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Abstract: In this paper, based on the fractional Riccati equation, we propose an extended fractional Ric-
cati sub-equation method for solving fractional partial differential equations. The fractional derivative is
defined in the sense of the modified Riemann-Liouville derivative. By a proposed variable transformation,
certain fractional partial differential equations are turned into fractional ordinary differential equations,
whose solutions can be expressed in certain forms composed of the solutions of the fractional Riccati
equation. As for applications of this method, we apply it to the space-time fractional Whitham-Broer-
Kaup (WBK) equations and the space-time fractional Fokas equation. With the aid of the mathematical
software Maple, some new exact solutions for the two equations are successfully obtained.
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1 Introduction differential equations (FPDEs) based on the ho-
mogeneous balance principle, modified Riemann-
Liouville derivative by Jumarie [20-23], and the

tions of classical differential equations of integer fract1ona'1 R?cca‘m equation. .The mairt 1g1ea of this
. . method lies in that the solutions of certain FPDEs
order. In the last few decades, fractional differ- n

ential equations have gained much attention as are supposed to have the form u(§) = Z a; ',
they are widely used to describe various complex

=0
phenomena in many fields such as the fluid flow,

where ¢ = ¢(§) satisfies the fractional Riccati
: D — 2 D&

signal processing, control theory, systems identi- equation 4 o+ ¢ and £ ¢(¢) denotes

fication, biology and other areas. Among the in-

the modified Riemann-Liouville derivative of or-
fi ith . ith th
vestigations for fractional differential equations, d.e v for ¢(¢) .Wlt respect to & With the
. . . aid of mathematical software, the authors estab-

research for seeking exact solutions and approxi-
mate solutions of fractional differential equations

lished successfully new exact solutions for some
is a hot topic. Many powerful and efficient meth- FPDEs. Then in [24,25], the authors improved
ods have been proposed so far. For example,

Fractional differential equations are generaliza-

this method to be suitable for more general cases,
in which the solutions of certain FPDEs are sup-

the fractional variational iteration method [1-5], n ,

the Adomian’s decomposition method [6-8], the posed to have the forms u(§) = > a;¢' and
homotopy perturbation method [9-12], the Exp- n =-n

function method [13], the finite difference method w(é) = ap+ > ai(_%Bi—f_Bqu)i respectively. In
[14], the finite element method [15], the (G’/G)- i=1 + B¢

[26,27], the authors Zheng et al. proposed one
new fractional sub-equation method, which can be
seen as the fractional version of the known (G’/G)

expansion method [16-18] and so on. Using these
methods, solutions with various forms for some
given fractional differential equations have been

established. method [28-33].

Recently, Zhang et al. [19] first proposed Motivated by the works above, in this pa-
a new direct algebraic method named fractional per, we propose an extended fractional sub-
sub-equation method for solving fractional partial equation method to establish exact solutions for
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FPDEs in the sense of the modified Riemann-
Liouville derivative, in which the solutions of
certain FPDEs are supposed to have the forms

u(€) = ao + Y [a;G' + b;Go + G?], where
i=1
G = G(&) satisfies the fractional Riccati equation

(1)

and DgG(§) denotes the modified Riemann-
Liouville derivative of order « for G(§) with re-
spect to &.

The definition and some important proper-
ties of the Jumarie’s modified Riemann-Liouville

derivative of order « are listed as follows (see also
in [19,20,24-27))

DEG(§) = o+ G*(6),

Ty ot = 97 (£(©) — F(0))de,
0<a<l,
(fO@) ™, n<a<n+1, n>1

Dy f(t) =

PA+7)
'l+r—a) ’

Di(f(t)g(t)) = g(O) D f(t) + f(1) Dig(t),

Dyt =

(2)
3)

Dy flg(#)] fola(MD7 g(t)

Dgflg®lg'®)*.  (4)

We organize this paper as follows. In Sec-
tion 2, we give the description of the extended
fractional Riccati sub-equation method for solving
FPDEs. Then in Section 3 we apply this method
to establish exact solutions for the space-time
fractional Whitham-Broer-Kaup (WBK) equa-
tions and the space-time fractional Fokas equa-
tion. Some conclusions are presented at the end
of the paper.

of
fractional

the ex-
Riccati

2 Description
tended
sub-equation method

In this section we describe the main steps of the

extended fractional Riccati sub-equation method

for finding exact solutions for FPDEs.

