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Abstract: This work uses the Fuzzy Adaptive Simulated Annealing algorithm to solve many examples of Dio-
phantine equations, offering a global optimization alternative for those ones that did not have a general method or
even a closed form for their solution. The proposed method uses the built-in integer programming capabilities of
Fuzzy ASA and the candidate solutions evolve in Zn, in contrast to the best known applications of ASA, exposing
an almost unexplored feature of that paradigm. Some significant numerical results are introduced, and empirical
relationships between number of independent variables and necessary number of cost function evaluations to get
to solutions are presented.
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1 Introduction
A Diophantine equation [3, 4] is a polynomial equa-
tion, whose general format is

f (x1,x2, ...,xn;a1,a2, ...,an) = N (1)

where the ai and N are integer parameters and the
xi are the independent variables (they should also be
integers).

In this fashion, solving equation (1) is equivalent
to finding an integer n-tuple (x∗1,x

∗
2, ...,x

∗
n) that satis-

fies that functional relationship.
Diophantine equations got their name from

mathematician Diophantus, who studied these equa-
tions many centuries ago. Those kind of problems
are now referred to as Diophantine equations. Since
these equations and their particular cases have always
been of great interest to mathematicians and more
recently have found many practical applications, re-
search continues aimed at finding new methods for
solving them in greater generality [1]. In the theoret-
ical dimension, there is interest in finding the com-
plete set of solutions for a given equation, as well
as its cardinality and whether there is a determinis-
tic procedure to find it, among several other, almost
infinite issues. An important line of investigation is

focused on elliptic curves, that can be used to help in
designing public key cryptosystems. Elliptic curves
are related to solutions of Diophantine equations with
the following format

y2 = x3 +ax+b (2)

where a and b are rational numbers and the right hand
side has distinct roots.

Another very important type of equation is

xn
1 + xn

2 = xn
3 (3)

that is definitely linked to the name of French math-
ematician Pierre de Fermat, who stated perhaps its
most important property, known as the Fermat’s last
theorem, which took more than 300 years to be
proved.

Even though there are a large number of types
of Diophantine equations, in general their resolutions
are not trivial and depend on many factors. This is
so due to the fact that a Diophantine equation can
be unsolvable or present a finite or infinite number
of solutions. Even the great mathematician David
Hilbert manifested interest in Diophantine equations
and their solutions, and one of his famous problems is
related to this type of equation. In this fashion, con-
sidering that there are no general methods for finding
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solutions to them, new methods capable of synthe-
sizing numerical solutions to Diophantine equations
are welcome and very important in present days. On
the other hand, this is a difficult problem, mainly due
to the fact that the number of possible solutions can
be enormous and the associated computational com-
plexity will be proportionally high as well.

Once we have a Diophantine equation problem,
the first thing to do is to try to find out a local solution
for it, using one of the methods present in the litera-
ture [3]. If there is none, the problem is solved. Of
course, the most interesting problems are those for
which the equations are everywhere locally solvable
and the local knowledge that we obtain may already
completely solve the problem, or might furnish use-
ful information on the global problem through local–
global principles (generally speaking, a local–global
principle is a statement that asserts that a certain
property is true globally – usually in a number field
– if and only if it is true everywhere locally – usually
in p-adic fields. It is important to know when this is
indeed true, and when it may not be true). However,
such a situation is rather rare [3] and it may be im-
perative to make a global analysis of the equation,
either by factoring over Z or by working in some
appropriate number field K. There are many meth-
ods for doing this [3, 4]. The most classical method,
originating with Fermat, Euler, Gauss and Kummer,
applies when it is possible to factor the Diophantine
equation in K, a typical example being Fermats last
theorem, where one factors the equation in a specific
cyclotomic field K. In this case, it is very important
to know explicitly the structure of the class group of
K and of the unit group, and to be able to find ex-
plicitly a generator of a principal ideal. It is worth
to be aware that, nowadays, these types of problems
can be solved using computer programs specifically
designed for such tasks. Another global method for
solving Diophantine equations is based on Diophan-
tine approximation techniques and on Baker–type re-
sults on linear forms in logarithms of algebraic num-
bers [3, 11]. It is used in particular to solve Thue
equations, that is to say, equations of the form f(x,
y) = m, where f is a homogeneous polynomial in
two variables. One more global method for solving
certain kinds of Diophantine equations, mainly those
that can be reduced to a cubic one, is based on the
use of elliptic curves, be it via the method of infi-
nite descent (initiated by Fermat, and which does not

