ A

0
|ϕ(x)|dx ≤ L, ϕ(x) ≥ 0.a.e.

}

Lemma 7 For each given positive constant T >
0, assume the conditions (H1)-(H2) hold, and let
(S, I,R) ∈ V × V × V is the positive solution to
problem (1)-(9), its initial value (S0, I0, R0) ∈ W ×
W ×W , then for each given t ∈ [0, T ], we have

E(t) =

∫ A

0
S(a, t)da+

∫ A

0
I(a, t)da

+

∫ A

0
R(a, t)da ≤ 5

2
LeQT

where Q = max{β0 + λ0, β0 + γ}.

Proof: From the definitions of S(a, t), I(a, t) and
R(a, t) in (10)-(12), we have the following estima-
tions ∫ A

0
S(a, t)da

≤
∫ A

t
S0(a− t)da+

∫ t

0

∫ A

0
[β(η)S(η, t− a)

+β̄(η)I(η, t− a) + β(η)R(η, t− a)]dηda

≤
∫ A

0
S0(a)da+ β0

∫ t

0

∫ A

0
[S(η, t− a)

+I(η, t− a) +R(η, t− a)]dηda

≤ L

2
+β0

∫ t

0

∫ A

0
[S(η, s)+I(η, s)+R(η, s)]dηds

∫ A

0
I(a, t)da

≤
∫ A

t
I0(a−t)da+

∫ A

t

∫ t

0
λ(s)S(a+s−t, s)dsda

+

∫ t

0

∫ t

t−a
λ(s)S(a+ s− t, s)dsda

≤
∫ A

0
I0(a)da+

∫ A

0

∫ t

0
λ(s)S(a+ s− t, s)dsda

≤ L+ λ0

∫ t

0

∫ A

0
S(a, s)dads
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and ∫ A

0
R(a, t)da

≤
∫ A

t
R0(a−t)da+

∫ A

t

∫ t

0
γI(a+s−t, s)dsda

+

∫ t

0

∫ t

t−a
γI(a+ s− t, s)dsda

≤
∫ A

0
R0(a)da+

∫ A

0

∫ t

0
γI(a+ s− t, s)dsda

≤ L+ γ

∫ t

0

∫ A

0
I(a, s)dads

For each 0 ≤ t ≤ T , let

E(t) =

∫ A

0

S(a, t)da+

∫ A

0

I(a, t)da+

∫ A

0

R(a, t)da

Then it follows that

E(t) ≤ 5

2
L+ (β0 + λ0)

∫ t

0

∫ A

0
S(a, s)dads

+(β0 + γ)

∫ t

0

∫ A

0
I(a, s)dads

+β0

∫ t

0

∫ A

0
R(a, s)dads

≤ 5

2
L+Q

∫ t

0
E(s)ds

where Q = max{β0 + λ0, β0 + γ}. The Gronwall
Inequality gives the estimation

E(t) ≤ 5

2
LeQT .

The proof of Lemma 7 is then completed. ⊓⊔
By Theorem 6 (T0 > 0 is only depend on the L1

norm of the initial value) and Lemma 7, the existence
and uniqueness of the global solution to problem (1)-
(9) is obvious with the Continuation Theorem. (This
theory was introduced in [3, 4, 5]). Hence we have

Theorem 8 Assume the conditions (H1)-(H2) hold.
For each given positive constant T > 0, the problem
(1)-(9) has a unique positive solution.

Here we present the continuous dependence of the
solution to problem (1)-(9) on its initial value to end
this section.

Theorem 9 For (S0, I0, R0), (S̃0, Ĩ0, R̃0) ∈ W ×
W ×W , let (S, I,R) and (S̃, Ĩ, R̃) are the solutions
to problem (1)-(9) respectively on the initial values

(S0, I0, R0) and (S̃0, Ĩ0, R̃0), then for each 0 ≤ t ≤
T , we can get:

G(t) = ∥S(t)− S̃(t)∥L1 + ∥I(t)− Ĩ(t)∥L1

+∥R(t)− R̃(t)∥L1

≤ eQT [∥S0 − S̃0∥L1

+∥I0 − Ĩ0∥L1 + ∥R0 − R̃0∥L1 ]

where Q = max{β0 + λ0, β0 + γ}.