Suppose that a fractional partial differential
equation is given by

P(ul, LUk, Df‘ul, ceny Df‘uk, nglul, veey Dg‘luk, veuy
2 2 2
D¢ i, ..., Dg ug, Di%uy, ..., Diuy, D3uq, ...)

()
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where t,z1,x3,...,x, are independent variables,
u; = ui(t, 1,22, ..., Tp), © = 1,...,k are unknown
functions, P is a polynomial in u; and their vari-
ous fractional derivatives.

Step 1. Suppose that

ui(t, 1, T2, .y xpn) = Ui(§), 1 =1,2,....k; (6)
E=ct+ kixy + koxo + ... + kpxy + &o-

Then by the second equality in Eq. (4), Eq. (5)
can be turned into the following fractional ordi-
nary differential equation with respect to the vari-

able &:
]S(Ul, cooy U, ¢*Dg U, ..., * Dg Uy, k' DgUn,
oo K DEUy, oo, ky DEUN, .., ky DUy, * DU,
ceny CQO‘DEO‘Uk, k%o‘DgaUl, ..)=0.
(7)
Step 2. Suppose that the solutions of (7) can
be expressed by a polynomial in G as follows:

Uj(€) = ajo+ Y. [a;iG + b G~ Wo + G2,
=1

j=1,..,k
(8)

where G = G(§) satisfies Eq. (1), and a;;, i =
0,1,....,m, 7 = 1,2,..., k are constants to be de-
termined later. The positive integer m can be
determined by considering the homogeneous bal-
ance between the highest order derivatives and
nonlinear terms appearing in (7).

In [34], by using the generalized Exp-function
method, Zhang et al. first obtained the following
solutions for Eq. (1):

( —/—otanh,(v/—0&), o <0,

—+/—0o cothy(v/=0c€), o <0,
G(&) = { Votana(\/af), o >0,
—+/o coty(1/08), o >0,

. I'(14a)
\ £9+tw

(9)
where the generalized hyperbolic and trigonomet-
ric functions are defined as

_ Ea(i€”) — Ea(—i€”)

sing (§) = 5; ,
cosy (€) = Zali€?) +2Ea(—i£°‘)7
sinhy (€) = Zal€”) —2Ea(—§°‘)’
cosha(£) = Ea(€") +2Ea(—§a),
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_ sing (&) _ cosq(§)
tana (5) - COSa(g)’ COtOé(é.) - Sina(€)7
_ sinhq(§) _cosh,(§)
tanh, (§) = cosho (6)" coth, (&) = sinho ()’
Where Ea(é) = i I“(lifjka)7 a > 0 iS the
k=0

Mittag-LefHer function.

Step 3. Substituting (8) into (7) and using
(1), the left-hand side of (7) is converted to an-
other polynomial in G’ (Vo + G2) after eliminat-
ing the denominator. Equating each coefficient
of this polynomial to zero, yields a set of alge-
braic equations for ajo, aj;, bji, i =1,...,m, j =
1,2, ... k.

Step 4. Solving the equations system in Step
3, and by using the solutions of Eq. (1), we can
construct a variety of exact solutions for Eq. (5).

3 Applications for the space-

time fractional Whitham-
Broer-Kaup (WBK) equa-
tions

In this section, we will apply the described
method in Section 2 to solve the space-time frac-
tional Whitham-Broer-Kaup (WBK) equations
[24]

D& + D% (uv) — BD2%v + yD3% = 0, (10)

{ D¢+ uD%u + D¢ + D2y = 0,
with 0 < a < 1. In [24], the authors solved
Egs. (10) by a proposed fractional sub-equation
method based on the fractional Riccati equation,
and established some exact solutions for them.
Now we will apply the described method above
to Egs. (10). To begin with, we suppose u(z,t) =
U§), v(z,t) = V(§), where £ = kx + ct + &o,
k,c # 0, & are constants. Then by use of the
second equality in (4) we have

{ Dgu = D3U(§) = (DgU)(E,)™ = k*DgU,
Difu = DPU(E) = (DgU)(&§)" = ¢* DU,
and similarly we have DZv = k*DgV, Dg(uv) =

kaD?(UV), D¢y = cO‘Dg‘V. So Egs. (10) can be
turned into

DU + k*UDgU + k“DgV + BkZo‘DgaU =0,

*DEV + k*DE(UV)
—BE** DV + 4k DU = 0.
(11)
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Suppose that the solutions of Egs. (11) can
be expressed by