necessarily involve elliptic curves explicitly) or via
the Birch and Swinnerton–Dyer conjecture. This im-
portant conjecture enables us to predict the Z-rank
of the group of points of an elliptic curve over Q,
by computing a purely analytic quantity and tells us
whether this group is finite or infinite. The fact that
this method is based on a conjecture is not significant,
since either the analytic result states that the group
is finite and, in that case, Birch and Swinnerton–
Dyer conjecture is proved, or it concludes that the
group is infinite, and we can obtain generators of the
group by means of other techniques. A very sophis-
ticated method for solving Diophantine equations is
that used by Ribet, Wiles, and Taylor-Wiles for solv-
ing completely Fermat’s last theorem, by means of
modular forms and Galois representations. Usually,
it is able to solve Diophantine equations of the form
a+ b+ c = 0, where a, b and c are highly divisible
by certain integers. This method is based on a com-
bination of a theorem of Ribet on ”level lowering” of
modular forms with the theorem of Wiles and Taylor–
Wiles saying that the L–function attached to an ellip-
tic curve defined over Q is in fact the L-function of
a modular form. The proof of these theorems is not
easy and Wiles’s theorem was considered one of the
greatest mathematical findings of the end of the twen-
tieth century [3, 4, 11].

Going in this direction, this work applies the
Fuzzy Adaptive Simulated Annealing global opti-
mization method (Fuzzy ASA, for short) in order to
find numerical solutions for a certain subset of this
type of equations. Fuzzy ASA is a fuzzy controlled
version of ASA, that uses a Cauchy like generating
function with wider tails, expanding or contracting
according to the dynamical variation of the cost func-
tion at each dimension of its domain. This scheme
is an improvement of previous SA approaches and
can be, in some cases, superior to evolutionary algo-
rithms like genetic algorithms, particle swarm opti-
mization or differential evolution [7, 8]. So, our aim
in this article is to discuss the procedure able to ap-
proximate solutions to equations of type (4), shown
below. Naturally, other class of equations can also be
solved in the same way and that would be a very in-
teresting challenge to face in the future. In the past
there were some attempts to apply soft computing
techniques to find numerical solution of Diophantine
equations. For example, in ref. [1] the authors tried
to find numerical solutions to Diophantine equations
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by applying genetic algorithms to them, and the same
was done in [2], this time using the particle swarm
optimization paradigm. In all works presented in the
literature, some kind of progress was done and addi-
tional research in that direction might be beneficial in
terms of getting more effective methods in this area.
However, we can observe that, in most works, very
specific algorithms are used, being difficult to find
very successful applications of unmodified general
purpose algorithms to those problems. So, in what
follows, we are going to apply the general purpose
Fuzzy ASA method (not customized) to the same
problem and assess its effectiveness.

As said before, in this paper we discuss a generic
algorithm to solve the class of Diophantine equations
given by

a1xp1
1 +a2xp2

2 + ...+anxpn
n = N (4)

The rest of the text is organized as follows: Sec-
tion 2 describes the proposed algorithm. Section
3 explains the (Fuzzy) ASA paradigm and presents
some of its many features and possibilities. Section 4
presents the experimental results and section 5 con-
cludes with some observations about the findings ex-
posed along the text.

2 Proposed algorithm
To find solutions for equation (4) we propose the fol-
lowing algorithm:

• 1 – Transform the original problem into a global
optimization one, by taking as the objective
function F(x) the absolute value of a1xp1

1 +
a2xp2

2 + ...+anxpn
n −N

F(x) ∆
= |a1xp1

1 +a2xp2
2 + ...+anxpn

n −N| (5)

• 2 – Submit F(x) to the Fuzzy ASA algorithm (in
its integer programming mode), aiming to find
different solutions to the new global optimiza-
tion problem defined by (5). Here, it is possible
to simply run the algorithm several times or use
its multistart version, taking into account that,
as a stochastic method, Fuzzy ASA is able to
explore different regions during different acti-
vations.

• 3 – If sufficient solutions were found, stop. Oth-
erwise, repeat step 2 until satisfaction or meet-
ing a certain stopping criterion (for instance,
reaching a maximum number of trials).

