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Abstract: This paper is concerned with the robust stability of a class of uncertain discrete-time systems with time-
varying delays and state saturation nonlinearities. The saturation nonlinearities are assumed to be the standard
saturation function, and the delay is allowed to be time-varying with known bounds. By applying the Lyapunov sta-
bility theorem and the delay-fractioning approach, a suitable Lyapunov-Krasovskii functional and a non-negative
scalar are constructed respectively. A delay-dependent criterion of the robust stability is given for the addressed
systems. Finally, a numerical example is given to illustrate the effectiveness of the presented criterion.
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1 Introduction
Due to its important significance, the stability of dy-
namical systems has been widely studied over the
past decades. On the other hand, in various engi-
neering systems, time delays are introduced into the
model of physical systems due to the inevitable reason
such as measurement, transmission and transport lags,
computational delays or un-modeled inertia of system
components. The time delay is an important source of
instability of the systems. So far, a large amount of
results have been published for the stability and con-
trol of time-delay systems, see e.g. [1, 2]. Moreover,
it is also well known that parameter uncertainties are
inherent features of many physical systems. The un-
certainties exist due to the variations in system param-
eters, modeling errors or some other ignored factors.
Accordingly, the problems of analysis and synthesis
have been addressed for uncertain systems [3–5].

Dynamical systems with state saturation non-
linearities exist commonly in neural networks, ana-
logue circuits and control systems, and hence the
stability analysis of such systems is highly nontriv-
ial [6, 7]. Recently, many important results have
been reported on this issue, see e.g. [8–14]. To be
specific, the problems of the global asymptotic stabil-
ity of the equilibrium have been investigated in [8, 9]
for n-order discrete-time systems with state satura-
tions and partial state saturation. An improved ver-
sion of Ritzerfeld-Werters criterion for the nonexis-
tence of overflow oscillations in second-order state-

space digital filters has been presented. A new zero-
input limit cycle-free realizability condition has been
given in [10] for a generalized overflow characteristic
and a complete stability analysis has been proposed
in [11] for a planar discrete-time linear system with
saturation. In [12], a criterion of the global asymp-
totic stability has been presented for discrete-time sys-
tems with partial state saturation nonlinearities. Sub-
sequently, the extension of this approach has been per-
formed in [13] to a situation involving partial state sat-
uration nonlinearities.

Recently, the problem of global asymptotic stabil-
ity has been studied in [15] for uncertain discrete-time
state-delayed systems with saturation nonlinearities.
By using the linear matrix inequality (LMI) technique,
a new criterion has been presented to guarantee the
global asymptotic stability for the related systems. It
has been shown that the presented result has improved
the results in [8, 13]. However, it is worth pointing out
that the delays have been assumed to be time-invariant
in most relevant literature concerning the robust sta-
bility problem for the uncertain time-delay systems
with state saturation nonlinearity. To the best of the
authors knowledge, there has been little work under-
taken on the robust stability of uncertain discrete-time
systems with time-varying delay and state saturation
nonlinearity. Note that the delay-fractioning approach
has been proved to be an effective way in [19–21] for
addressing the time-delay. Hence, we will employ this
approach to give a new stability criterion.
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Motivated by the above discussions, in this pa-
per, we aim to investigate the problem of robust stabil-
ity for a class of uncertain discrete-time state-delayed
systems with state saturation nonlinearity. Here,
the delay is time-varying with known bounds and
the parametric uncertainties are norm-bounded. By
using the delay-fractioning approach and construct-
ing an appropriate Lyapunov-Krasovskii functional,
the delay-dependent robust stability condition is pre-
sented. It is shown that the proposed condition is in
term of the solutions of the linear matrix inequali-
ties (LMIs) which can be easily solved by using the
standard numerical software. Finally, two illustrative
examples are given to demonstrate the effectiveness
of the proposed results. The main contribution of
this paper lies in that new robust stability criterion is
given for uncertain discrete-time state saturation sys-
tems with time-varying delays.

The rest of this paper is organized as follows.
Section 2 briefly introduces the problem under con-
sideration and gives some useful Lemmas. The crite-
rion of robustly global asymptotic stability is given in
Section 3. In Section 4, two numerical examples are
presented to illustrate the feasibility and effectiveness
of the developed results. This paper is concluded in
Section 5.

