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1 Introduction
In recent years, the existence of multiple periodic so-
lutions in biological models has been widely studied.
For example, systems with harvesting terms are of-
ten considered [1-13]. In particular, Zhao and Li [1]
considered a non-autonomous two species parasitical
model with harvesting terms{

ẋ = x(t)(a1(t)− b1(t)x(t))− h1(t),
ẏ = y(t)(a2(t)− b2(t)y(t) + c(t)x(t))− h2(t),

(1)
where, x(t) and y(t) denote the densities of the host
and the parasites, respectively; ai(t), bi(t), c(t) and
hi(t)(i = 1, 2) are all positive continuous functions
and denote the intrinsic growth rate, death rate, ob-
taining nutriment rate from the host, harvesting rate,
respectively. In the system (1), the parasitical influ-
ence on its host is negligible.

As we know, in population dynamics, many
evolutionary processes experience short-time rapid
chance after undergoing relatively long sooth varia-
tion. Examples include stocking of species and annual
immigration. Incorporating these phenomena gives us
impulsive differential equations. In 2013, we studied
the existence of multiple positive periodic solutions to
two species parasitical model with impulsive effects
and harvesting terms [14]:

ẋ1(t) = x1(t)
(
a1(t)−b1(t)x1(t−τ11(t))

)
−h1(t), t ̸= tk;

ẋ2(t) = x2(t)
(
a2(t)−b2(t)x2(t−τ22(t))

+c(t)x1(t−τ21(t))
)
− h2(t), t ̸= tk;

xi(t
+
k ) = (1 + gik)xi(tk), t = tk, k ∈ Z+,

(2)

where gik ∈ (−1,+∞)(i = 1, 2; k ∈ N = {1, 2}).
{tk}k∈N is a strictly increasing sequence with t1 > 0
and limt→∞ tk =∞. xi(t)(i = 1, 2) is the ith species
population density. ai(t) > 0(i = 1, 2) denote the in-
trinsic growth rate, bi(t) > 0 and hi(t) > 0(i = 1, 2)
stand for death rate, obtaining nutriment rate from the
host, harvesting rate, respectively. c(t) > 0 represents
obtaining nutriment rate from the host, τ21(t) ≥ 0
stands for the time-lag in the process of transforma-
tion from the 1th species to the 2th species. τii(t) ≥
0(i = 1, 2) represents the time-lag in the process of
intra-specific competition. For the theory of impulsive
differential equations, we refer the reader to [15-30].
In particular, Li and Ye [15] in studied the existence
multiple positive almost periodic solutions to an im-
pulsive non-autonomous Lotka-Volterra predator-prey
system with harvesting terms and the authors first in-
troduce a new method to discuss the existence multi-
ple positive almost periodic solutions for the system
under consideration.

Since biological and environmental parameters
are naturally subject to fluctuation in time, the effects
of a periodically varying environment are considered
as important selective forces on systems in a fluctuat-
ing environment. Therefore, on the one hand, models
should take into account the seasonality of the period-
ically changing environment. However, on the other
hand, in fact, it is more realistic to consider almost
periodic system than periodic system.

By above, this motivates us to investigate the ex-
istence of multiple positive almost periodic solutions
to system (2). In system (2), non-autonomous param-
eters ai(t), bi(t), c(t), hi(t)(i = 1, 2) are all positive
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continuous almost periodic functions, the time delays
τ11, τ21, and τ22 are all nonnegative continuous almost
periodic functions; gik > −1, i = 1, 2, k ∈ Z+ are
constants and 0 = t0 < t1 < t2 < · · · < tk < tk+1 <
· · · , are impulse points with limk+∞ tk = +∞.

With system (2) we can take into account the pos-
sible exterior effects under which the population den-
sities change very rapidly. For instance, impulsive re-
duction of the population density of a given species
is possible after its partial destruction by catching, a
natural constraint in this case is 1 + gik > 0 for all
k ∈ Z+. An impulsive increase of the density is pos-
sible by artificial breeding of the species or release
some species (gik > 0).

