
Forecasting with Fourier Residual Modified ARIMA Model- An
Empirical Case of Inbound Tourism Demand in New Zealand

MING-HUNG SHU, WEI-JU HUNG
National Kaohsiung Uni. of Applied Sciences

Dept. of Ind. Engineering & Management
415, Chien Kung Rd., Kaohsiung 80778

Taiwan, R.O.C
workman@cc.kuas.edu.tw

BI-MIN HSU
Cheng Shiu University

Dept. of Industrial Engineering & Management
840, Chengcing Road, Kaohsiung 83347

Taiwan, R.O.C
bmhsu@csu.edu.tw

THANH-LAM NGUYEN
Lac Hong University

10, Huynh Van Nghe, Bien Hoa, Dong Nai, Vietnam
National Kaohsiung Uni. of Applied Sciences

Grad. Inst. of Mechanical & Precision Engineering
Taiwan, R.O.C

green4rest.vn@gmail.com

CHUNWEI LU
Shu-Zen Junior College of Medicine & Management

Department of Applied Japanese
452, Huanqiu Road, Kaohsiung 82144

Taiwan, R.O.C

Abstract: Tourism, one of the gigantic industries in a country, has been considered as a complexly integrated and
self-contained economic activity. Key determinants of the tourism demand have not been being fully identified
in literature, so varied levels of the forecast accuracy existing in distinct formations of forecasting models, such
as the autoregressive integrated moving average (ARIMA) and its joint Fourier modified model, are investigated
in this paper. With a certain degree of Fourier-modification factors joined, the model performance is found to
be significantly boosted. In an empirical study for the inbound-tourism demand forecasting in New Zealand, the
Fourier-modified seasonal ARIMA model, named FSARIMA(1 , 0 , 1 )(1 , 1 , 1 )12 , is highly recommended due
to its satisfactory forecasting power for the historical data. We further employ this model to provide the New
Zealand’s tourism projecting demand in 2013 so as to assist policy makers as well as related organizations in early
establishing their appropriate strategies for sustaining growth in this extremely-intensified competitive industry.
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1 Introduction
Tourism, a “smokeless” industry, is one of the world’s
most important and fastest growing economic sec-
tors, generating quality jobs and substantial wealth
for economies around the globe. According to the
data collected from World Travel & Tourism Coun-
cil (WTTC) [1], in 2012, the direct contribution of
Tourism to worldwide GDP was more than USD 2,056
billion, accounting for 2.9% of total GDP while its to-
tal contribution to GDP, including its wider economic
impacts, was more than USD6,630 billion (9.3% of
total GDP). It also directly supported more than 101
million jobs (3.4% of total employment) in 2012; be-
sides, including jobs indirectly supported by the in-
dustry, its total contribution was about 261 million
jobs (8.7% of total employment).

In New Zealand, the number of international
tourist arrivals in 2012 was about 50% higher than

that in 2000. In 2012, the total contribution of the
tourism industry to New Zealand GDP was about
NZD31.1 billion; accounting for 14.9% of GDP; and
it supported 19.1% of the total employment with about
426.5 thousand jobs. In regarding to its direct contri-
bution, the tourism contributed about NZD7.0 billion;
accounting for 3.4% of total GDP and supported 133
thousand jobs (6% of total employment) [2]. These
figures indicate that the tourism industry has played an
important role in the development of New Zealand’s
economy. In term of total contribution to GDP of New
Zealand, its national tourism industry was ranked 38
among the 184 countries and territories, and ranked
41 in regarding to the number of visitor exports [2].

While its importance to the national growth has
been well recognized, the core issue of an accurate
forecast of the tourism demand to assist policy-makers
creating proper early strategies in sustainability of
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the tourism-industry development has not been com-
pletely resolved. The tourism has been considered as
not only an integrated and self-contained economic
activity but also as a complex system due to a strong
inter- relationship existing among different depend-
able sectors in the economy such as economic, trans-
portation, commerce, social & cultural services, polit-
ical and technological changes, among others [3].