2 Problem Formulation and Prelimi-
naries

In this paper, we consider the following uncertain
discrete-time systems with time-varying delay and
state saturated nonlinearities:

x(k + 1) = f(y(k))

= [f1(y1(k)), · · · , fn(yn(k))]T (1)

y(k) = [y1(k), · · · , yn(k)]T

= (A+∆A)x(k)

+(Ad +∆Ad)x(k − d(k)) (2)
x(k) = ϕ(k), k ∈ [−dM , 0] (3)

where, x(k) ∈ Rn is the state vector; A,Ad ∈ Rn×n

are known matrices; ∆A,∆Ad ∈ Rn×n are the un-
known matrices representing parametric uncertainties
in the state matrices; d(k) is the positive integer for
time delays; ϕ(k) ∈ Rn is the initial state value at
time k; f(y(k)) is the vector saturation function.

The saturation functions fi(yi(k)) are defined as

fi(yi(k)) =


1, yi(k) > 1
yi(k), |yi(k)| ≤ 1,i = 1, · · · , n
−1, yi(k) < −1

(4)

The uncertain matrix satisfies the following condition:

∆A = HFE,∆Ad = HFEd (5)

where H,E and Ed are known constant matrices with
appropriate dimensions and F is an unknown matrix
satisfying

F TF ≤ I (6)

The time-varying delay satisfies

dm ≤ d(k) ≤ dM (7)

where dm and dM are known positive integers rep-
resenting the upper and lower bounds of delay d(k).
The lower bound of delay dm can always be described
by dm = τm, where τ and m are positive integers.

To proceed, we introduce the following definition
and lemmas that will be used in the proofs of the main
results.

Definition 1 [15] The zero solution of the system de-
scribed by (1)-(7) is globally asymptotically stable if
the following holds:

(i) it is stable in the sense of Lyapunov, i.e., for
every ε > 0 there exists a δ > 0 so that ∥x(k)∥ < ε
for all k = 1, 2, · · · , whenever

∥ϕ(·)∥ = max
k∈[−dM ,0]

∥ϕ(k)∥ < δ;

(ii) it is attractive, i.e., lim
k→∞

x(k) = 0.

Lemma 2 [16] Let D,E, F and M be real matrices
of appropriate dimensions with M satisfying M =
MT , then

M +DFE + ETF TDT < 0 (8)

for all F TF ≤ I , if and only if there exists a scalar
ε > 0 such that

M + ε−1DDT + εETE < 0. (9)

Lemma 3 [16] Let D,E, F and M be real matrices
of appropriate dimensions, and P is a symmetric pos-
itive definite matrix, then

(M +DFE)TP (M +DFE)

≤ MT (P−1+ε−1DDT )−1M+εETE, (10)

for any ε > 0.
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Lemma 4 [17] Given constant matrices A,B and C
of appropriate dimension, with A and C being sym-
metrical, then

A−BC−1BT > 0 and C > 0 (11)

if and only if [
A B
BT C

]
> 0 (12)

or equivalently [
C BT

B A

]
> 0. (13)

Lemma 5 [15] Suppose matrix C = (cij) ∈ Rn×n is
characterized by

cii =
n∑

j=1,j ̸=i

(αij + βij), i = 1, 2, · · · , n

cij = αij − βij , i, j = 1, 2, · · · , n(i ̸= j) (14)
αij > 0, βij > 0, i, j = 1, 2, · · · , n

then the scalar δ is a nonnegative number with

δ =

n∑
i=1

2[yi(k)− fi(yi(k))]

[
n∑

j=1,j ̸=i

(αij + βij)fi(yi(k))

+(αij − βij)fj(yj(k))]

= y(k)TCf(y(k)) + f(y(k))TCT y(k)

−f(y(k))T (C + CT )f(y(k)). (15)

3 Main Result
In this section, by using the delay-fractioning ap-
proach and the LMI technique, the criterion of ro-
bustly global asymptotic stability is given for uncer-
tain discrete-time systems with time-varying delay
and state saturation nonlinearities.