However, to the best of ours knowledge, there are
few results on the existence of four positive almost
periodic solutions for the delay parasitical with im-
pulsive effects in literatures. The main purpose of this
paper is to establish sufficient conditions for the exis-
tence of positive almost periodic solutions to system
(2) by applying Mawhins continuation theorem of co-
incidence degree theory [31].

The organization of this paper is as follows. In
Section 2, we make some preparations and state some
lemmas which are useful in later sections. In Section
3, by applying Mawhins continuation theorem of co-
incidence degree theory, we establish sufficient con-
ditions for the existence of multiple positive almost
periodic solutions to system (2). Conclusion is given
in Section 4.

2 Preliminaries
Now we first introduce some basic notations. Let
AP (R) = {p(t) : p(t) is a real valued al-
most periodic function on R}. Suppose that
f(t, ϕ) is almost periodic in t, uniformly with re-
spect to ϕ ∈ C([−σ, 0], R). T (f, ϵ, S) will denote
the set of ϵ-almost periods with respect to S ⊂
C([−σ, 0], R), l(ϵ, S) the inclusion interval, Λ(f) the
set of Fourier exponents, mod(f ) the module of f , and
m(f) the mean value.

Lemma 1 (14). If f(t) ∈ AP (R), then there exists
t0 ∈ R such that f(t0) = m(f).

Lemma 2 (14). Assume that p(t) ∈ AP (R), then p(t)
is bounded on R.

Lemma 3 (14). Assume that x(t) ∈ AP (R) ∩
C1(R,R), then there exist two points sequences
{ξk}∞k=1, {ηk}∞k=1 such that N ′(ξk) = N ′(ηk) =
0, limk→∞ ξk =∞ and limk→∞ ηk = −∞.

Lemma 4 (14). Assume that N(t) ∈ AP (R) ∩
C1(R,R), then N(t) falls into one of the following
four case:

(i) There are ξ, η ∈ R such that N(ξ) =
supt∈RN(t) and N(η) = inft∈RN(t). In this case,
N ′(ξ) = N ′(η) = 0

(ii) There are no ξ, η ∈ R such that N(ξ) =
supt∈RN(t) and N(η) = inft∈RN(t). In this case,
for any ϵ > 0, there are exist two points ξ, η ∈ R such
that N ′(ξ) = N ′(η) = 0, N(ξ) > supt∈RN(t) − ϵ
and N(η) < inft∈RN(t) + ϵ

(iii) There is a ξ ∈ R such that N(ξ) =
supt∈RN(t) and There is no η ∈ R such thatN(η) =
inft∈RN(t). In this case, N ′(ξ) = 0 and for any
ϵ > 0, there exists an ξ such that N ′(ξ) = N ′(η) = 0
and N(η) < inft∈RN(t) + ϵ.

(iv) There is a η ∈ R such that N(η) =
inft∈RN(t) and There is no ξ ∈ R such that N(ξ) =
supt∈RN(t). In this case, N ′(η) = 0 and for any
ϵ > 0, there exists an ξ such that N ′(ξ) = N ′(η) = 0
and N(ξ) > supt∈RN(t)− ϵ.

Let PC(R,R2) = {φ : R → R, φ is a piece-
wise continuous function with points of discontinuity
of the first kind at tk, k = 1, 2, . . . , at which φ(t−k )
and φ(t−k ) = φ(tk)}.

Since the solutions of (2) belong to the space
PC(R,R2), we adopt the following definitions for al-
most periodicity.

Definition 5 (27). The family of sequences {tjk =
tk+j − tk, k, j ∈ Z} is said to be equipoltentially al-
most periodic if for arbitrary ϵ > 0, there exists a rel-
atively dense set of ϵ-almost periods, that are common
for any sequences.

Definition 6 (27). The function φ ∈ PC(R,R) is said
to be almost periodic, if the following conditions hold:

(1) the set of sequences {tjk = tk+j−tk, k, j ∈ Z}
is equipotentially almost periodic;

(2) for any ϵ > 0 there exists δ(ϵ) > 0 such that
if the points t1 and t2 belong to the same interval of
continuity of φ(t) and |t1 − t2| < δ, then |φ(t1) −
φ(t2)| < ϵ;

(3) for any ϵ > 0 there exists a relatively dense
set T of ω-almost periodic such that if τ ∈ T , then
|φ(t + τ) − φ(t)| < ϵ for all t ∈ R which satisfy the
condition |t− tk| > ϵ, k ∈ Z.

