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Abstract: It is now evident that the Ordinary Least Squares (OLS) estimator suffers a huge set back in the presence
of multicollinearity. As an alternative, the Latent Root Regression (LRR) is put forward to remedy this problem.
Nevertheless, it is now evident that the LRR performs poorly when outliers exist in a data. In this paper, we propose
an improved version of the LRR to rectify the problem of multicollinearity which comes together with the existence
of outliers. The proposed method is formulated by incorporating robust MM - estimator and modified generalized
M- estimator (MGM) in the LRR algorithm. We call these methods the Latent Root MM-based (LRMMB) and
the Latent Root MGM-based (LRMGMB) methods. The performance of our developed methods are compared
with some existing methods such as the OLS, LRR, and the Latent Root M-based (LRMB). The numerical results
indicate that the LRR performs very well in the presence of multicollinearity, but performs poorly in the presence of
outliers. The proposed methods (LRMMB and LRMGMB) are more efficient than the OLS and the LRR estimators
for data having both problems of multicollinearity and outliers.
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1 Introduction
Consider a multiple linear regression model:

Y = Xβ + ε, (1)

where Y is an n × 1 vector of observation of depen-
dant variables, X is an n × p matrix of independent
variables, β is p×1 vector of unknown regression pa-
rameters, ε is an n × 1 vector of random errors which
follow the classical assumptions, namely, E(ε) = 0
and E(εεT ) = σ2I , and p is the number of inde-
pendent variables. For model fitting, the Y and X ′s
are in standardized form that make the design matrix
XTX equivalent to the correlation matrix of indepen-
dent variables. The Ordinary Least Squares (OLS)
method is widely used to estimate the parameters of
model in Eqn.7. The OLS estimates is written as fol-
lows:

β̂ = (XTX )−1XTY , (2)

Under the Gaussian Markov assumptions, this ordi-
nary least squares estimator has minimum variance
and it is the best linear unbiased estimator (BLUE)
if all underlying assumptions of this model are met.
In practice, multicollinearity is a common problem

in regression model. This problem occurs when two
or more independent variables are highly correlated.
It may be due to the data collection employed, con-
straints on the models, model specification and over-
determined model. This problem may produce in-
flated standard errors for the coefficients that will lead
to misleading parameter inferences. To rectify this
problem, Webster et al. [19] proposed a new bi-
ased procedure which is called Latent Root Regres-
sion (LRR) to recover accuracy of regression esti-
mates. However, this method is inefficient if the er-
rors are not normally distributed which is often due
to outliers. In regression, outliers can occurs in Y,
X and in both Y and X directions. Habshah and
Lau [3] suggested the Latent Root M-based Regres-
sion (LRMB) to overcome the multicollinearity prob-
lem in the presence of outliers in Y direction. Unfor-
tunately, this method is inefficient when the outliers
are located in the X- direction. Bagheri [1] modified
the Generalized M-estimator (GM-estimator) to over-
come the problem of high leverage points (outliers in
the X direction) in multiple linear regression model.
They proposed two modified GM procedures, namely
MGM2 and MGM3. In this study a Robust Latent
Root Regression (RLRR) method is formulated by in-
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corporating the high efficiency and high breakdown
point MM-estimator [17] and MGM2 procedure in the
latent root regression.

2 Latent Root Regression (LRR)
Multicollinearity occurs when there is an almost exact
linear dependency among the explanatory variables,
where the coefficient of determination (R2) will be
very close to one. This type of ill-conditioning among
the explanatory variables is referred to as near singu-
larity and the OLS estimators can be very poor in this
situation. Webster et al. [19], suggested a bias alter-
native method, namely the Latent Roots Regression
(LRR). The LRR can identify near singularities and
determine whether or not these near singularities have
predictive value. Those latent roots and latent vec-
tors that are non-predictive near singularities be re-
moved. Subsequently, a stepwise backward elimina-
tion of variables is performed. For the linear regres-
sion model in Eqn.7, let Ωn×(p+1 ) = (Y ∗

n×1 : X ∗
n×p)

be an augment matrix of the standardized response
variable, and standardized regressors variables X

Ω =


y∗1 x∗11 x∗12 . . . x∗1p
y∗2 x∗21 x∗22 . . . x∗2p
...

...
...

...
...

y∗n x∗n1 x∗n2 . . . x∗np

 , (3)

where

y∗i = (yi − ȳ)/

√√√√ n∑
i=1

(yi − ȳ)2, (4)

x∗i = (xi − x̄)/

√√√√ n∑
i=1

(xi − x̄)2. (5)

The (ΩTΩ) is the correlation matrix of the re-
sponse and regressors variables [18], and it has latent
roots (eigenvalues) and latent vectors (eigenvecors)
defined by: |ΩTΩ−λjI|= 0 and (ΩTΩ−λjI)γj = 0
for j = 0, 1, . . . , p.