Theorem 6 Consider system (1)-(7). If there exist
symmetry positive definite matrices P > 0, Q > 0,
R > 0, S > 0, the symmetry positive semi-definite
matrix M ≥ 0, N ≥ 0, real matrices X,Y, Z with
appropriate dimensions and matrix C satisfying (14),
and positive scalar ε > 0 such that Π1 +Π2 +ΠT

2 +Π3

+ΠT
3 +Π4 +Π5

√
2h2 + 1CTH

∗ −εI

 < 0

(16)[
M X
XT P

]
≥ 0,

[
N Y
Y T P

]
≥ 0, (17)

[
N Z
ZT P

]
≥ 0

where

h1 = dM − dm + 1, h2 = dM − dm + τ,

Π1 = τM + (dM − dm)N,

Π2 =
[
X Y Z

]
×

 In×n

On×mn

On×(m+1)n

−In×n On×(m+2)n

In×n, − In×n On×2n

In×n, − In×n On×n

 ,

Π3 = 2(h2 + 1)(Aθ1 +Adθ2)
TCθ4,

Π4 = W T
RRWR,

Π5 = θT1 [(2h2 − 1)P + h1Q+ S]θ1 − θT2 Qθ2

−θT3 Qθ3 + (2h2 + 1)θT4 (P−C−CT )θ4

+ε(2h2+1)(Eθ1+Edθ2)
T (Eθ1+Edθ2),

WR =

[
Imn×mn Omn×n Omn×3n

Omn×n Imn×mn Omn×3n

]
,

R =

[
R

−R

]
,

θ1 =
[
In×n On×(m+3)n

]
,

θ2 =
[
On×(m+1)n In×n On×2n

]
,

θ3 =
[
On×(m+2)n In×n On×n

]
,

θ4 =
[
On×(m+3)n In×n

]
,

then the zero solution of system (1)-(7) is globally
asymptotically stable.

Proof: By using the delay fractioning approach in
[19], construct the following Lyapunov-Krasovskii
functional

V (k) =

4∑
i=1

Vi(k) (18)

where

V1(k) = x(k)TPx(k)

V2(k) =
k−1∑

j=k−d(k)

xT (j)Qx(j)
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+

−dm∑
j=−dM+1

k−1∑
l=j+k

xT (l)Qx(l)

V3(k) =

k−1∑
j=k−τ

ζT (j)Rζ(j) +

k−1∑
j=k−dM

xT (j)Sx(j)

V4(k) =
−1∑

j=−τ

k−1∑
l=k+j

ηT (l)Pη(l)

+

−dm−1∑
j=−dM

k−1∑
l=k+j

ηT (l)Pη(l)

η(l) = x(k + 1)− x(k)

ζT (j) = [xT (j), xT (j − τ), · · · , xT (j − (m− 1)τ)]

with P > 0,Q > 0,R > 0, S > 0 being matrices to
be determined.

Denote

xk = x(k), yk = y(k), ηl = η(l),

ζj = ζ(j), dk = d(k).

Calculate the difference of V (k) along systems (1)-(7)

∆V (k) = V (k + 1)− V (k) =
4∑

i=1

∆Vi(k) (19)

where

∆V1(k) = f(yk)
TPf(yk)− xTk Pxk

≤ f(yk)
T (P − C − CT )f(yk)

+2yTk Cf(yk)− xTk Pxk (20)

∆V2(k) =

k∑
j=k+1−dk+1

xTj Qxj

+

−dm∑
j=−dM+1

k∑
l=k+1+j

xTl Qxl

−
k−1∑

j=k−dk

xTj Qxj −
−dm∑

j=−dM+1

k−1∑
l=k+j

xTl Qxl

≤ hlx
T
kQxk − xTk−dk

Qxk−dk (21)

∆V3(k) =

k∑
l=k+1−τ

ζTl Rζl +

k∑
l=k+1−dM

xTl Sxl

−
k−1∑

l=k−τ

ζTl Rζl −
k−1∑

l=k−dM

xTl Sxl

= ζTk Rζk − ζTk−τRζk−τ + xTk Sxk

−xTk−dM
Sxk−dM (22)