U(f) =ag + Z [GZGZ + biGifl\/U—i-—GQ],
i=1

V(f) =co+ Z [ClGZ + dZGZ_lm]
=1

(12)
where G = G(§) satisfy Eq. (1).
Balancing the order between the highest order
derivative term and nonlinear term in Egs. (11),
we can obtain m =1, n = 2. So we have

U(f) =ag+a1G+biVo + G2,
V() =co+ 1G4 c2G?
+d1Vo + G2 + dyGvo + G2

Substituting (13) along with (1) into (11) and
collecting all the terms with the same power of
GVo + G? together, equating each coefficient to
zero, yields a set of algebraic equations. Solving
these equations, yields:

Case 1:

(13)

70[7 ai ::l:2ka\//82+ ’ bl :07
co = —20k* (B B2+ v+ B2 +7), 1 =0,
cy = =2k (£BVB% + v+ B2 +7),

di =0, dy = +2k“\/B2 + 7.

Case 2:
ag = —c*k™%, a1 = 0, by = +2k%/ 52 + 7,
co = —0k**(B% +7), 1 =0,
cr = —2k**(B% + ),

di =0, dy = F2Bk**\/52 + .
Case 3:

ap = —c%k

70[7 ap = :l:ka\/ B2+77

b1 = :i:k:a\/ 62 + v,
co = —ok**(£6VB2 + 7 + 57 +7),
c1 =0, cg = —kK**(£BVB2+ 7+ B +1),
dy =0, dy = FE* /B2 4+ ~(B £ VB2 +7).

Substituting the results above into (13), and
combining with (9) we can obtain the follow-
ing exact solutions to the space-time fractional
Whitham-Broer-Kaup (WBK) equations.

From Case 1 and (9) we obtain:

ap = —ck
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When o < 0,

Ur(§) = —c®k~* F 2¢/—0k*\/ 3% + ~ tanh, (v/—0&),

Vi(§) = —20k%(£BV/B2+ 7+ B2 +7)
+20k2(£8/B2 + 7 + B2 + 7)[tanh, (v—0))?
+20k*\/B2 + ~ tanh, (v —0€)

V/[tanha (v=0€)]? —

(14)

Us(§) = —c®k~* F 2¢/—0k*\/ 32 + 7y cothy (v/—0&),

Va(§) = _QUkza(iﬁ\/m—l— B2 +7)
+20k2 (£3/B% + 7 + 3 + ) cotha (V=08
+20k* /3% + 7 cothy (vV—0€)
V[cothy (v/=c8)]2 —

When o > 0,

Us(§) = —c*k~* £ 2\/ck*\/ % + v tan, (1/0§),
Vs(8) = —20k** (£ B? + 7+ B2 + )
—20k**(£8/ 2 + v + B2 + 7)[tana (V7€) ?
+20k% /2 4 v tany (vo&)y/1 + [tang (v/o€)]2.
(16)
Uy(§) = =¥k F 20/0k“\/ B2 + 7y cota(1/0E),
Vi(€) = =20k (£8V/ 5% +v + 52 +7)
ook (L5 T + 5 1) cota(VEE)P

(15)

2k 7 coto (/)L + [t N
When o =0,
r'a+ a)]

Us(€) = k= 2k T 7 Sy
V5(€) = —2h2 (£8Y/FTH 7 + 57 + ) gaj Dy
w2k /BT o K e,

& tw
where w is a constant.
From Case 2 and (9) we obtain:
When o < 0,

Us(§) = —ck™
+2/=0k®\/B2 + v/[tanh, (v—=0¢)]? —
Vo (€) = —ok?*(B% + ) + 20k2 (5% + )
[tanh, (v —0€))? F 208K>*\/ B2 +~
tanhq (v/—0&)+/[tanhs (v/=0&)]? —

((Uz(¢) = =k
9/ ko /BT 7y/feotha (Vo OF -
V2(§) = —ok** (8% + ) + 20k°* (8% + )
[cothy (vV—0&)] F 208k>Y\/B2 + v
cothy (v/—0€)+/[cothy (v/—0€)]2 —

(18)

(19)