The reasoning underlying the algorithm is ex-
tremely simple: if it is possible to minimize F(x)
and the minimum value is 0, then the original equa-
tion (4) is automatically satisfied. So, the quality of
the algorithm is strongly based upon the minimiza-
tion power of the employed global optimization algo-
rithm (Fuzzy ASA, in the present case), particularly
in its ability to face arbitrarily complex landscapes of
highly nonlinear cost functions.

3 The Adaptive Simulated Anneal-
ing approach

As its name indicates, the ASA method [5, 6, 9, 10]
is based upon the simulated annealing concept, but
presenting a number of additional features. Here, we
highlight just a few of them:

• Re-annealing – it is the dynamical re-scaling
of parametric temperatures, adapting generating
probability distribution functions to each dimen-
sion according to different sensitivities. In a few
words, if the objective function does not present
significative variations whenever a given param-
eter is altered, it could be advantageous to ex-
tend the search interval amplitude in that dimen-
sion in particular, and vice-versa.

• Quenching – the ASA implementation offers the
possibility of adjusting several structural param-
eters related to the quenching process, allowing
the user or any automatic control mechanism
to change the default behavior of the ”cooling”
process and drive the evolution of the paramet-
ric temperatures. This device is useful in case of
stagnation near suboptimal regions.

• High flexibility degree – the ASA system was
idealized so as to allow the users to alter vir-
tually any subsystem without significative pro-
gramming effort. This way, it is possible to
change the behavior of generation/acceptance
processes, termination criteria, seed generation
etc..
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In practical cases, functions to be minimized
show themselves in the form of cost measures that
vary with several parameters and are subject to
certain constraints, imposed by their environments.
Whenever the objective function is well-behaved,
that is, differentiable, convex or satisfying Lipschitz
conditions, there are several methods capable of find-
ing points at which it attains its minimum value,
obeying certain imposed constraints. Difficulties
arise whenever the given function presents several lo-
cal minima, thus making the final result dependent
on the starting point. Unfortunately, most real prob-
lems lead to very complex objective functions that
are nonlinear, discontinuous, multi-modal and multi-
dimensional among other properties. To solve such
a class of problems, stochastic methods seem to be
a good, and sometimes the only, alternative. Genetic
algorithms (GA), simulated annealing (SA) and par-
ticle swarm optimization (PSO) are among the most
popular approaches to stochastic global optimization.
The difficulty associated to stochastic approaches is
mainly related to the speed of convergence [13] but,
in spite of these drawbacks, researchers have found
ways to overcome certain limitations of original evo-
lutionary schemes, leading to implementations such
as adaptive simulated annealing (ASA) [5], which is
a sophisticated and rather effective global optimiza-
tion method. The ASA technique is particularly well
suited to applications involving neuro-fuzzy systems
and neural network training, thanks to its superior
performance and simplicity. The ASA approach has
the benefits of being publicly available, parameter-
ized, and well-maintained, thereby showing an al-
ternative to GA, according to the published bench-
marks, which demonstrate its effectiveness [5]. Un-
fortunately, many stochastic global optimization al-
gorithms share a few problems, such as large peri-
ods of poor improvement in their way to a global
optimum. In SA implementations, that behavior is
mainly due to the cooling schedule, whose speed is
limited by the characteristics of probability density
functions, which are employed with the purpose of
generating new candidate points. In this manner, if
we choose to employ the so called Boltzmann anneal-
ing, the temperature has to be lowered at a maximum
rate of T(k) = T(0)/ln(k). In the case of fast annealing,
the schedule becomes T(k) = T(0)/k, if assurance of
convergence with probability 1 is to be maintained,
resulting in a faster schedule. The approach based on

ASA has an even better default scheme, because of
its improved generating distribution.

ASA was designed to find global extreme inside
a pre-established hyper-rectangle and generates
points componentwise, according to the following
scheme:

xi+1 = xi +∆xi, with ∆xi = yi(Bi−Ai),
[Ai,Bi] = interval corresponding to i-th dimension,
yi ∈ [−1,1] is given by yi = sign(ui − 1/2)Ti[(1 +
1/Ti)

|2ui−1| − 1], where ui ∈ [0,1] is generated by
means of the uniform distribution,
Ti = present temperature relative to dimension i.

The compactness of search space is not a severe
limitation in practice and, in the absence of previous
information about global optima location, it suffices
to choose sufficiently abrangent hyper-rectangular
domains.