Consider the following system
Ṅ1(t) = N1(t)

(
a1(t)−b̄1(t)N1(t−τ11(t))

)
−h̄1(t),

Ṅ2(t) = N2(t)
(
a2(t)−b̄2(t)N2(t−τ22(t))

+c̄(t)N1(t− τ21(t))
)
− h̄2(t),

(3)
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where

b̄i(t) = bi(t)
∏

0<tk<t

(1 + gik);

c̄(t) = c(t)
∏

0<tk<t

(1 + g2k);

h̄i(t) = hi(t)
∏

0<tk<t

1

1 + gik
, i = 1, 2.

Lemma 7. For systems (2) and system (3), the follow-
ing results hold:

(1)if (N1(t), N2(t))
T is a solution of (3), then

(x1(t), x2(t))
T

=

(
N1(t)

∏
0<tk<t

(1+g1k),

N2(t)
∏

0<tk<t

(1+g2k)

)T

is a solution of (2).
(2) if (x1(t), x2(t))T is a solution of (2), then

(N1(t), N2(t))
T

=

(
x1(t)

∏
0<tk<t

(1+g1k)
−1,

x2(t)
∏

0<tk<t

(1+g2k)
−1
)T

is a solution of (3).

Proof. Suppose that (N1(t), N2(t))
T is a solution of

(3). Let

xi(t) =
∏

0<tk<t

(1 + gik)Ni(t), i = 1, 2,

then for any t ̸= tk, k ∈ Z, by substituting

Ni(t) =
∏

0<tk<t

(1 + gik)
−1xi(t), i = 1, 2

into system (3), we can easily verify that the first and
the second equations of system (2) holds.

For t = tk, k ∈ Z+, i = 1, 2, we obtain

xi(t
+
k ) = lim

t→t+k

∏
0<tk<t

(1 + gik)Ni(t)

=
∏

0<ts<tk

(1 + gis)Ni(tk)

= (1 + gik)
∏

0<ts<tk

(1 + gisNi(tk))

= (1 + gik)Ni(tk).

Hence, the second equation of system (2) also holds.
Thus (x1(t), x2(t))T is a solution of system (2).

(2) We first show that Ni(t), i = 1, 2 are contin-
uous. Since Ni(t), i = 1, 2 are continuous on each
interval (tk, tk+1], it is sufficient to check the continu-
ity of Ni(t) at the impulse points tk, k ∈ Z+. Since
Ni(t) =

∏
0<tk<t(1 + gik)

−1xi(t), i = 1, 2 we have

Ni(t
+
k ) =

∏
0<tk<t

(1 + gis)
−1xi(t

+
k )

=
∏

0<ts<tk

(1 + gis)
−1xi(tk) = Ni(tk),

Ni(t
−
k ) =

∏
0<tk<t

(1 + gis)
−1xi(t

−
k )

=
∏

0<ts<tk

(1 + gis)
−1xi(tk) = Ni(tk).

Thus Ni(t), i = 1, 2 is continuous on [0,∞). It is
easy to check that (N1(t), N2(t))

T satisfies system
(3). Therefore, it is a solution of system (3). This
completes the proof of Lemma 7. ⊓⊔

Lemma 8. [10] Assume that x(t) ∈ AP (R), then
x(t) is bounded on R.

For the sake of convenience, we introduce nota-
tions as follows:

f l = inf
t∈R

f(t), fM = sup
t∈R

f(t),

where f(t) is a positive continuous almost periodic
function. For simplicity, we need to introduce some
notations as follows.

l±1 =
aM1 ±

√
(aM1 )2 − 4b̄l1h̄

l
1

2b̄l1
,

l±2 =
al2 ±

√
(al2)

2 − 4b̄M2 h̄
M
2

2b̄M2
,

where i = 1, 2.
Throughout this paper, we need the following as-

sumptions.