Since there has been no strong economic theory
to support the vital determinants for predicting the
tourism demand in literature, over the past decades,
diverse models have been developed in identifying the
adequate variables that impact the tourism demand
[4]. However, it has been a tough topic in fully iden-
tifying the determinants of the inbound tourism de-
mand. Gonzlez & Moral [5] listed them as the cost
of travel to and the cost of living for the tourist at
the destination (briefly mentioned as tourism price),
the price and the income indexes, marketing expendi-
tures, demographic and cultural factors, the quality-
price ratio, and other factors [6]; whereas, Witt and
Witt [7] proposed other determinants, such as popu-
lation, origin country income or private consumption,
own price (including the cost of travel to and the cost
of living for the tourist at the destination- same as
[6]), substitute prices, one-off events, trend, etc. But
Hsu & Wang [6] approached with some marketing as-
pects which were tour prices, distribution channel of
the travel agents, traveller’s income. Besides, many
of these determinants are neither easily measured nor
collected due to their availability [3,6-8].

Furthermore, “tourism demand” is a vague con-
cept which is not easily measured by a certain stan-
dard. It was suggested that inbound tourism demand
be measured in terms of the number of tourist arrivals,
tourist expenditure (tourist receipts) or the number of
nights tourists spent [7, 8]. But, due to their complexi-
ties in collecting the data of tourist expenditure as well
as the number of nights tourists spent, the number
of tourist arrivals has been widely used as an appro-
priate indicator of inbound tourism demand in many
researches [4,5,8-15]. Therefore, in this study, the
monthly arrivals of inbound tourists to New Zealand
from January 2000 to March 2013 are used to denote
the inbound tourism demand in New Zealand.

As tourism is season-sensitive with the inherent
characteristic of a time series, it is therefore sug-
gested to use autoregressive integrated moving aver-
age (ARIMA), a well-known forecasting model deal-
ing with time series, to predict the demand. Unlike
other methods, the ARIMA approach can efficiently
work with unknown underlying economic model or
structural relationships of the data set which are as-
sumed that past values of the series plus previous
error terms contain information for the purposes of

forecasting. The key advantage of ARIMA forecast-
ing model is that it only requires data of the inter-
ested variables in a time series. ARIMA model has
been found relatively robust especially when generat-
ing short-run forecasts, which makes ARIMA model
frequently outperform more sophisticated structural
models in providing short-term forecast [17, 18].
Therefore, the ARIMA forecasting technique selected
and presented in this paper is believed to be an ap-
propriate forecasting model in the case of tourism de-
mand [19, 20].

In order to improve the performance of the se-
lected model, we propose combining the conventional
model with a modification technique of Fourier se-
ries. To achieve this, the residual series obtained from
ARIMA model is then modified with Fourier series so
as to improve the model accuracy. In order to evaluate
the forecasting power of the Fourier modified model,
we compare the forecast values obtained from this
modified model with the actual ones in a period of
time before being further employed to have a longer
forecast.

1.1 ARIMA Model
The ARIMA model was first introduced by Box and
Jenkins in 1960s to forecast a time series which can
be made stationary by differencing or logging. A time
series may have non-seasonal or seasonal character-
istics. Seasonality in a time series is defined as a
regular pattern of changes that repeats over S time-
periods. With a seasonal time series, there is usually a
difference between the average values at some partic-
ular times within the seasonal intervals and the aver-
age values at other times; therefore, in most cases, the
seasonal time series is non-stationary.

1.1.1 Non-seasonal ARIMA model
The non-seasonal ARIMA model usually has the form
of ARIMA(p, d, q), where:

• p is the number of lags of the differenced series
appeared in the forecasting equation, called auto-
regressive parameter,

• d is the difference levels to make a time series
stationary, called integrated parameter, and

• q is the number of the lags of the forecast er-
rors, called moving-average parameter. “Auto-
Regressive” term refers to the lags of the differ-
enced series appeared in the forecasting equation
and “Moving Average” term refers to the lags of
the forecast errors. This “Integrated” term refers
to the difference levels to make a time series sta-
tionary.
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1.1.2 Seasonal ARIMA model
Seasonality is one of the most important factors af-
fecting the variations of a time series. In several non-
stationary time series, the variations induced by sea-
sonal factor sometimes dominate the variations of the
original series. This issue often occurs due to the en-
vironmental influence, such as periodic trend. A sea-
sonal time series can be considered as a non-stationary
time series that follow some kind of seasonal periodic
trend.

With a seasonal time series, it can be made sta-
tionary by seasonal differencing which is defined as
a difference between one value and another one with
lag that is a multiple of S.