As said before, the quenching mechanism can
improve, in many cases, the efficiency of the con-
vergence process, although there is always the risk
of reaching prematurely nonglobal extreme. In cer-
tain scenarios, however, we might simply not have
alternative ways out of a stagnation situation, as oc-
curs with functions operating in high-dimensional
spaces. Trying to overcome this difficulty, a fuzzy
controller was designed (Fuzzy ASA) [6]. The ap-
proach is simple: the original ASA system is seen as
a MISO (Multiple Input Single Output ) dynamical
system and the supplementary code simply ”closes
the loop”, by sampling its output (current value of
objective function) and acting in its inputs (a sub-
set of run-time adjustable parameters, related to the
quenching process) according to a fuzzy law (con-
trol algorithm), imitating human behavior whenever
subject to similar underlying situations. In this way,
active run-time control can accelerate or slow down
temperature evolution, besides being able to take eva-
sive actions, in case of premature convergence. In its
present version, Fuzzy ASA code rises the quenching
degree after detecting decreasing optimization per-
formance or potential stagnation states, aiming to re-
cover from an possible undesirable convergence to
nonglobal optima. Please, note that this additional
module does not try to substitute the many effective
devices already present in the ”pure” ASA code, just
complementing them in nontypical situations.
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3.1 Additional considerations about rean-
nealing

Whenever doing a multi-dimensional search in order
to find a the solution for a nonlinear problem, we usu-
ally have to cope with different changing sensitivi-
ties of the coordinates of generated points (let us call
them α i) during the search. At any given annealing
time, it seems sensible to attempt to ”stretch out” the
range over which the relatively insensitive parame-
ters are being searched, in relation to the ranges of
more sensitive parameters.

This may be done by periodically rescaling the
annealing time k, that is to say, reannealing, every
fixed number of acceptance events in terms of the
sensitivities si, calculated at the most recently de-
tected minimum value of the cost function, L,

si = ∂L/∂α
i. (6)

In terms of the largest si = smax, ASA can reanneal
by using a rescaling for each ki of each parameter
dimension,

ki→ k′i, (7)

T ′ik′ = Tik(smax/si), (8)

k′i =
(

ln(Ti0/Tik′)/ci
)D

. (9)

Ti0 is set to 1 to start the process, and that is sufficient
to sweep all the amplitude of a given parameter.

The acceptance temperature is recalled in the
same way. Besides, considering that the initial accep-
tance temperature is equal to a trial value of L, this
is typically very large relatively to the global mini-
mum. Therefore, when this rescaling is realized, the
initial acceptance temperature is reset to the most cur-
rent minimum of L, and the annealing time associated
with this temperature is set to give a new temperature
equal to the lowest value of the cost function found
until present annealing time.

The standard deviations of the theoretical
forms are evaluated as well, and calculated by
[∂ 2L/(∂α i)2]−1/2, for each parameter αi. This gives
an estimate of the fluctuations that accompanies fits
to stochastic data or functions. At the end of the run,
the off-diagonal elements of the covariance matrix
are calculated for all parameters. This inverse cur-
vature of the theoretical cost function can provide an
estimate of the relative sensitivity of parameters to
statistical errors during minimization processes.

More devices like that can be added, but the truth
is that nonlinear systems typically show a great deal
of diversity and each one requires some observation
in order to develop a truly efficient parameter config-
uration. Another feature of ASA is its ability to recur-
sively self optimize its Program Options, for example
the ci parameters described above.

3.2 Quenching

A significant feature of ASA is its ability to perform
quenching, and this mechanism can be applied by
noting that the temperature schedule above may be
redefined as

Ti(ki) = T0i exp(−cik
Qi/D
i ), (10)

ci = mi exp(−niQi/D), (11)

in terms of the quenching factor Qi. The proof of con-
vergence presented in [5] fails if Qi > 1, considering
that

∑
k

D

∏1/kQi/D = ∑
k

1/kQi < ∞. (12)

This fact shows how the so called ”curse of dimen-
sionality” arises, and at the same time gives a pos-
sible way of coexist with it. In ASA, the influence
of large dimensions becomes clear because the ex-
ponential of the power of k is 1/D, so the annealing
required to properly sample the space becomes too
slow. In this way, if we don’t have resources enough
to properly sample the space ergodically, then the
next best procedure could be to turn on quenching,
whereby Qi can become on the order of the number
of dimensions.