(C1): al1 > 2
√
b̄M1 h̄

M
1 ;

(C2): al2 > 2
√
b̄M2 h̄

M
2 ;

(C3): c̄M l+1 >
√

(al2)
2 − 4b̄M2 h̄

M
2 .

Lemma 9 (4). Let x > 0, y > 0, z > 0 and x >
2
√
yz, for the functions

f(x, y, z) =
x+

√
x2 − 4yz

2z
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and

g(x, y, z) =
x−

√
x2 − 4yz

2z
,

the following assertions hold.

(1) f(x, y, z) and g(x, y, z) are monotonically in-
creasing and monotonically decreasing on the
variable x ∈ (0,∞), respectively.

(2) f(x, y, z) and g(x, y, z) are monotonically de-
creasing and monotonically increasing on the
variable y ∈ (0,∞), respectively.

(3) f(x, y, z) and g(x, y, z) are monotonically de-
creasing and monotonically increasing on the
variable z ∈ (0,∞), respectively.

Lemma 10. Assume that (C1),(C2) and (C3) hold,
then we have the following inequalities:

(1) ln l+1 > lnA+, lnA− > ln l−1 ;

(2) ln l+2 < lnH1, ln l−2 > lnH2.

Proof. Since

l+2 =
al2 +

√
(al2)

2 − 4b̄M2 h̄
M
2

2b̄M2

<
al2
b̄M2

<
aM2
b̄l2

<
aM2 + c̄M l+1

b̄l2
= H1,

l−2 =
al2 −

√
(al2)

2 − 4b̄M2 h̄
M
2

2b̄M2

=
2h̄M2

al2 +
√

(al2)
2 − 4b̄M2 h̄

M
2

>
h̄M2
al2

>
h̄l2

aM2 + c̄ml+1
= H2.

Applying Lemma 9, we have

l+1 =
aM1 +

√
(aM1 )2 − 4b̄l1h̄

l
1

2b̄l1

= f(aM1 , b̄
l
1, h̄

l
1)

> f(al1, b̄
M
1 , h̄

M
1 )

=
al1 +

√
(al1)

2 − 4b̄M1 h̄
M
1

2b̄M1
= A+,

l−1 =
aM1 −

√
(aM1 )2 − 4b̄l1h̄

l
1

2b̄l1

= g(aM1 , b̄
l
1, h̄

l
1)

< g(al1, b̄
M
1 , h̄

M
1 )

=
al1 −

√
(al1)

2 − 4b̄M1 h̄
M
1

2b̄M1
= A−.

Thus, we have ln l+1 > lnA+, lnA− > ln l−1 and
ln l+2 < lnH1, ln l−2 > lnH2 hold. The proof of
Lemma 10 is complete. ⊓⊔

3 Existence of at least four positive
almost periodic solutions

We first summarize serval concepts from the book by
Gaines and Mawhin [31].

Let X and Z be real normed vector spaces. Let
L : DomL ⊂ X → Z be a linear mapping and
N : X × [0, 1] → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping
of index zero if dim Ker L = codim Im L < ∞
and ImL is closed in Z. If L is a Fredholm map-
ping of index zero, then there exists continuous pro-
jectors P : X → X and Q : Z → Z such that
ImP = KerL and KerQ = Im L = Im (I − Q),
and X = KerL

⊕
Ker P,Z = Im L

⊕
ImQ. It

follows that L|Dom L∩Ker P : (I − P )X → Im L is
invertible and its inverse is denoted by KP . If Ω is a
bounded open subset of X , the mapping N is called
L-compact on Ω̄×[0, 1], ifQN(Ω̄×[0, 1]) is bounded
and KP (I −Q)N : Ω̄× [0, 1] → X is compact. Be-
cause Im Q is isomorphic to Ker L, there exists an
isomorphism J : ImQ→ Ker L.

Lemma 11. [31] Let L be a Fredholm mapping of
index zero and let N be L-compact on Ω̄× [0, 1]. As-
sume

(a) for each λ ∈ (0, 1), every solution x of Lx =
λN(x, λ) is such that x /∈ ∂Ω ∩Dom L;

(b) QN(x, 0)x ̸= 0 for each x ∈ ∂Ω ∩Ker L;

(c) deg(JQN(x, 0),Ω ∩KerL, 0) ̸= 0.