Seasonal ARIMA model incorporates
both non-seasonal and seasonal factors in
a multiplicative model with the form of
SARIMA(p, d, q)(P,D,Q)S , where:

• p, d, q are the parameters in non-seasonal
ARIMA model as mentioned above.

• P is the number of seasonal Autoregressive or-
der,

• D is the number of seasonal differencing,

• Q is the number of seasonal Moving Average or-
der, and

• S is the time span of repeating seasonal pattern.

There are three basic steps in the overall proce-
dures to obtain an ARIMA or SARIMA model [21],
including:

Step 1: Identifying the possible models

• Examine the Auto-Correlation Function
(ACF) and Partial Auto-Correlation Func-
tion (PACF) graphs to identify non-
seasonal terms.

• Before identifying possible ARIMA mod-
els for a time series, it is critical to make
sure that the series is stationary. If it is
not, it must be transformed by either dif-
ferencing or logging to become station-
ary. For auto-regression (AR) or auto-
regression moving average (ARMA) mod-
els, it is mandatory that the modulus of the
roots of the AR polynomial be greater than
unity, and, for the moving average (MA)
part to be invertible, it is also crucial that
the roots of the MA polynomial lie outside
the unit circle [17].

• By differencing the seasonal time series
to make it stationary, we can easily de-
termine the difference order of differenc-
ing required rendering the series stationary
before identifying an appropriate ARMA
form to model the stationary series. Tra-
ditionally, Box-Jenkins procedure is fre-
quently used, which is a quasi-formal ap-
proach with model identification relying
on subjective assessment of plots of auto-
correlation function (ACF) and partial auto-
correlation function (PACF) of the series
[17]. A time series is considered station-
ary if the lag values of the ACF cut off
or die down fairly quickly. If the series
is not stationary, it should be differenced
gradually until it is considered stationary.
Then, the d value in the model is obtained.
If ACF graph cut off after lags q fairly
quickly and PACF graph cut off after lags
p fairly quickly, ARMA(p, q) is achieved.
ARIMA(p, d, q) is accordingly identified.

• Examine the patterns across lags that are
multiples of S to identify seasonal terms.
Judge the ACF and PACF at the seasonal
lags in the same way.

Step 2: Fitting the model

In this step, the parameters of the model are esti-
mated. Nowadays, with the advancement of the
science and technology, the parameter estimation
is usually done with the assistance of computa-
tional software, such as STATA, Eviews, SPSS,
etc.

Step 3: Testing the model for adequacy

This step formally assesses each of the time se-
ries models, and involves a rigorous evaluation
of the analytical tests for each of the competing
models. Because different models may wisely
perform similarly, their alternative formulations
should be retained for further assessment at the
stage of checking forecasting power of the mod-
els.

There are several analytical methods available
for testing the models. Among them, there are two
popularly used, including plotting the residuals of
the estimated model to detect either any outliers that
may affect parameter estimates or any possible auto-
correlation or heteroskedacity problems; and, plotting
the ACF and PACF of the residuals to check the model
adequacy. The residuals from the model must have
normal distribution and be white-noise (also known
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random). This test can be done with one of the fol-
lowing ways:

• Testing the normal distribution of the residuals
by considering the normal probability plot and
testing the white-noise of the residuals by consid-
ering its ACF and PACF graphs where individual
residual autocorrelation should be small and its
value is within ±2/

√
n from the central point of

zero.

• Ljung-Box Q statistic [22]:

Qm = n(n+ 2)

m∑
k=1

e2k
n− 2

(1)

where: ek is the residual autocorrelation at lag
k; n is the number of residuals; and, m is the
number of time lags includes in the test.
The model is considered adequate only if the p-
value associated with the Ljung-Box Q Statistic
is higher than a given significance.

1.2 Fourier Residual Modification
Grey forecasting models have been proved to be sig-
nificantly improved after their residual series are mod-
ified with Fourier series [21-25]. So, this effective
methodology should also be considered in the case of
ARIMA model. The procedure to obtain the modified
model is as the following.