The scale of the power of 1/D temperature
schedule (used for the acceptance function) can be
similarly altered. However, this does not affect the
annealing proof of ASA, and so this may be used
without damaging the weak ergodicity property [7].

3.3 VFSR and ASA

ASA is the natural evolution of the method called
very fast simulated reannealing (VFSR) [5], named
in this way to distinguish it from the previous method
of fast annealing (FA) [12]. The annealing sched-
ules for the temperatures Ti decrease exponentially in
annealing time k, that is, Ti = T0i exp(−cik1/D). Of
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course, the fatter the tail of the generating function,
the smaller the ratio of acceptance to generated points
in the optimization run. But, when properly tuned, it
is possible to see that for a given generating function
this ratio is approximately constant as the minimiza-
tion run finds a global minimum. Consequently, for a
large parameter space, the efficiency of the minimiza-
tion process is determined by the annealing schedule
of the generating function.

A major difference between ASA and Boltzmann
annealing algorithms is that the ergodic sampling
takes place in an (n+1)–dimensional space (Rn+1),
that is, in terms of n parameters and the cost function.
In ASA the exponential annealing schedules allow re-
sources to be spent adaptively on reannealing and on
speeding the convergence in all dimensions, ensuring
full global searching in the first phases of search and
quick convergence in the final phases. The chosen
acceptance function presents the usual Boltzmann
form, satisfying detailed balance, and the acceptance
temperature reannealing conducts the convergence of
the cost function to permit ergodic searching in the n-
parameter space considered as the independent vari-
ables of the objective function.

3.4 Considerations about tuning ASA

As the ASA implementation offers the user more than
100 adjustable parameters in order to customize its
performance, it is important to get some experience
in setting them for a particular problem. After all,
nonlinear systems are, typically, atypical. So, trying
to fully understand the nature of the cost function un-
der sampling in order to tune ASA by examining just
the cost function, probably will not be so productive
as generating more intermediate output, for instance,
by setting ASA PRINT MORE to TRUE, and look-
ing at this output as a ”grey box” of insight into your
optimization problem. Larger files with more infor-
mation are provided by setting ASA PIPE FILE to
TRUE. Treat the output of ASA as a simulation in
the ASA parameter space, which usually is quite a
different space than the variable space of your prob-
lem.

In some circunstances, you should be able to see
where and how your solution might have been ”cap-
tured” in a local minima for a very long period, or
where the last saved state is still fluctuating across
a large part of your state space. These observations

should suggest how you might try speeding up or
slowing down annealing/quenching of the parame-
ter space and/or tightening or loosening the accep-
tance criteria at different stages by modifying spe-
cific parameters of ASA. The distribution comes with
the ASA code and additional documentation, provid-
ing guidelines for tuning that may provide the user
with some helpful insights. An especially important
measure is to examine the output of ASA at several
stages of sampling, to discover whether changes in
parameter and temperatures are reasonably correlated
to variations in the cost function.

Although it is good having many parameters
available for tuning, the natural consequence is that
it can take a while to get comfortable adjusting ASA
parameters, especially if the default settings do not
work well for your specific problem. In this case, it is
advisable to examine ASA documentation and try to
identify which parameters could be adequate to solve
the particular problem.

Tuning is a necessary feature of any sampling al-
gorithm if it is to be applied to many classes of sys-
tems. It is not adequate to compare stochastic global
optimization algorithms that don’t have proper mech-
anisms allowing us to tune each one to cost functions
being optimized.

At present, the ASA implementation reflects the
feedback given by thousands of users [7]. As said
above, a major feature of the code is that it has more
than a hundred tuning parameters, whereas in many
other similar algorithms only a few are usually of-
fered. Other very good sampling–based algorithms
do not give such ample level of tuning, and too of-
ten do not work on some more complex functions ex-
actly for this reason. In general, the more optional
features you use, the more ”weight” is added to the
executable code but, since most of these ASA OP-
TIONS are chosen at pre–compile time, this does not
affect the execution performance in runtime. Accord-
ing to [7] there were previous efforts to rewrite the
code into another language, for instance, C++, Java,
Matlab, etc., but they were abandoned due to diffi-
culties in integrating all the ASA OPTIONS in the
same way that they are presently implemented. The
fact is that all ASA adjustable parameters (usually re-
ferred to as OPTIONS by ASA’s creator) are really
welcome, because they allow the users to tailor the
same code to many different applications.