Then Lx = N(x, 1) has at least one solution in Ω ∩
DomL.

Let T be a given positive constant and a finite
number of points of the sequence {τk} lies in the in-
terval [0, T ]. Let PC([0, T ],Rn) be the set of func-
tions x : [0, T ] → Rn which are piecewise con-
tinuous in [0, T ] and have points of discontinuous
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τk ∈ [0, T ], where they are continuous from the left.
In the set PC([0, T ],Rn) introduce the norm ∥x∥ =
sup |x(t)| : t ∈ [0, T ] with which PC([0, T ],Rn) be-
comes a Banach space with the uniform convergence
topology.

In our case, we shall consider X = Z = V1
⊕
V2,

where

V1 =


z(t) = (z1(t), z2(t))

T
∣∣ zi(t) ∈ AP (R) :

mod(zi(t)) ⊂ mod(Fi),∀µ ∈ Λ(zi(t))
satisfies |µ| > α, i = 1, 2


satisfies that V1 ∪ {ai(t), bi(t), c(t), hi(t), āi(t),
b̄i(t), h̄i(t), i = 1, 2} is equi-almost-periodic,

V2 = {z(t) ≡ (c1, c2) ∈ R2},

where

F1 = F (t, ϕ1, ϕ2)

= a1(t)− b̄1(t)eϕ1(0) − h̄1(t)e−ϕ1(0),

F2 = F (t, ϕ1, ϕ2)

= a2(t)− b̄2(t)eϕ2(0) + c̄(t)eϕ1(0)

−h̄2(t)e−ϕ2(0),

in which ϕi ∈ C([−σ, 0],R), i = 1, 2, σ = max{τ}
and α is a given positive constant. Define the norm

∥z∥ =
2∑

i=1

sup
t∈R
|zi(t)| for all z ∈ X = Z).

By making the substitution

Ni(t) = eui(t), i = 1, 2,

system (2) can be reformulated as
u̇1(t) = a1(t)− b̄1(t)eu1(t−τ11(t))

−h̄1(t)e−u1(t),

u̇2(t) = a2(t)− b̄2(t)eu2(t−τ22(t))

+c̄(t)eu1(t−τ21(t)) − h̄2(t)e−u2(t).

(4)

Similar to the proofs of Lemma 2 and Lemma 7 in
[6], one can easily prove the following three Lemmas,
respectively.

Lemma 12. X and Z are Banach spaces equipped
with the norm ∥ · ∥.

Lemma 13. Let L : X → Z, Lu = u′ = (u
′
1, u

′
2)

T .
Then L is a Fredholm mapping of index zero.

Lemma 14. Let N : X× [0, 1]→ Z,,

N(u(t), λ) = (N1(u(t), λ), N2(u(t), λ))
T ,

where

N1(u(t), λ) = a1(t)− b̄1(t)eu1(t−τ11(t))

−h̄1(t)e−u1(t),

N2(u(t), λ) = a2(t)− b̄2(t)eu2(t−τ22(t))

+λc̄(t)eu1(t−τ21(t)) − h̄2(t)e−u2(t)

and P : X → X, Px = m(x);Q : Z→ Z, Qu =
m(u). Then N is L-compact on Ω̄ (Ω is a open
bounded subset of X).

Theorem 15. Assume that (C1),(C2) and (C3) hold.
Then system (2) has at least four positive almost peri-
odic solutions.

Proof. In order to use Lemma 11, we have to find
at least four appropriate open bounded subsets in X.
Corresponding to the operator Lu = λN(u, λ), λ ∈
(0, 1), we have

u̇1(t) = λ(a1(t)− b̄1(t)eu1(t−τ11(t))

−h̄1(t)e−u1(t)),

u̇2(t) = λ(a2(t)− b̄2(t)eu2(t−τ22(t))

+λc̄(t)eu1(t−τ21(t)) − h̄2(t)e−u2(t)).