(20)
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When o > 0,

Us(§) = —c*k™“
+£2/0k*\/B% + 7\/1 + [tana(v/o&)]%,
V&(&) = —ak** (6% + ) — 20k2a(ﬁ2 +7)
[tang (v/7€)]? F 208k%* /32 +

tang (v/o€)/1 + [tang( \ff)]
(21)
Up(€) =~k & 2y/ake/F 14
V14 [cota(vaE)P?,
Vo(§) = kz"‘(ﬂz +7)

—2ak2a(62 + 7)[cota (/)]

+20 8Kk \/ 2 4y cota (vo&)\/1 + [cote (v/T€)]2.
(22)

When o = 0,

1+a

Uo(§) = =¥k £ 2k*/32% + \ l,

Vio(€) = —2k%(52 + ) [+ ifjﬁ

s2pk20 /B e o ),

& tw
where w is a constant.
From Case 3 and (9) we obtain:
When o < 0,

Uni(§) = —c*k~* F /—0k*/B* + ytanhs (v—0¢)
+/—ok®\/ % + v/ [tanh, (vV—0€)]? —

Vi (§) = —ok**(EBVA + 7 + B2 +7)
+ok?*(£B+/ 8% + v + B2 + ) [tanh, (v —0¢)]?
Sk /P 3(5 % )
tanhg (v/—0€)+/[tanh, (vV—0&)]2 —

(23)

(24)
[ U12(€) = =k~ F /—0k™/ 3% + v cotha (v/—0¢)
+1/=0k® /B2 + 1/ [cotha (V=0 -

Vig(§) = —ok**(£B/ B2+~ + B2 +7)
+0k?*(£8/B2 + 7 + % + 7)[cotha (v=08)]?
Fok?\/B2+ (B £ /B2 +7)

[ cotha(v/=0€)/[cothy (v/—0&)]? —

When o > 0,

Ur3(§) = =%k~ £ /ok*/B? + 7 tana (Vo§)
£k \/ % + 7y/1 + [tans (o) ]2,

Vis(§) = —ok?*(£8y/ B2+ + B2 +7)
—ok**(£BV/B% + v+ B2+ w)[tana(ﬁﬁ)]Q

(25)

Fok** /B2 + (B £ VB +
[ tany(y/0&) \/1 + [tan, \ff)]

(26)
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[ U14(8) = =k~ F /ok*\/ 2 + v cota (V/0E)
iﬁka\/62+v\/{1+ [cota (v/0€)2},

Via(€) = —ok* (£ B2 + v+ 8% +7)
—ff/-<f““(iﬂ\/62 + 7+ % 4 7)[cota(v/TE)]?
ok /B2 1 (B £ /BZ + )

coty (v/T€) \/1 [cotq (v/T&))?.
(27)
When o = 0,
[ U13() =~k F ko /B ’Y[M]
kA e
Vis(€) =~ iB\/BQ 7+ 8+ ) (el
k2a / ,3:|: /ﬁQ ,}/
I'(1 ) (l—l—a)
L [§a+w” §°‘+w|’
(28)

where w is a constant.

Remark 1 Compared with the results in [24],
the established solutions in Eqs. (14)-(28) are
new exact solutions for the space-time frac-
tional Whitham-Broer-Kaup (WBK) equations,
and have not been reported by other authors in
the literature.

4 Application for the space-time
fractional Fokas equation

We consider the space-time fractional Fokas equa-
tion [19]

82()zq

A B 84(xq a4aq
0t*0z¢

0x3%9xy  dx3*0xs
aQaq 6 8204(1
r70xy  Oyi'oyy
In [19], the authors solved Eq. (29) by a frac-
tional Riccati sub-equation method, and obtained
some exact solutions for it. Now we will apply the
described method in Section 3 to Eq. (29).
Suppose q(z,y,t) = U(§), where & = ct +

kix1 + koxo + Ly + laya + &0, k1, k2, U, 12, ¢, &
are all constants with ki, k2, I, l2, ¢# 0. Then
by use of the second equality in Eq. (4), Eq. (29)
can be turned into

0% 0%
12—
T oy

+12¢5 =0,0<a<1. (29

Ak DZU — k{*k$ DU + k3*k1 DU+

12k kS (DEU)? 4+ 12k kS UDZU — 61313 DU = 0.
(30)
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Suppose that the solution of Eq. (30) can be
expressed by

UE) =ao+ Y [a:G +b:G" o+ G,

i=1

where G = G(§) satisfies Eq. (1). By Balanc-
ing the order between the highest order deriva-
tive term and nonlinear term in Eq. (30), we can
obtain m = 2. So we have