Based on the predicted series x̂(0) obtained from
the ARIMA model, a residual series named ε(0) is de-
fined as:

ε(0) = {ε(0)2 , ε
(0)
3 , . . . , ε(0)n } (2)

where: ε(0)k = x
(0)
k − x̂

(0)
k

(
k = 2, n

)
Expressed in Fourier series, ε(0)k is rewritten as:

ε
(0)
k =

a0
2
+

F∑
i=1

[
ai cos

(
2ikπ

n− 1

)
+ bi sin

(
2ikπ

n− 1

)]
(3)

where: F = [(n− 1)/2− 1] is called the minimum
deployment frequency of Fourier series [27] and only
take integer number [23, 24, 26]. And therefore, the
residual series is rewritten as:

ε(0) = P · C (4)

where:

P =

([
1

2

]
(n−1)×1

P1 · · · Pk · · · PF

)

Pk =


cos
(
2π×2×k
n−1

)
sin
(
2π×2×k
n−1

)
cos
(
2π×3×k
n−1

)
sin
(
2π×3×k
n−1

)
...

...

cos
(
2π×n×k

n−1

)
sin
(
2π×n×k

n−1

)


C = [a0, a1, b1, a2, b2, . . . , aF , bF ]

T

The parameters a0, a1, b1, a2, b2, . . . , aF , bF are
obtained by using the ordinary least squares method
(OLS) which results in the equation of:

C = (P TP )−1P T
[
ε(0)
]T

. (5)

Once the parameters are calculated, the predicted se-
ries residual ε̂(0) is then easily achieved based on the
following expression:

ε̂
(0)
k =

a0
2
+

F∑
i=1

[
ai cos

(
2ikπ

n− 1

)
+ bi sin

(
2ikπ

n− 1

)]
(6)

Therefore, based the predicted series x̂(0) ob-
tained from ARIMA model, the predicted series x̃(0)

of the modified model is determined by:

x̃(0) = {x̃(0)1 , x̃
(0)
2 , . . . , x̃

(0)
k , . . . , x̃(0)n } (7)

where{
x̃
(0)
1 = x̂

(0)
1

x̃
(0)
k = x̂

(0)
k + ε̂

(0)
k (k = 2, n)

In order to evaluate the accuracy of the forecast-
ing model, the residual error (ε) and its relative error
(℘) are used [24, 28]. ε and ℘ of the kth entry are
expressed as:

• Residual error:

εk = x
(0)
k − f

(0)
k (k = 1, n)

where f (0)
k is the forecasted value at the kth entry.

• Relative error:

℘k =
|εk|
x
(0)
k

However, there have been some other important
indexes to be considered in evaluating the model ac-
curacy. They are

• The mean absolute percentage error (MAPE) [6,
22-25, 27-31]:

MAPE =
1

n

n∑
k=1

℘k.
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• The post-error ratio C [34, 35]:

C =
S2

S1
,

where:

S1 =

√√√√ 1

n

n∑
k=1

[
x
(0)
k − 1

n

n∑
k=1

x
(0)
k

]2

S2 =

√√√√ 1

n

n∑
k=1

[
εk −

1

n

n∑
k=1

εk

]2
The ratio C, in fact, is the ratio between the
standard deviation of the original series and the
standard deviation of the forecasting error. The
smaller the C value, the higher accuracy the
model has since smaller C value results from a
larger S1 and/or a smaller S2.

• The small error probability P [34, 35]:

P = p

{
|εk − 1

n

∑n
k=1 εk|

S1
< 0.6745

}
.

The P value indicates a probability of the ratio of
the difference between the residual values of data
points and the average residual value with the
standard deviation of the original series smaller
than 0.6745 [35]. Thus, the higher the P value,
the higher accuracy the model has.

• The forecasting accuracy ρ [35]:

ρ = 1−MAPE.

Based on the above indexes, there are four grades
of accuracy stated in Table 1.

2 Empirical Study

Historical data of the inbound tourism demand in New
Zealand from January 2000 to March 2013 (totally

Table 1: Four grades of forecasting accuracy

Grade level MAPE C P ρ
I (Very good) < 0.01 < 0.35 > 0.95 > 0.95
II (Good) < 0.05 < 0.50 > 0.80 > 0.90
III (Qualified) < 0.10 < 0.65 > 0.70 > 0.85
IV (Unqualified) ≥ 0.10 ≥ 0.65 ≤ 0.70 ≤ 0.85

160 observations) are obtained from the monthly sta-
tistical data published by Statistics New Zealand [36]
as shown in the Appendix. The data between Jan-
uary 2000 and December 2012, plotted on Fig.1, show
that the time series has seasonal characteristic; hence,
in this investigated period, an ARIMA/SARIMA
model is appropriately suggested. The traditional
model is then modified with Fourier series to become
a modified model with higher accuracy. Data from
January 2013 to March 2013 are used to check the
forecast power of the modified model before it is em-
ployed to forecast the demand in other three quarters
of 2013.
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Figure 1: Monthly inbound arrivals to New Zealand

From Fig.1, it can be concluded that seasonality
exists in the series of tourism demand. Specifically,
the monthly seasonal indexes are shown in Table 2.