(5)

Assume that u ∈ X is an almost periodic solution
of system (5) for some λ ∈ (0, 1). By Lemma 7, for
any ϵ > 0, there exist ξi, ηi ∈ R such that ui(ξi) >
uMi − ϵ, ui(η) < uli + ϵ and u̇i(ξi) = 0, u̇i(ηi) =
0, i = 1, 2. From this and system (5), we obtain

0 = (1− λ)a1(ξ1)− b̄1(ξ1)eu1(ξ1−τ11(ξ1))

−h̄1(ξ1)e−u1(ξ1),

0 = a2(ξ2)− b̄2(ξ2)eu2(ξ2−τ22(ξ2))

+λc̄(ξ2)e
u1(ξ2−τ21(ξ2)) − h̄2(ξ2)e−u2(ξ2),

(6)

and
0 = (1− λ)a1(η1)− b̄1(η1)eu1(η1−τ11(η1))

−h̄1(η1)e−u1(η1),

0 = a2(η2)− b̄2(η2)eu2(η2−τ22(η2))

+λc̄(η2)e
u1(η2−τ21(η2)) − h̄2(η2)e−u2(η2).

(7)
On the one hand, according to the first equation of (6)
and (7),

aM1 > (1− λ)a1(ξ1)
= b̄1(ξ1)e

ξ1−τ11(ξ1) + h̄1(ξ1)e
−u1(ξ1)

≥ b̄l1e
u1(ξ1) + h̄l1e

−u1(ξ1) > 0,

namely,

b̄l1e
2u1(ξ1) − aM1 eu1(ξ1) + h̄l1 < 0,
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which imply that

ln l−1 < u1(ξ1) < ln l+1 . (8)

Similarly, by the first equation of (7), we obtain

ln l−1 < u1(η1) < ln l+1 . (9)

The second equation of (6) gives

b̄M2 e
2u2(ξ2) + h̄M2

≥ b̄2(ξ2)e
2u1(ξ2) + h̄2(ξ2)

=
[
a2(ξ2) + λc̄(ξ2)e

u1(ξ2)
]
eu2(ξ2)

> a2(ξ2)e
u2(ξ2) > al2e

u2(ξ2).

That is

b̄M2 e
2u2(ξ2) − al2eu2(ξ2) + h̄M2 > 0,

which imply

u2(ξ2) > ln l+2 or u2(ξ2) < ln l−2 . (10)

Similarly, by the second equation of (7), we get

u2(η2) > ln l+2 or u2(η2) < ln l−2 . (11)

Moreover, from the second equation of (6), we have

b̄l2e
u2(ξ2)

≤ b̄2e
u2(ξ2) < b̄2e

u2(ξ2) + h̄2(ξ2)e
−u2(ξ2)

= a2(ξ2) + λc̄(ξ2)e
u1(ξ2)

< a2(ξ2) + c̄(ξ2)e
u1(ξ1) ≤ aM2 + c̄Meu1(ξ1)

< aM2 + c̄M l+1 ,

which imply that

u2(ξ2) < ln
aM2 + cM l+1

bl2
:= H1. (12)

Similarly, from the second equation of (7), we obtain

h̄l2e
−u2(η2)

≤ h̄2e
−u2(η2) < b̄2(η2)e

u2(η2) + h̄2(η2)e
−u2(η2)

= a2(η2) + λc̄(η2)e
u1(η2)

< a2(η2) + c̄(η2)e
u1(η1) ≤ aM2 + c̄Meu1(η1)

< aM2 + c̄M l+1 ,

which imply that

u2(η2) > ln
h̄l2

aM2 + cM l+1
:= H2. (13)

According to the first equation of (6), we have

al1 ≤ (1− λ)a1(ξ1)
= b̄1(ξ1)e

ξ1 + h̄1(ξ1)e
−u1(ξ1)

< b̄M1 e
u1(ξ1) + h̄M1 e

−u1(ξ1),

namely,

b̄M1 e
2u1(ξ1) − al1eu1(ξ1) + h̄M1 > 0,

which imply that

u1(ξ1) > lnA+, or u1(ξ1) < lnA−. (14)

Similarly, by the first equation of (7), we obtain

u1(η1) > lnA+, or u1(η1) < lnA−. (15)