U(€) = ag+a1G+aaG? + bV o + G2 +b,G\ o + G2.
(32)

(31)

Substituting (32) along with (1) into (30) and
collecting all the terms with the same power of
G+ o + G? together, equating each coefficient to
zero, yields a set of algebraic equations. Solving
these equations, yields:

Case 1:
o Ak} koo — AR k5" 0 — 2¢7 kY + 31“12
0~ 6k kS
CL1:0, azzk%a—kga, b1:0, b2:0
Case 2:
I — 2¢ kY 9 19 9
=== =0 k1% — k5®

by =0, by = 14%\/37(1@%@ — k2%,

Substituting the results above into Eq. (32),
and combining with (9) we can obtain the follow-
ing exact solutions to Eq. (29).

From Case 1 and (9) we obtain same results
as in [19], while from Case 2 and (9) we obtain
the following results:

When o < 0,
31918 — 2k
Uy(e) = S — 26Ky
—4%(18& k2%) o [tanhg (v=06)]?

sburfo {1~ [ranba(V=oO))
T f(kQQ_ k2%)/—c[tanhg (v —0€)] x

Vol — tanha (V=08)]2}. (33)

3191 — 2k
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9
7 k2a
40(

+h1y/o {1~ [cotha (V—08)]2)
;%wﬂﬁ%m%¢§hmdﬁ$mx

E2*)o[cothy (v—0&))?

\/0{1 — [coths (v/—0c€)]2}. (34)
When o > 0,
Us(§) = W
2 0~ i oltana (VO
+by \/U{l + [tana(\/gf)]Q}
3 VB — 13%) yana (V)]
\/0{1 + [tana (Vo€)]?}. (35)
IS0 — 2%k
Us(§) = W
(137 — )oloota (VTP
—|—b1\/0{1 + [cota (v0§)]?}
T VBT — ) aloota (V)]
VoL + [cota(v/a€)]2). (36)
When o = 0,
3191 — 2k
Us(§) = W
+§g%a—%ﬂf§ﬂ:?P+hH§kﬁf\

3 2c 2c F(1+a) F(1+a)
F 10 VAL0 — k) g g (37

where w is a constant.

Remark 2 As one can see, the established solu-
tions (33)-(87) for the space-time fractional Fokas
equation above are different from the results in
[19], and are new exact solutions so far to our
best knowledge.
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5 Some further considerations

In this section, we will deduce some new general

solutions for Eq. (1). Suppose G(§) = H(n),

and a nonlinear fractional complex transforma-
«

; - _¢&
tion n = Ti+a) Then by Eq. (2) and the
first equality in Eq (4), we have Dg‘G(f) =
DgH(n) = H'(n). So Eq. (1) can
be turned 1nto the f llowing ordinary differential
equation

H'(n) = o+ H*(n), (38)
which admits the following solutions

—v/—o tanh(y/—on), 0 <0,

—v/—o coth(v/—on), o <0,

H(n) ={ +otan(y/on), o >0, (39)

—+/o cot(y/on), o >0,
1 _ _
e const, o =0,

So we can obtain some new solutions for Eq. (1):

—y/—0 tanh( \{jgga)L o <0,

—+v/—0o coth( \(ljga))’ o <0,
G(&) = \/Etan(r(\lff a))’ o >0,
_ﬁCOt(FE{E—E(;))’ o >0,
I'l+a)

w = const, g = 0.
(40)
By use of the solutions of Eq. (1) denoted in
(40), we can obtain a series of new solutions for
the space-time fractional Whitham-Broer-Kaup
(WBK) equations and the space-time fractional
Fokas equation.
For example, from Case 1 in Section 3
and (40) we have the following solutions for

the space-time fractional Whitham-Broer-Kaup
(WBK) equations:

w1+ )’

When o < 0,
U(§) = =k~ F 2/—0ck*\/B% + v
tanh( \{;5a))

Vie(§) = —20k>* (£8/ B2+ + 52 +7)
+20k2 (£B/B2 + v + B2 +7)
tanh (322
IR

\/[tanh(lm)] —1
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U17(§) = —c%k™®
coth(r”(l_j_fa) )s
Viz(§) = =20k (£8/ B2 + 7 + 5> +7)
+20k2(£B/B2 + v+ B2 +7)
NEwTs (42)
[COth( (1 Ta) )]

+20k*\/B2 + 5 coth( Vot

R
Jleoth(/EZE ) -

When o > 0,

2/ kB

Urs(§) = —ck™* £ 2/ok™\/B* + tan(relrf;))

Vig(€) = =20k (£8/B% + 7 + 52 +7)
—20k>*(£0/B2 + 7 + B + v)[tan(r(\ﬁg )

+20ke /B + tan(F(\{Ef:))

\/1+[tan( E{fa))] .