∆V4(k) =
−1∑

j=−τ

k∑
l=k+1+j

ηTl Pηl

+

−dm−1∑
j=−dM

k∑
l=k+1+j

ηTl Pηl

−
−1∑

j=−τ

k−1∑
l=k+j

ηTl Pηl −
−dm−1∑
j=−dM

k−1∑
l=k+j

ηTl Pηl

= h2η
T
k Pηk −

k−1∑
j=k−τ

ηTj Pηj

−
k−dm−1∑
j=k−dM

ηTj Pηj (23)

Note that

ηTk Pηk = (xk+1 − xk)
TP (xk+1 − xk)

≤ 4yTk Cf(yk)− 2f(yk)
T

×(C + CT − P )f(yk) + 2xTk Pxk

= 4[(Axk +Adxk−dk) +HF

×(Exk + Edxk−dk)]
TCf(yk)

−2f(yk)
T (C + CT − P )f(yk)

+2xTk Pxk

≤ 4(Axk +Adxk−dk)
TCf(yk)

+2ε−1f(yk)
TCTHHTCf(yk)

+2ε(Exk + Edxk−dk)
T

×(Exk + Edxk−dk)− 2f(yk)
T

×(C + CT − P )f(yk)

+2xTk Pxk (24)

Hence, from (20)-(24), we have

∆V (k) ≤ xTk [(2h2 − 1)P + h1Q+ S]xk

−xTk−dk
Qxk−dk − xTk−dM

Sxk−dM

+ζTk Rζk − ζTk−τRζk−τ

+(2h2 + 1)[−f(yk)
T (C + CT − P )f(yk)

+ε−1f(yk)
TCTHHTCf(yk)

+ε(Exk + Edxk−dk)
T (Exk + Edxk−dk)

+(Axk +Adxk−dk)
TCf(yk)

+f(yk)
TCT (Axk +Adxk−dk)]

−
k−1∑

j=k−τ

ηTj Pηj −
k−dm−1∑
j=k−dk

ηTj Pηj

−
k−dk−1∑
j=k−dM

ηTj Pηj (25)
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Let

ξTk = [ζTk , x
T
k−dm , x

T
k−dk

, xTk−dM
, f(yk)

T ] ∈ R(m+4)n.

It is easy to see that

xk = θ1ξk, xk−dk = θ2ξk,

xk−dM = θ3ξk, f(yk) = θ4ξk.

Thus

∆V (k) ≤ ξTk {θT1 [(2h2 − 1)P + h1Q+S]θ1

−θT2 Qθ2 − θT3 Sθ3 +W T
RRWR

+2(h2 + 1)[θT4 (P − C − CT

+ε−1CTHHTC)θ4

+ε(Eθ1 +Edθ2)
T (Eθ1 +Edθ2)

+(Aθ1 +Adθ2)
TCθ4

+θT4 C
T (Aθ1 +Adθ2)]}ξk

−
k−1∑

j=k−τ

ηTj Pηj −
k−dm−1∑
j=k−dk

ηTj Pηj

−
k−dk−1∑
j=k−dM

ηTj Pηj (26)

For any matrices X,Y, Z with appropriate dimen-
sions, we have

2ξTk X(xk − xk−τ −
k−1∑

j=k−τ

ηj) = 0,

2ξTk Y (xk−dm − xk−dk −
k−dm−1∑
j=k−dk

ηj) = 0, (27)

2ξTk Z(xk−dk − xk−dM −
k−dk−1∑
j=k−dM

ηj) = 0.

On the other hand, for any symmetry positive semi-
definite matrix M ≥ 0, N ≥ 0 with appropriate di-
mensions, the following equations always hold

τξTk Mξk −
k−1∑

j=k−τ

ξTk Mξk = 0,

(dM−dm)ξTk Nξk−
k−dm−1∑
j=k−dM

ξTk Nξk = 0.(28)

It follows from (27)-(28) that

∆V (k) ≤ ξTk [Π1+Π2 +ΠT
2 +Π3+ΠT

3 +Π4

+Π5 + ε−1(2h2 + 1)θT4 C
THHTCθ4]ξk

−
k−1∑

j=k−τ

ξ(k, j)T
[

M X
XT P

]
ξ(k, j)