From (8), (9), (14) and (15), we obtain

ln l−1 < u1(η1) < u1(ξ1) < lnA− or

lnA+ < u1(η1) < u1(ξ1) < ln l+1 . (16)

Similarly, from (10), (11), (12) and (13), we obtain

ln l+2 < u2(η2) < u2(ξ2) < lnH1 or

lnH2 < u2(η2) < u2(ξ2) < ln l−2 . (17)

By (16) and (17), we have for all t ∈ R

ln l−1 < u1(t) < lnA− or

lnA+ < u1(t) < ln l+1 , (18)

and

ln l+2 < u2(t) < lnH1 or

lnH2 < u2(t) < ln l−2 . (19)

Clearly, ln l±1 , ln l
±
2 , lnA

±, lnH1 and lnH2 are inde-
pendent of λ. Now let

Ω1 =

{
u = (u1, u2)

T ∈ X
∣∣∣∣ ln l−1 < u1(t) < lnA−,
ln l+2 < u2(t) < lnH1

}

Ω2 =

{
u = (u1, u2)

T ∈ X
∣∣∣∣ ln l−1 < u1(t) < lnA−,
lnH2 < u2(t) < ln l−2

}

Ω3 =

{
u = (u1, u2)

T ∈ X
∣∣∣∣ lnA− < u1(t) < ln l+1 ,
ln l+2 < u2(t) < lnH1

}
and

Ω4 =

{
u = (u1, u2)

T ∈ X
∣∣∣∣ lnA− < u1(t) < ln l+1 ,
lnH2 < u2(t) < ln l−2

}
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Then Ωi(i = 1, 2, 3, 4) are bounded open subsets of
X,Ωi ∩ Ωj = ϕ. Thus Ωi(i = 1, 2, 3, 4) satisfies the
requirement (a) in Lemma 11.

Now we show that (b) of Lemma 11 holds,
i.e., we prove when u ∈ ∂Ωi ∩ kerL = ∂Ωi ∩
R2, QN(u, 0) ̸= (0, 0)T , i = 1, 2, 3, 4. If it is not
true, then when u ∈ ∂Ωi ∩ kerL = ∂Ωi ∩ R2, i =
1, 2, 3, 4, constant vector u = (u1, u2)

T with u ∈
∂Ωi, i = 1, 2, 3, 4 satisfies

m(a1(t)− b̄1(t)eu1 − h̄1e−u1) = 0,

and

m(a2(t)− b̄2(t)eu2 − h̄2e−u2) = 0.

In view of the mean value theorem, there exist two
points ζi(i = 1, 2) such that

a1(ζ1)− b̄1(ζ1)eu1 − h̄1(ζ1)e−u1 = 0, (20)

and

a2(ζ2)− b̄2(ζ2)eu2 − h̄2(ζ2)e−u2 = 0. (21)

By (20) and (21), we have

ν±i =
ai(ζi)±

√
(ai(ζi))2 − 4b̄i(ζi)h̄i(ζi)

2b̄i(ζ)

with i = 1, 2.
According to Lemma 10,we obtain

ln l−1 < ln ν−1 < lnA− < lnA+ < ln ν+1 < ln l+1 ,

lnH2 < ln ν−2 < ln l−2 < ln l+2 < ln ν+2 < lnH1.

Then u ∈ Ω1 ∩ R2 or u ∈ Ω2 ∩ R2 or u ∈ Ω3 ∩ R2

or u ∈ Ω4 ∩ R2. This contradicts the fact that u ∈
∂Ωi ∩R2, i = 1, 2, 3, 4. This proves (b) in Lemma 11
holds. Finally, we show that (c) in Lemma 11 holds.
Note that the system of algebraic equations:{

a1(ζ1)− b̄1(ζ1)eu1 − h̄1(ζ1)e−u1 = 0,
a2(ζ2)− b̄2(ζ2)eu2 − h̄2(ζ2)e−u2 = 0

has four distinct solutions since (C1), (C2) and (C3)
hold,

(u∗1, u
∗
2) = (ln û1, ln û2),

where ûi = u−i or ûi = u+i , and

u±i =
ai(ζi)±

√
(ai(ζi))2 − 4b̄i(ζi)h̄i(ζi)

2b̄i(ζ)

(i = 1, 2). By Lemma 9, it is easy to verify that

ln l−1 < ln ν−1 < lnA− < lnA+ < ln ν+1 < ln l+1 ,

and

lnH2 < ln ν−2 < ln l−2 < ln l+2 < ln ν+2 < lnH1.