(43)

Vig(€) = —20k>*(£B8V/B* +v + % +7)
—20k>*(£B/B2 + 7 + 7 + 7)[cot( Vo ))]

I'(l+«
F20k*/ B2 + vy cot (7T 2oy Vot” )

T(1+a)
\/1+[cot(r(\{g_§a))}2.
(44)
In particular, if we take 0 = —1, k = ¢ =

1, =1, ~v=3, a= %, & = 0, then we obtain
the following solitary wave solutions, which are
shown in Figs. 1-2.

UQo(aL‘,t) =-1- 4tanh( (1‘ +3t)% ),
r)
va0(€) = 12— 12[tann (21 )2
r)
4 tanh(%) tann (L2502 ) g,
rd) rd)

(45)

Ifwetake o =1, k=c=1, =1, v =
3, a = %, & = 0, then we obtain the following

periodic wave solutions, which are shown in Figs.
3-4.
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Fig 1. The solitary solution u, (x, t)with

20
c=-1, k=c=1, &0:0’ a:%, B:L v=3

3000+
ES{J{J—f
1000—:_
1 5{]{]—

1000-]

500

100 a
-5
50T i 20
50 &0

¢ 100 x

Fig 2. The solitary solution V,

2O(X, t)with

c=-1, k=c=1, &020, oc:%, B=1, y=3

st (€) = —1 + 4tan(& +3t)% ),
I'(3)
ea(6) = —12 = (5 )
2
+4 tan( (= +3t)§ ) |1+ [tan( (z +3t>§ )]?
I'3) ;)

From Case 2 in Section 4 and (40) we have the
following solutions for the space-time fractional
Fokas equation:

When o < 0,

3191 — 2k
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Fig 3. The periodic solution u,, (x, t)with

6=l k=c=1 & =0, 0=, B=1,v=3

- 6000+
- 5000+
= 4000

-3000+

- 2000

- 1000+

Fig 4. The periodic solution v, (x, t)with

6=l k=c=1, & =0, 0=, p=1,v=3

9 « (o4
—Zo(kf — k3%)o[tanh(

Ve
I'l+a)

+01 \/cr{l — [tanh(m)]z}

$%\/3>1(k%0‘ — k3%)y/—c[tanh(

\/0{1 - [tanh(lfig;)]z}. (47)
Ur(e) = 2R
-0 — Koot ()
by \/a{l - [coth(lff;)P}
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VB ~ KTt 2 )
V—ag®
\/0'{1 - [coth(m)]Z}. (48)
When o > 0,
Us(€) = 3IS1T — 2¢kY

kS KD

Vog®

4y (45 = ) fan( e 1

+b1\/a{1 + [tan(r(\ffaa))]z}

Vog®
I'l+a)

\/0{1 + [tan(rfaga

£ 2 VIR — 1) Valban( )

@)

O 3IS1Y — 2¢VkY
 BESED
_Vogt
I'l+a)

Ug(§)

o (R~ K)oleot( 2o

+b1 \/0{1 + [cot(r‘(\lﬁfﬁ;))]?}

VAL — )Vt (7l

\/a{l + [cot(r(\lﬁfz))]?}.

Similarly, combining the rest cases in Sec-
tions 3 and 4 with (40) we can also obtain abun-
dant exact solutions for the space-time fractional
Whitham-Broer-Kaup (WBK) equations and the
space-time fractional Fokas equation, which are
omitted here.

(50)

6 Conclusions

By introducing a new ansatz, we have proposed an
extended fractional Riccati sub-equation method
for solving FPDEs. It is worthy to note that the
variable transformation & = ct + kiz1 + koxo +
oot kpxn +&o used here plays an important role in
the process of establishing exact solutions, which
ensures that a certain FPDE can be turned into
another fractional ordinary differential equation.
Being concise and powerful, the proposed method
can be applied to solve other fractional partial
differential equations.
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