Table 2: Monthly seasonal indexes

Month Seasonal index (%)
January 122.53
February 126.38
March 112.28
April 91.44
May 67.06
June 68.64
July 85.34
August 79.48
September 83.51
October 91.26
November 110.90
December 161.17

It is obvious that there is a high demand of in-
bound tourists from November, December to the first
quarter of the next year; whereas, there are fewer
inbound tourists to New Zealand in the period of
May-August. This can be explained by the fact that
the summer and autumn time in New Zealand from
December to February with the most comfortable
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weather temperature is not only the time that students,
especially Australian ones, have their Summer holi-
days but also the ideal time to travel around the clean
and green country with typical destinations such as
Milford Sound, Abel Tasman National Park or the
Tongariro Alpine Crossing, or join several typical per-
formance activities attracting tourists such as bungee
jumping or whale watching; while May-August is the
cold winter time which usually doesn’t attract people
to go sight-seeing. New Zealand is also a high-ranked
country with advanced education systems, which is
one of the dominant factors appealing international
students to choose New Zealand as a suitable destina-
tion for their higher education. Their relatives’ visits
also help the national tourism industry because they
take the special opportunity to explore the beauty of
New Zealand.

With the existence of seasonal characteristic, only
seasonal ARIMA model is considered in this section.
The original series of the inbound tourism demand is
not stationary as plotted in Fig.2. However, at one
degree of seasonal difference, the series becomes sta-
tionary as shown in Fig.3.

$

$
,H$1;"*K)*..%-,"!*($+;()"!*($9.,<#$

$

$
:H$L,."!,-$,;"*K)*..%-,"!*($+;()"!*($9.,<#$
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Figure 2: ACF and PACF graphs

From the Fig.3, there are three possible SARIMA
models as the following.

• Model 1: SARIMA(1, 0, 1)(1, 1, 1)12

• Model 2: SARIMA(1, 0, 2)(1, 1, 1)12

• Model 3: SARIMA(1, 0, 3)(1, 1, 1)12

$

$
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$

$
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6!++%.%()%$
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Figure 3: ACF and PACF at one degree of seasonal
difference

The parameters of these models are summarized as in
Table 3.

Of the three models shown in Table 4, Model 1 is
the best because it has the lowest value of MAPE and
MAE. Fig.4 shows that Model 1 is adequate; and, the
histogram of the residuals in Fig.5 further emphasizes
the white-noise characteristic of the residual series ob-
tained from the traditional SARIMA model. Model 1
is, therefore, selected in this study for further assess-
ment of forecasting power.

In order to compare the performance of these
three models, we consider some statistics indexes as
illustrated in Table 4.

The residual series obtained from the selected
model SARIMA(1, 0, 1)(1, 1, 1)12 is now modified
with Fourier series, making the model become a new
one- called FSARIMA(1, 0, 1)(1, 1, 1)12. The eval-
uation of these two models is shown in Table 5.

In order to evaluate the forecasting power of
FSARIMA(1, 0, 1)(1, 1, 1)12, we now compare the
forecast values in January–March 2013 with the ac-
tual observations in the same period shown in Table
6.

With the very low value of MAPE of 0.0202,
FSARIMA(1, 0, 1)(1, 1, 1)12 is considered a pow-
erful model to be employed to forecast the number
of inbound arrivals from April to December 2013 as
shown in Table 7.