Therefore, (u∗1, u
∗
2) uniquely belongs to the cor-

responding Ωi. Since KerL = ImQ, we can take
J = I. A direct computation gives, for i = 1, 2, 3, 4,

deg

{
JQN(z, 0),Ωi ∩KerL, (0, 0)T

}

= sign

∣∣∣∣∣∣−b̄1(ζ1)u
∗
1 +

h̄1(ζ1)
u∗
1

0

0 −b̄2(ζ2)u∗2 +
h̄2(ζ2)
u∗
2

∣∣∣∣∣∣
= sign

[(
− b̄1(ζ1)u∗1 +

h̄1(ζ1)

u∗1

)(
− b̄2(ζ2)u∗2

+
h̄2(ζ2)

u∗2

)]
.

Since

a1(ζ1)− b̄1(ζ1)u∗1 −
h̄1(ζ1)

u∗1
= 0,

a2(ζ2)− b̄2(ζ2)u∗2 −
h̄2(ζ2)

u∗2
= 0,

then

deg

{
JQN(u, 0),Ωi ∩ kerL, (0, 0)T

}
= sign

[(
a1(ζ1)− 2b̄1(ζ1)u

∗
1

)(
a2(ζ2)

−2b̄2(ζ2)u∗2
)]

= ±1.

So far, we have prove that Ωi(i = 1, 2, 3, 4) sat-
isfies all the assumptions in Lemma 11. Hence, sys-
tem (4) has at least four different almost periodic so-
lutions. If u∗(t) = (u∗1, u

∗
2)

T is an almost periodic so-
lution of system (3), by applying Lemma 7, we known
that

(x1(t), x2(t))
T =

(
eu

∗
1(t)

∏
0<tk<t

(1 + g1k),

eu
∗
2(t)

∏
0<tk<t

(1 + g2k)

)T

is almost periodic solution of system (2). Since condi-
tions (C1), (C2) and (C3) hold, similar to the proofs
of Lemma 31 and Theorem 79 in Ref [27], we can
prove that x̄i(t) =

∏
0<tk<t(1 + gik)e

z̄i(t) is almost
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periodic in the sense of Definition 2. Therefore, sys-
tem (2) has at least four different positive almost peri-
odic solutions. This completes the proof of Theorem
15. ⊓⊔

Consider the following non-autonomous two
species parasitical model with harvesting terms

ẋ1(t) = x1(t)
(
a1(t)− b1(t)x1(t− τ11(t))

)
−h1(t),

ẋ2(t) = x2(t)
(
a2(t)− b2(t)x2(t− τ22(t))

+c(t)x1(t− τ21(t))
)
− h2(t),

(22)

where ai(t), bi(t), c(t), hi(t)(i = 1, 2),τ11, τ21, and
τ22 are all nonnegative continuous almost periodic
functions.

Similar to the proof of Theorem 15, one can easily
obtain, here we omit it.

Corollary 16. Assume that the following condition
holds

(H ′
1) ali > 2

√
bMi h

M
1 ;

cM l+1 >
√
(al2)

2 − 4bM2 h
M
2 .

Then system (22) has at least four different positive
almost periodic solutions.

4 Conclusion
By applying Mawhins continuation theorem of coin-
cidence degree theory, we study an impulsive non-
autonomous two species parasitical model with har-
vesting terms and obtain some sufficient conditions
for the existence of four positive almost periodic solu-
tions for the system (2).

Remark 17. From the proof of Theorem 15, we can
see that if the harvesting terms h1(t) = h2(t) = 0,
system (2) has at least one positive almost periodic
solution, but we could not conclude that system (2)
has at least four almost positive periodic solutions be-
cause we could not construct Ωi, i = 1, 2, 3, 4, satis-
fying Ωi ∩ Ωj = ϕ.
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