−
k−dk−1∑
j=k−dM

ξ(k, j)T
[

N Z
ZT P

]
ξ(k, j)

−
k−dm−1∑
j=k−dk

ξ(k, j)T
[

N Y
Y T P

]
ξ(k, j)

Noting (17), we know that ∆V (k) is negative definite
if the following inequality

Λ = Π1 +Π2 +ΠT
2 +Π3 +ΠT

3 +Π4

+Π5 + ε−1(2h2 + 1)θT4 C
THHTCθ4] < 0

holds. By using Lemmas 1 and 3, Λ < 0 is equivalent
to (16). This completes the proof of this theorem. ⊓⊔

Remark 7 Up to know, the problem of the robustly
global asymptotic stability has been studied for a
class of uncertain discrete-time systems with time-
varying delay and state saturation nonlinearities. By
using the delay-fractioning approach, an appropriate
Lyapunov-Krasovskii functional has been introduced
to deal with the time-varying delay. By employing
the LMI technique, a new stability criterion has been
given to guarantee the robustly global asymptotic sta-
bility of the addressed system.

As a special case, if there is no saturation nonlineari-
ties in system (1), we have the following system:

xk+1 = (A+∆A)xk + (Ad+∆Ad)xk−dk

= yk. (29)

In the following corollary, a sufficient condition is
proposed to ensure the robustly global asymptotic sta-
bility of system (29).

Corollary 8 Consider the system (29). If there exist
the symmetry positive definite matrices P > 0, Q >
0, R > 0, S > 0, the symmetry positive semi-definite
matrix M ≥ 0, N ≥ 0, real matrices X,Y, Z, and
positive scalar ε > 0 such that W11 W T

12 W T
13

∗ −P − εHHT 0
∗ ∗ −εI

 < 0 (30)
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[
M X
XT P

]
≥ 0,

[
N Y
Y T P

]
≥ 0, (31)

[
N Z
ZT P

]
≥ 0.

where

W11 = Π1 +Π
′
2 +Π

′T
2 +Π

′
4 +Π

′
5

W12 =
√

2h2 + 1(Aθ
′
1 +Adθ

′
2)

W13 =
√

2h2 + 1(Eθ
′
1 + Edθ

′
2)

and h1, h2,Π1, R are same as in the Theorem 6, and

Π
′
2 =

[
X Y Z

]
×

 In×n

On×mn

On×(m+1)n

−In×n On×(m+1)n

In×n,−In×n On×n

In×n −In×n

 ,

Π
′
4 = W

′T
R RW

′
R

Π
′
5 = θ

′T
1 [(2h2−1)P + h1Q+ S]θ

′
1 − θ

′T
2 Qθ

′
2

−θ
′T
3 Qθ

′
3 + ε(2h2 + 1)(Eθ

′
1 + Edθ

′
2)

T

×(Eθ
′
1 + Edθ

′
2)

W
′
R =

[
Imn×mn Omn×n Omn×2n

Omn×n Imn×mn Omn×2n

]
θ
′
1 =

[
In×n On×(m+2)n

]
,

θ
′
2 =

[
On×(m+1)n In×n On×n

]
,

θ
′
3 =

[
On×(m+2)n In×n

]
then the zero solution of system(29) is globally asymp-
totically stable.

Proof: Constructing the Lyapunov-Krasovskii func-
tional as in (18), we have

∆V1(k) = yTk Pyk − xTk Pxk

and ∆V2(k),∆V3(k),∆V4(k) are same as in the The-
orem 6. Note that

ηTk Pηk = (yk − xk)
TP (yk − xk)

≤ 2yTk Pyk + 2xTk Pxk

yTk Pyk = [(A+∆A)xk + (Ad +∆Ad)xk−dk ]
TP

×[(A+∆A)xk + (Ad +∆Ad)xk−dk ]

then

∆V (k) ≤ xTk [(2h2 − 1)P + h1Q+ S

+(2h2 + 1)(A+∆A)TP (A+∆A)]xk

+xTk−dk
[−Q+ (2h2 + 1)(Ad +∆Ad)