Proof: From (10)-(12), the definitions of S(a, t),
I(a, t) and R(a, t), we have∫ A

0
|S(a, t)− S̃(a, t)|da

≤
∫ A

t
|S0(a− t)− S̃0(a− t)|da

+

∫ t

0

∫ A

0
[β(η)|S(η, t− a)− S̃(η, t− a)|

+β̄(η)|I(η, t− a)− Ĩ(η, t− a)|
+β(η)|R(η, t− a)− R̃(η, t− a)|]dηda

≤
∫ A

0
|S0(a)− S̃0(a)|da

+β0

∫ t

0

∫ A

0
[|S(η, t− a)− S̃(η, t− a)|

+|I(η, t− a)− Ĩ(η, t− a)|
+|R(η, t− a)− R̃(η, t− a)|]dηda

≤ ∥S0 − S̃0∥L1 + β0

∫ t

0

∫ A

0
[|S(η, s)− S̃(η, s)|

+|I(η, s)− Ĩ(η, s)|+|R(η, s)−R̃(η, s)|]dηds

and ∫ A

0
|I(a, t)− Ĩ(a, t)|da

≤
∫ A

t
|I0(a− t)− Ĩ0(a− t)|da

+

∫ A

t

∫ t

0
λ(s)|S(a+s−t, s)−S̃(a+s−t, s)|dsda

+

∫ t

0

∫ t

t−a
λ(s)|S(a+s−t, s)−S̃(a+s−t, s)|dsda

≤
∫ A

0
|I0(a)− Ĩ0(a)|da

+λ(s)

∫ A

0

∫ t

0
|S(a+s−t, s)− S̃(a+s−t, s)|dsda

≤ ∥I0 − Ĩ0∥L1 + λ0

∫ t

0

∫ A

0
|S(a, s)− S̃(a, s)|dads
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also ∫ A

0
|R(a, t)− R̃(a, t)|da

≤
∫ A

t
|R0(a− t)− R̃0(a− t)|da

+

∫ A

t

∫ t

0
γ|I(a+s−t, s)− Ĩ(a+s−t, s)|dsda

+

∫ t

0

∫ t

t−a
γ|I(a+s−t, s)−Ĩ(a+s−t, s)|dsda

≤
∫ A

0
|R0(a)− R̃0(a)|da

+

∫ A

0

∫ t

0
γ|I(a+s−t, s)−Ĩ(a+s−t, s)|dsda

≤ ∥R0 − R̃0∥L1+γ

∫ t

0

∫ A

0
|I(a, s)−Ĩ(a, s)|dads

For each 0 ≤ t ≤ T , let

G(t) = ∥S(t)− S̃(t)∥L1 + ∥I(t)− Ĩ(t)∥L1

+ ∥R(t)− R̃(t)∥L1

Then it follows that

G(t) ≤ ∥S0 − S̃0∥L1 + ∥I0 − Ĩ0∥L1

+∥R0 − R̃0∥L1 +Q

∫ t

0
G(s)ds

where Q = max{β0 + λ0, β0 + γ}. The Gronwall
Inequality gives the estimation

G(t) ≤ eQT [∥S0 − S̃0∥L1 + ∥I0 − Ĩ0∥L1

+∥R0 − R̃0∥L1 ]

⊓⊔

4 The Regularity of Solution
In this section, we will prove the regularity (i.e., C1

continuity) of the solution to problem (1)-(9).

Theorem 10 Assume the conditions (H1)-(H4) hold,
and (S, I,R) ∈ V × V × V is the positive solution to
problem (1)-(9), then S, I,R ∈ C([0, A]× [0, T ]).

Proof: From the condition (H1), we observe

λ(t) + µ(a) ∈ C([0, A]× [0, T ])

Taking account of (H1) and S, I , R ∈ V , we have∫ A

0
[β(η)S(η, t− a) + β̄(η)I(η, t− a)

+ β(η)R(η, t− a)]dη ∈ C[0, T ]

Then, consider the definition of S(a, t) in (10) and the
compatibility condition (H4), we easily know that

S(a, t) ∈ C([0, A)× [0, T ]) (16)

Now, we consider the case that a = A
(i) When t < A, we can obtain from (H2), (H3),

S0(A) = 0 and (10) that

lim
a→A

S(a, t)

= S0(A− t)

· lim
a→A

exp[−
∫ t

0
(λ(ξ) + µ(a+ ξ − t))dξ]

≤ S0(A− t) lim
a→A

exp[−
∫ a

a−t
µ(ξ)dξ] = 0

(17)

(ii) When t > A, we observe that

lim
a→A

S(a, t)

=

∫ A

0
[β(η)S(η, t−A) + β̄(η)I(η, t−A)

+ β(η)R(η, t−A)]dη

· lim
a→A

exp[−
∫ t

t−a
(λ(ξ) + µ(a+ ξ − t))dξ]

≤
∫ A

0
[β(η)S(η, t−A) + β̄(η)I(η, t−A)

+ β(η)R(η, t−A)]dη

· lim
a→A

exp[−
∫ a

0
µ(ξ)dξ]

= 0
(18)

Hence, we see from (16)-(18) that

S(a, t) ∈ C([0, A]× [0, T ]) (19)

By the similar procedure, we can know from (H1)
and (19) that

µ(a) + γ ∈ C[0, A],∫ t

t−a
λ(s)S(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds

∈ C([0, A]× [0, T ]).