Fig. 6 depicts the accuracy of the forecasts ob-
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Table 3: Summary of model parameters

Model Parameters Estimate Sig.
Constant 5699.593 0.000
AR Lag 1 0.770 0.000
MA Lag 1 0.355 0.0131
AR Seasonal Lag 1 -0.459 0.010
Seasonal Diff. 1
MA Seasonal Lag 1 0.104 0.042
Constant 5750.312 0.005
AR Lag 1 0.905 0.000
MA Lag 1 0.463 0.000
MA Lag 2 0.182 0.0782
AR Seasonal Lag 1 -0.425 0.020
Seasonal Diff. 1
MA Seasonal Lag 1 0.138 0.034
Constant 5707.069 0.000
AR Lag 1 0.650 0.001
MA Lag 1 0.190 0.355
MA Lag 2 0.054 0.666
MA Lag 3 -0.154 0.1423

AR Seasonal Lag 1 -0.434 0.019
Seasonal Diff. 1
MA Seasonal Lag 1 0.120 0.049

Table 4: Model summary statistics

Model Model 1 Model 2 Model 3
R-Squared 0.963 0.963 0.963
MAPE 4.266 4.361 4.376
MAE 8043.843 8143.048 8167.646
LB* Stat. 10.365 11.099 10.909
LB* Df. 14 13 12
LB* Sig. 0.735 0.603 0.537

*: Ljung-Box

Table 5: Evaluation indexes of model accuracy

Index SARIMA FSARIMA
MAPE 0.0427 0.0069

S1 55552.12 55552.12
S2 10690.32 3029.26
C 0.1924 0.0545
P 0.9931 1.0000
ρ 0.9573 0.9931

Forecasting power Good Very good

Figure 4: Noise residual ACF and PACF

Figure 5: Histogram of Noise residuals of
SARIMA(1, 0, 1)(1, 1, 1)12

Table 6: Checking forecasting power

Month Actual Forecast APE
Jan.2013 260,637 262,918 0.0183
Feb.2013 281,233 273,325 0.0281
Mar.2013 270,740 266,862 0.0143
Mean absolute percentage error 0.0202
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Table 7: Forecast in 2013 (Unit: Arrivals)

Month Forecast Month Forecast
Apr. 2013 264,730 May. 2013 209,433
Jun. 2013 209,480 Jul. 2013 244,215
Aug. 2013 245,428 Sept. 2013 268,427
Oct. 2013 269,342 Nov. 2013 299,968
Dec. 2013 372,126

tained from the modified model compared to the ac-
tual observations. Particularly, for the investigated
period, January 2000 – December 2012, the fore-
casted values of the inbound tourism demand in New
Zealand closely follow the actual ones with the MAPE
value of less than 0.7% which is considered as an ex-
cellent indicator of a good forecasting model. More-
over, the MAPE of about 2% for using the modified
model to forecast the demand in the first quarter of
2013 further proves the fitness of our proposed model
in practice. Therefore, the forecasts of the inbound
tourism demand for the last three quarters in 2013 are
well believed feasible and practical. As the ultimate
purpose of constructing a statistical forecasting model
is to provide accurate forecasts, our model is therefore
believed in its special forecasting power and strongly
suggested for further application in the New Zealand
tourism industry. It also points out that there is trend
of a stronger demand in the last three quarters of year
2013; even the low season of the year is expecting
more inbound tourists than those of previous years.
Our forecasts in this paper can draw up an overview
of the industry for the whole 2013 so that relevant in-
dustries and organizations such as the airport manage-
ment, transportation facilities, tour guides, restaurants
and hotels, etc., should be well prepared in advance to
deliver their effectual services for their customers and
make them satisfied with their trips.

Figure 6: Actual observations versus forecasts

3 Conclusion
In this paper, we have uncovered that the forecast-
ing accuracy of traditional ARIMA models can be
substantially ameliorated through the scheme called
a Fourier residual modification. For the case of the in-
bound tourism demand in New Zealand, the monthly
demands modeled by its key determinants have
been effectively forecasted with a Fourier-modified
ARIMA model, FSARIMA(1, 0, 1)(1, 1, 1)12. For
a sustained growth increasing profit in the highly-
competitive tourism industry, these precise forecast-
ing results enable the policy-makers of the associ-
ated organizations in prior strategic preparations of
planning sufficient facilities and attainable human re-
sources in high seasons and making adequate adjust-
ment and holding personnel training in low seasons.
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Appendix