As said before, nonlinear systems are, typically,
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atypical, and it is difficult to furnish guidelines for
ASA default values of parameters, similarly to what
is expected for ”off–the–shelf” quasi–linear systems.
There is an ongoing effort to prepare some guide-
lines and convey them to the users by means of
the ASA–README file, and also a special feature
(SELF OPTIMIZE parameter) that could help users
to automatically tune parameters based on the be-
havior of specific cost functions under minimization.
Probably the best approach would be a hybrid ap-
proach, making initial guesses and observing the re-
sulting performance. If the final result is not satisfac-
tory, use the SELF OPTIMIZE mode - this process
can take a while, because ASA truly samples the con-
figuration space. When SELF OPTIMIZE is turned
on, for each call of the top-level ASA parameters se-
lected, the ”inner” shell of your system’s parameters
are optimized, and this is performed for an optimiza-
tion of the ”outer” top–level shell of ASA parame-
ters. If, even after having taken this set of measures,
you feel that the something needs to be improved, it
is possible to turn quenching on.

Note that the probabilistic convergence of ASA
to a global optimal point can be assured only in terms
of sufficient conditions [5]. This being even quite
a strong statement, since we can only importance–
sample a large space in a limited period of time. So, if
the objective function under minimization is not too
pathological, it might be advisable to slow down the
annealing mechanism in order to allow ASA to spend
more time at each step for the sake of investigating
the finer scales. This could be required if the prob-
lem looks different at different scales, for then you
can often get trapped in local optima, and thus ASA
could fail just as any other “greedy” quasi-Newton
algorithm.

ASA has demonstrated many times that it is more
efficient and gets to global minimizers better than
other importance–sampling techniques [5], but this
normally requires tuning some parameters. For ex-
ample, and as cited in the documentation that goes
along with the package, a quasi-Newton algorithm
could be more efficient than ASA for a parabolic sys-
tem.

As the default probability distribution used in
ASA is fat–tailed and the effective widths of the pa-
rameters being searched change quite slowly with de-
creasing parameter temperatures, the trade–off is that
the parameter temperatures may decrease exponen-

tially and still evolving according to the sampling
proof. In this fashion, ASA tends to find global min-
ima when other sampling techniques might fail.

Besides, given the independence of cost and pa-
rameter temperature evolution, additional tuning of
ASA is possible in many difficult minimization tasks.
While the decreasing parameter temperatures change
the way the parameter states are generated, the de-
creasing cost temperature changes the way the gen-
erated states are accepted. The sensitivity of the
acceptance criteria to the cost temperature schedule
can be very influential in many problems. Analyz-
ing a few execution instances by using parameter
ASA PRINT MORE set to TRUE can detect events
of stagnation in local minima or not enough holding
time, for example, and that would require tuning of
some related parameters.

4 Implementation and experiments
To validate the proposed algorithm, we have coded
each objective function in a separate dynamic link
library that can be called by the generic optimiza-
tion code (ASA/Fuzzy ASA). This way, each specific
problem can be encapsulated in one self-contained
module.

To compare our findings to previous, recent re-
search, we followed the line of testing adopted in ref-
erence [2]. In this fashion, several equations were
submitted to the proposed algorithm and the results
were tabulated. The most significant cases involved
equations of the general form

x2
1 + x2

2 + ...+ x2
n = N (13)

and
xn

1 + xn
2 = N (14)

where the integer n is variable and N can assume any
positive integer value, allowing us to estimate, among
other facts, the relationship between the dimension
of the search space and the number of cost function
evaluations necessary to find a solution (in the case
of family (13)).

The original fuzzy ASA code and the same ASA
parameters were kept intact through all tests in order
to assess ASA’s minimization ability without exploit-
ing specific features of objective functions. The most
significant ones are listed below.
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TemperatureRatioScale = 1E−5

CostParameterScaleRatio = 1.0

TemperatureAnnealScale = .01

UserInitialParameters = TRUE

InitialParameterTemperature = 1000.0

ReannealCost = 1

ReannealParameters = TRUE

IncludeIntegerParameters = TRUE

It is also essential to configure ASA code so that
independent variables be generated as integers (sym-
bolic constant INTEGER TYPE). In the sequel we
will present the results corresponding to (13) and
(14). Each particular test was run 30 times and
the values relative to cost function evaluations corre-
spond to averages taken over the respective samples.
All tests were carried out using an Intel Core(TM)
2 CPU @ 2.4 Ghz with 512 Mb of RAM, and the
programs were coded in the C++ programming lan-
guage (Borland C++ compiler). It is worth to alert the
reader that, owing to differences between implemen-
tations of numerical runtime libraries corresponding
to the several programming environments available
at present, it is possible for a particular numerical
solution to produce slightly different functional re-
sults, when submitted to distinct computer programs,
coded in different languages.