Also, with the definition of I(a, t) in (11) and
(H4), we can easily get that

I(a, t) ∈ C([0, A)× [0, T ]) (20)

Also, we consider the case that a = A
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(i) When t < A, we obtain from (H3), I0(A) = 0
and (11) that

lim
a→A

I(a, t)

= I0(A− t)

· lim
a→A

exp[−
∫ t

0
(µ(a+ ξ − t) + γ)dξ]

+ lim
a→A

∫ t

0
λ(s)S(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds

≤ I0(A− t) lim
a→A

exp[−
∫ a

a−t
µ(ξ)dξ]

+ lim
a→A

∫ a

a−t
λ(s+ t− a)S(s, s+ t− a)

· exp[−
∫ a

s
µ(ξ)dξ]ds

= 0

(21)

(ii) When t > A, we have

lim
a→A

I(a, t)

= lim
a→A

∫ t

t−a
λ(s)S(a+ s− t, s)

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]ds

≤ lim
a→A

∫ a

0
λ(s+ t− a)S(s, s+ t− a)

· exp[−
∫ a

s
µ(ξ)dξ]ds

= 0

(22)

Hence from (20)-(22), we have

I(a, t) ∈ C([0, A]× [0, T ]) (23)

Last, for R(a, t), we have from (H1) and (23) that
µ(a) ∈ C[0, A] and∫ t

t−a
γI(a+ s− t, s) exp[−

∫ t

s
µ(a+ ξ − t)dξ]ds

∈ C([0, A]× [0, T ]).

By the arguments above, the definition of R(a, t)
in (12) and (H4), we can observe that

R(a, t) ∈ C([0, A)× [0, T ]) (24)

Now, we consider the case that a = A:

(i) When t < A, we obtain from (H3), R0(A) =
0 and (12) that

lim
a→A

R(a, t)

= R0(A− t) lim
a→A

exp[−
∫ t

0
µ(a+ ξ − t)dξ]

+ lim
a→A

∫ t

0
γI(a+ s− t, s)

· exp[−
∫ t

s
µ(a+ ξ − t)dξ]ds

= R0(A− t) lim
a→A

exp[−
∫ a

a−t
µ(ξ)dξ]

+ lim
a→A

∫ a

a−t
γI(s, s+ t− a)

· exp[−
∫ a

s
µ(ξ)dξ]ds

= 0

(25)

(ii) When t > A, we observe that

lim
a→A

R(a, t)

= lim
a→A

∫ t

t−a
γI(a+ s− t, s)

· exp[−
∫ t

s
µ(a+ ξ − t)dξ]ds

= lim
a→A

∫ a

0
γI(s, s+ t− a) exp[−

∫ a

s
µ(ξ)dξ]ds

= 0
(26)

Hence, we see from (24)-(26) that

R(a, t) ∈ C([0, A]× [0, T ]).

The proof of Theorem 10 is completed. ⊓⊔
Then, similar to the proof of Theorem 10, we can

get the following theorem concerned with the regular-
ity of the solution to problem (1)-(9). To do so, we
need another condition:

(H6): S0(a), I0(a), R0(a), µ(a) are continu-
ously differentiable functions.

Theorem 11 Under the assumptions of Theorem 10
and (H5), (H6), then the solution S, I,R ∈ C1(
[0, A)× [0, T ]).

Proof: For simplicity, set

∂S(x,y)
∂x

∆
= S′

1(x, y),
∂S(x,y)

∂y
∆
= S′

2(x, y)

∂I(x,y)
∂x

∆
= I ′1(x, y),

∂I(x,y)
∂y

∆
= I ′2(x, y)

∂R(x,y)
∂x

∆
= R′

1(x, y),
∂R(x,y)

∂y
∆
= R′

2(x, y)
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Now, we will show the continuity of the partial
derivative of S, I,R respectively.