T

×P (Ad +∆Ad)]xk−dk + 2(2h2 + 1)xTk

×(A+∆A)TP (Ad +∆Ad)xk−dk

−xTk−dM
Sxk−dM + ζTk Rζk

−ζTk−τRζk−τ −
k−1∑

j=k−τ

ηTj Pηj

−
k−dm−1∑
j=k−dk

ηTj Pηj −
k−dk−1∑
j=k−dM

ηTj Pηj

Denote

ξ
′T
k = [ζTk , x

T
k−dm , x

T
k−dk

, xTk−dM
] ∈ R(m+3)n,

then it yields

xk = θ
′
1ξ

′
k, xk−dk = θ

′
2ξ

′
k, xk−dM = θ

′
3ξ

′
k

Therefore,

∆V (k) ≤ ξ
′T
k {θ′T

1 [(2h2 − 1)P + h1Q+ S

+(2h2 + 1)(A+∆A)TP (A+∆A)]θ
′
1

+θ
′T
2 [−Q+ (2h2 + 1)(Ad +∆Ad)

TP

×(Ad +∆Ad)]θ
′
2 + (2h2 + 1)θ

′T
1 (A

+∆A)TP (Ad +∆Ad)θ
′
2 + (2h2 + 1)

×θ
′T
2 (Ad +∆Ad)

TP (A+∆A)θ
′
1

−θ
′T
3 Sθ

′
3 +W

′T
R RW

′
R}ξ

′
k

−
k−1∑

j=k−τ

ηTj Pηj −
k−dm−1∑
j=k−dk

ηTj Pηj

−
k−dk−1∑
j=k−dM

ηTj Pηj

By using Lemmas 3 and the method as in the Theorem
6, the proof of this corollary is complete. ⊓⊔

Remark 9 The sufficient condition has been pro-
posed in Corollary 8 to guarantee the global asymp-
totic stability of the addressed system without state
saturation. Compared with [3–5], it can be easily
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seen that a new Lyapunov functional has been con-
structed based on the delay-fractioning approach and
more information of the time-varying delay has been
considered. Hence, the stability condition presented
in this paper is less conservative than the results
in [3–5].

If time delay is time-invariant in system (1), that is,
d(k) = d, then we can have the following corollary.

Corollary 10 Consider the time-invariant delay
d(k) = d. If there exist symmetric positive definite
matrices P > 0, Q > 0 and R > 0, a symmetry
positive semi-definite matrix M ≥ 0, real matrix
X with appropriate dimensions, matrix C satisfying
(14), and positive scalar ε > 0 such that Π◦

1 +Π◦
2 +Π◦T

2 +Π◦
3

+Π◦T
3 +Π◦

4 +Π◦
5

√
2τ + 1CTH

∗ −εI

 < 0

(32)

[
M X
XT P

]
≥ 0 (33)

where

Π◦
1 = τM,

Π◦
2 = X

[
In×n On×(m−1)n −In×n On×n

]
,

Π◦
3 = (2τ + 1)(Aθ◦1 +Adθ

◦
2)

TCθ◦4,

Π◦
4 = W ◦T

R RW ◦
R,

Π◦
5 = θ◦T1 [(2τ − 1)P +Q]θ◦1 − θ◦T2 Qθ◦2

+(2τ + 1)[θ◦T4 (P − C − CT )θ◦4

+ε(Eθ◦1 +Edθ
◦
2)

T (Eθ◦1 + Edθ
◦
2)],

W ◦
R =

[
Imn×mn Omn×n Omn×n

Omn×n Imn×mn Omn×n

]
,

and R is same as in the Theorem 6, and

θ◦1 =
[
In×n On×(m+1)n

]
,

θ◦2 =
[
On×mn In×n On×n

]
,

θ◦4 =
[
On×(m+1)n In×n

]
,

then, the origin x = 0 of system (1) with time-
invariant delay is globally asymptotically stable.

Remark 11 The sufficient condition has been investi-
gated in Corollary 10 to ensure the global asymptotic
stability of the addressed systems with time-invariant
delay and state saturation. The sufficient condition

in Corollary 10 is dependent on the delay-fractioning
information τ . Hence, the proposed results are delay-
dependent. Note that the criteria of global asymptotic
stability have been presented in [15] for uncertain
discrete state saturation systems with time invariant
delays. The results in [15] are delay-independent.
Therefore, the stability condition given in [15] is more
conservative than the one in this paper.