4.1 Equations of the type x2
1 + x2

2 + ...+ x2
n =

N

The following equations were included in the experi-
ments

12

∑
i=1

x2
i = 3842 ,

13

∑
i=1

x2
i = 13000 ,

14

∑
i=1

x2
i = 14000

15

∑
i=1

x2
i = 15000 ,

16

∑
i=1

x2
i = 16000 ,

17

∑
i=1

x2
i = 17000

18

∑
i=1

x2
i = 18000 ,

19

∑
i=1

x2
i = 19000 ,

29

∑
i=1

x2
i = 29000

39

∑
i=1

x2
i = 39000 ,

50

∑
i=1

x2
i = 50000 ,

60

∑
i=1

x2
i = 60000

70

∑
i=1

x2
i = 70000 ,

80

∑
i=1

x2
i = 80000 ,

100

∑
i=1

x2
i = 100000

120

∑
i=1

x2
i = 120000 ,

130

∑
i=1

x2
i = 130000 ,

150

∑
i=1

x2
i = 150000

170

∑
i=1

x2
i = 170000 ,

200

∑
i=1

x2
i = 200000 ,

220

∑
i=1

x2
i = 220000

250

∑
i=1

x2
i = 250000 ,

280

∑
i=1

x2
i = 280000 ,

300

∑
i=1

x2
i = 312350

330

∑
i=1

x2
i = 330000 ,

350

∑
i=1

x2
i = 350000 ,

370

∑
i=1

x2
i = 4579137

400

∑
i=1

x2
i = 400000 ,

430

∑
i=1

x2
i = 430000 ,

450

∑
i=1

x2
i = 450000

470

∑
i=1

x2
i = 470000 ,

490

∑
i=1

x2
i = 490000 ,

500

∑
i=1

x2
i = 500000

The search domain was the Cartesian product of n
copies of {1, ...,200}, for each n.

Some solutions are shown in Table 1 and, in Ta-
ble 2, we present the mean number of cost function
evaluations spent in the solution for the majority of
equations. Finally, Figure 1 shows the graph corre-
sponding to Table 2.

4.2 Equations of the type xn
1 + xn

2 = N

The following equations were included in the experi-
ments [2]

x2
1 + x2

2 = 625

x3
1 + x3

2 = 1008

x4
1 + x4

2 = 1921

x5
1 + x5

2 = 19932

x6
1 + x6

2 = 47385

x7
1 + x7

2 = 4799353

x8
1 + x8

2 = 16777472

x9
1 + x9

2 = 1000019683

x10
1 + x10

2 = 1356217073

x11
1 + x11

2 = 411625181
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x12
1 + x12

2 = 244144721

x13
1 + x13

2 = 1222297448

x14
1 + x14

2 = 268451840

x15
1 + x15

2 = 1088090731

and the number of cost function evaluations to get
to a solution as a function of the equation order is
shown in Table 3. The corresponding graph is shown
in Figure 2.

5 Conclusion
This paper proposed the application of Fuzzy Adap-
tive Simulated Annealing to solve Diophantine equa-
tions, mainly in cases for which there are no known
solutions. According to the presented tests the
method was shown to be effective and efficient, be-
ing able to solve equations in high dimensional con-
figuration spaces. On the other hand, our figures
led to conclusions not exactly compatible with refer-
ence [2], especially with respect to the statement that
whenever the dimension of state space gets higher,
the number of iterations needed to find solutions in-
creases tremendously. Of course, there is an expected
increase in cost function evaluations due to combina-
torial reasons, but its rate is (surprisingly) not neces-
sarily exponential.

In summary, it is important to highlight that a
very important aspect of this type of work is its ability
to obtain solutions for a broad spectrum of equations
even when we have few theoretical information about
them, and making it possible to get valuable informa-
tion by means of tools apparently not connected to
the main subject.
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1 + xn
2 = N
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