(i) We can know from the expression of S(a, t)
in (10) that when a > t

∂S

∂t
= − exp[−

∫ t

0
(λ(ξ) + µ(a+ ξ − t))dξ]

·{S′
0(a− t) + S0(a− t)

·[
∫ t

0
−µ′(a+ξ−t)dξ+λ(t)+µ(a)]} (27)

and when a ≤ t

∂S

∂t
= {

∫ A

0
[β(η)S′

2(η, t− a) + β̄(η)I ′2(η, t− a)

+β(η)R′
2(η, t− a)]dη

−
∫ A

0
[β(η)S(η, t− a) + β̄(η)I(η, t− a)

+β(η)R(η, t− a)]dη

·[
∫ t

t−a
−µ′(a+ ξ − t)dξ

+λ(t) + µ(a)− λ(t− a)− µ(0)]}

· exp[−
∫ t

t−a
(λ(ξ) + µ(a+ ξ − t))dξ]. (28)

Then from (27)-(28), (H6) and the first order compat-
ibility condition (H5), we have

∂S

∂t
∈ C([0, A)× [0, T ]) (29)

Similarly, we can prove that

∂S

∂a
∈ C([0, A)× [0, T ]) (30)

Hence, taking account of (29)-(30), we can observe
that

S(a, t) ∈ C1([0, A)× [0, T ]) (31)

(ii) From the expression of I(a, t) in (11), we can
obtain that when a > t

∂I

∂t
= λ(t)S(a, t)−exp[−

∫ t

0
(µ(a+ξ−t) + γ)dξ]

·{I ′0(a− t) + I0(a− t)

·[
∫ t

0
−µ′(a+ ξ − t)dξ + µ(a) + γ]}

−
∫ t

0
{[λ(s)S′

1(a+ s− t, s)

+λ(s)S(a+ s− t, s)

·(
∫ t

s
−µ′(a+ ξ − t)dξ + µ(a) + γ)]

· exp[−
∫ t

s
(µ(a+ ξ − t) + γ)dξ]}ds (32)

and when a ≤ t

∂I

∂t
= −

∫ t

t−a
{exp[−

∫ t

s
(µ(a+ ξ − t) + γ)dξ]

·[λ(s)S(a+ s− t, s)

·(
∫ t

s
−µ′(a+ ξ − t)dξ + µ(a) + γ)

+λ(s)S′
1(a+ s− t, s)]}ds

+λ(t)S(a, t)− λ(t− a)S(0, t− a)

· exp[−
∫ t

t−a
(µ(a+ξ−t)+γ)dξ] (33)

Then from (31)-(33), (H6) and (H5), we can obtain
that

∂I

∂t
∈ C([0, A)× [0, T ]) (34)

Similarly, we can prove that

∂I

∂a
∈ C([0, A)× [0, T ]) (35)

Hence, taking account of (34)-(35), we have

I(a, t) ∈ C1([0, A)× [0, T ]) (36)

(iii) By the expression of R(a, t) in (12), we can
get that when a > t

∂R

∂t
= γI(a, t)− exp[−

∫ t

0
µ(a+ ξ − t)dξ]

·{R0(a− t)[

∫ t

0
−µ′(a+ ξ − t)dξ

+µ(a)] +R′
0(a− t)}

−
∫ t

0
{[γI ′1(a+ s− t, s) + γI(a+ s− t, s)

·(
∫ t

s
−µ′(a+ ξ − t)dξ + µ(a))]

· exp[−
∫ t

s
µ(a+ ξ − t)dξ]}ds (37)

and when a ≤ t

∂R

∂t
= −

∫ t

t−a
{exp[−

∫ t

s
µ(a+ ξ − t)dξ]

·[γI ′1(a+ s− t, s) + γI(a+ s− t, s)

·(
∫ t

s
−µ′(a+ ξ − t)dξ + µ(a))]}ds

+γI(a, t)− γI(0, t− a)

· exp[−
∫ t

t−a
µ(a+ ξ − t)dξ] (38)

Also, from (36)-(38), (H6) and (H5), we have

∂R

∂t
∈ C([0, A)× [0, T ]) (39)
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Similarly, we can prove that

∂R

∂a
∈ C([0, A)× [0, T ]) (40)

Finally, taking account of (39)-(40), we have

R(a, t) ∈ C1([0, A)× [0, T ])

thus the proof of the Theorem 11 is completed. ⊓⊔

Remark 12 It follows from Theorem 6, Theorem 8
and Theorem 11 that there exists unique solution
S, I,R ∈ C1([0, A)× [0, T ]) to problem (1)-(9).

5 Conclusion
In this paper, we mainly consider the existence and
uniqueness of the classical solution to a dynamic
model of a class of SARS infectious diseases pro-
posed in [1], because it is important both in theory and
in practice. Firstly, we transform the model into inte-
gral equations with the characteristic method. Sec-
ondly, the existence and uniqueness of the local so-
lution of the model is obtained by using the fixed
point theory. Then the existence and uniqueness of
the global solution of the model is further studied by
a uniform priori estimate, and the continuous depen-
dence of the model solution on its initial value is also
presented. Lastly, the regularity or the C1 continu-
ity of the solution is studied at the end of the paper.
The most important thing is that this paper provides
a practical method for the study of the existence and
uniqueness of solution to systems with more than four
variables in partial differential equations.
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