Remark 12 To the best of authors’ knowledge,
few results based on delay-fractioning approach
have been proposed for state saturation 2-D (two-
dimensional) discrete systems with time-varying de-
lays. Motivated by the results in this paper, we are
now extending the results of robust stability for a class
of uncertain discrete systems with state saturation and
time-delays to 2-D discrete systems. The correspond-
ing criteria will appear in the near future.

4 Numerical Examples
In this section, two numerical examples are given to
illustrate the usefulness of the proposed results.

Example 13 Consider the system (1)-(7) with the fol-
lowing parameters:

dM = 3, dm = 1, τ = 1,m = 1

A =

[
1.01 −2.5
0.1 0

]
, Ad =

[
0.001 0
0 0.002

]
H =

[
0
0.1

]
, E =

[
0.01 0

]
, Ed =

[
0 0.01

]
By using the Matlab LMI Toolbox, it turns out that
LMI (16)-(17) is feasible. We obtain the following
values:

P =

[
14.87 0
0 14.87

]
, Q =

[
26.76 0
0 22.3

]

R =

[
22.3 0
0 17.84

]
, S =

[
22.3 0
0 22.3

]
X =

[
O2×4, XT

1 , O2×4

]T
,

XT
1 =

[
0 0

−4.46 0

]
Y = −Z

=

[
−44.6 0 −8.92 −40.14 −4.62
−4.46 0 −360.91 −4.46 4.46

−4.46 4.46 104.15 −8.92 4.46
−492.88 −4.46 8.94 0 −8.92

]T
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C =

[
35.68 8.92
0 44.6

]
, ε = 22.3

Thus, according to Theorem 6, the system under con-
sideration is robust globally asymptotical stable which
confirms the feasibility of the proposed stability crite-
rion.

Example 14 Consider the system (29) with the fol-
lowing parameters:

dM = 3, dm = 1, h1 = 1, h2 = 3

A =

[
1.01 −3
0.1 0.78

]
, Ad =

[
0.1 0
0 0.2

]
H =

[
0
0.1

]
, E =

[
0.1 0

]
, Ed =

[
0 0.1

]
Solving the inequalities(30)and (31) in the Matlab en-
vironment, we can obtain

P =

[
144.6923 0

0 144.4029

]
,

Q =

[
144.6923 0

0 144.6923

]
,

R =

[
94.2441 −8.8682
−8.8682 54.8486

]
,

S =

[
144.6923 0

0 144.6923

]
,

X =

[
−63.7164 1.9707 5.091 5.091
1.9707 −89.7999 5.091 5.091

−19.7878 0 0 0
0 0 0 0

]T
,

Y =

[
0 0 −31.8582 0
0 0 0 1.9707

0 −44.9 0 0
0 0 5.091 0

]T
,

Z =

[
5.091 0 0 5.091
0 −6.6341 0 0

0 0 10.8389 0
5.091 0 0 −19.7659

]T
,

ε = 144.6865.

Then, we can see that there exist the required matrices
satisfying LMIs (30) and (31). As such, according to
Corollary 8, the system under consideration is glob-
ally asymptotical stable which confirms the effective-
ness of the presented stability criterion.

5 Conclusion
In this paper, a new criterion of the robust stability
has been given for a class of uncertain discrete-time
systems with time-varying delay and state saturation
nonlinearities. The norm-bounded parametric uncer-
tainties have been considered. The delay-dependent
stability criterion has been given by integrating the
delay-fractioning approach and the LMI technique. It
is worth mentioning that the proposed results are less
conservative than the existing results if there is no sat-
uration nonlinearity in the addressed system. Also,
both the constructed Lyapunov-Krasovskii functional
based on the delay fractioning approach and the non-
negative scalar δ are important. It has been shown that
the proposed scheme can be easily checked by using
the standard numerical software. Finally, two numeri-
cal examples have been given to illustrate the feasibil-
ity of the proposed results.
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