Monthly inbound tourism arrivals
Month Arrivals Month Arrivals
Jan-2000 169,404 Feb-2000 192,856
Mar-2000 152,910 Apr-2000 143,681
May-2000 99,068 Jun-2000 97,516
Jul-2000 130,571 Aug-2000 117,365
Sep-2000 113,750 Oct-2000 146,610
Nov-2000 182,324 Dec-2000 243,023
Jan-2001 197,765 Feb-2001 199,792
Mar-2001 176,875 Apr-2001 153,186
May-2001 110,936 Jun-2001 112,279
Jul-2001 144,380 Aug-2001 136,864
Sep-2001 131,194 Oct-2001 142,095
Nov-2001 164,636 Dec-2001 239,807
Jan-2002 204,717 Feb-2002 212,233
Mar-2002 202,504 Apr-2002 143,877
May-2002 118,201 Jun-2002 115,194
Jul-2002 152,156 Aug-2002 133,272
Sep-2002 136,085 Oct-2002 162,327
Nov-2002 198,705 Dec-2002 265,691
Jan-2003 220,861 Feb-2003 222,201
Mar-2003 193,853 Apr-2003 150,416
May-2003 102,745 Jun-2003 111,982
Jul-2003 145,564 Aug-2003 135,351
Sep-2003 148,420 Oct-2003 165,821
Nov-2003 211,735 Dec-2003 297,280
Jan-2004 244,333 Feb-2004 238,032
Mar-2004 211,748 Apr-2004 184,379
May-2004 132,715 Jun-2004 134,813
Jul-2004 173,328 Aug-2004 152,104
Jan-2004 244,333 Feb-2004 238,032
Mar-2004 211,748 Apr-2004 184,379
May-2004 132,715 Jun-2004 134,813
Jul-2004 173,328 Aug-2004 152,104
Sep-2004 161,182 Oct-2004 181,371
Nov-2004 220,610 Dec-2004 313,057
Jan-2005 249,933 Feb-2005 250,070
Mar-2005 234,101 Apr-2005 174,757
May-2005 135,708 Jun-2005 157,547
Jul-2005 168,422 Aug-2005 150,656
Sep-2005 163,785 Oct-2005 176,216
Nov-2005 214,694 Dec-2005 307,061

Monthly inbound tourism arrivals - continued
Month Arrivals Month Arrivals
Jan-2006 250,554 Feb-2006 252,431
Mar-2006 226,966 Apr-2006 191,648
May-2006 135,279 Jun-2006 139,891
Jul-2006 166,970 Aug-2006 155,699
Sep-2006 166,531 Oct-2006 186,639
Nov-2006 229,913 Dec-2006 319,040
Jan-2007 246,748 Feb-2007 267,569
Mar-2007 239,203 Apr-2007 193,229
May-2007 140,755 Jun-2007 145,498
Jul-2007 173,046 Aug-2007 164,775
Sep-2007 168,838 Oct-2007 179,947
Nov-2007 228,813 Dec-2007 317,259
Jan-2008 253,515 Feb-2008 280,513
Mar-2008 250,806 Apr-2008 179,388
May-2008 140,483 Jun-2008 142,413
Jul-2008 175,738 Aug-2008 162,485
Sep-2008 157,704 Oct-2008 173,938
Nov-2008 219,313 Dec-2008 322,207
Jan-2009 244,030 Feb-2009 256,559
Mar-2009 226,461 Apr-2009 195,883
May-2009 141,916 Jun-2009 135,162
Jul-2009 176,198 Aug-2009 161,100
Sep-2009 172,425 Oct-2009 187,372
Nov-2009 219,939 Dec-2009 341,337
Jan-2010 256,652 Feb-2010 267,855
Mar-2010 243,263 Apr-2010 187,962
May-2010 141,336 Jun-2010 145,825
Jul-2010 182,904 Aug-2010 168,081
Sep-2010 174,157 Oct-2010 184,898
Nov-2010 226,455 Dec-2010 345,656
Jan-2011 265,553 Feb-2011 268,259
Mar-2011 215,553 Apr-2011 197,777
May-2011 140,741 Jun-2011 131,269
Jul-2011 176,084 Aug-2011 175,909
Sep-2011 219,940 Oct-2011 215,902
Nov-2011 230,292 Dec-2011 364,165
Jan-2012 266,839 Feb-2012 259,083
Mar-2012 239,929 Apr-2012 195,668
May-2012 140,841 Jun-2012 151,074
Jul-2012 173,539 Aug-2012 178,298
Sep-2012 179,069 Oct-2012 184,200
Nov-2012 232,119 Dec-2012 363,959
Jan-2013 260,637 Feb-2013 281,233
Mar-2013 270,740
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