Let γTj = (γ0j , γ1j , . . . , γpj) be the elements of
j th latent vector and γ0Tj = (γ1j , γ2j , . . . , γpj). As-
sume the λ0 ≤ λ1 ≤ . . . ≤ λp be the ordered latent
roots and corresponding latent vectors. The augment
matrix for latent roots and latent vectors for dependent
and independent variables is:

M(λ, γ) =


λ0 γ00 γ01 . . . γ0p
λ1 γ10 γ11 . . . γ1p
...

...
...

...
...

λp γp0 γp1 . . . γpp

 , (6)

Webster et al.[19], Gunst et al.[18] and Lawrence
and Arthur [15] pointed out that small latent roots cor-
respond to non-predictive near singularities and they
suggested a cut-off value in which λj ≤ 0.3 and
|γ0j ≤ 0.1| . Subsequently, they found out that a
stricter cut-off value of λj ≤ 0.2 and |γ0j ≤ 0.1|
could reinforce the analysis. The least squares esti-
mator of coefficients can be written as a form of latent
roots and latent vectors M(λ, γ) as follows:

β̂OLS = −δ
p∑

j=0

αjγ
0
j , (7)

where

αj = γ0jλ
−1
j (

p∑
t=0

γ20t/λt)
−1, (8)

δ2 =

n∑
i=1

(yi − ȳ)2, (9)

with sum squares of residuals

SSEols = δ2(

p∑
j=0

γ20j/λj)
−1, (10)

In the presence of multicollinearity in the data
set, some values of α become sufficiently large rel-
ative to the other values of αj , that leads to distortion
of some of the coefficients due to large term α0γ

0
0 in

(7). Let γ0, γ1, . . . , γr−1 related with non-predictive
near singularities, then the non-predictive values are
eliminated and only the predictive values are retained.
Webster et al. [19] proposed modified OLS estimator
by setting α0 = α1 = . . . , αr−1 = 0, so the adjusted
least squares estimator, namely Latent Root Regres-
sion (LRR) is defined as:

β̂LRR = −δ
p∑

j=r

αjγ
0
j , (11)

where

αj = γ0jλ
−1
j (

p∑
t=r

γ20t/λt)
−1;

j = r, r + 1, . . . , p, (12)

The residuals sum of squares for latent root is:

SSELRR = δ2(

p∑
j=r

γ20j/λj)
−1. (13)

If all near singularities have predictive value, none of
the αjs equal to zero and then the least squares coeffi-
cients and the latent root coefficient will be equivalent.
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The mean square errors for β̂LRR is not known ex-
actly but it can be approximately computed by similar
way as the mean square error of the Principal Compo-
nents Regression (PCR) on the latent vectors (XTX)
of (see [14], [19]), then:

MSE(β̂LRR) ≈ σ2
∑

l−1
i + (αT

i β)
2 (14)

where l1 ≤ l2 ≤ . . . ≤ lp are the latent roots of the
design matrix (XTX).

3 Robust Methods
Huber [12] established the classes of bias robust M-
estimator which is nearly as efficient as the ordinary
least squares and it is resistant to outliers in the Y - di-
rection. The OLS method aim to minimize the sum of
squares residuals

∑n
i=1(β̂)

2 which is inefficient in the
presence of outliers (see [5],[7],[9]). The M-estimator
tries to reduce the impact of unusual data by changing
the sum of squares error by another function of error:

min

n∑
i=1

ρ(
ri(β̂)

σ̂
) = min

n∑
i=1

ρ(
yi − xTi β̂

σ̂
), (15)

where ρ is a symmetric function and positive definite
with a unique minimum at zero and it represents the
contribution of each error to the minimize function,
and σ̂ is an estimate of scale parameter. Huber [12]
showed that the M-estimator is sensitive to high lever-
age points in X- direction. In other words, it does
not have bounded influence. Schweppe [8] suggested
a new robust method called bounded influence Gen-
eralized M-estimator (GM-estimator) to overcome
this drawback of M-estimator. GM-estimators try to
downweigh the points that have high residuals in the
X- direction which is called high leverage points. The
coefficients for GM-estimators (β̃) in convergence
can be written as:

β̃ = (XTWX)−1XWy, (16)

where the diagonal elements of W are the weights wi,
defined as:

wi =
ψ[(yi − xTi β̃)/πis]
(yi − xTi β̃)/πis)

, (17)

where s is the estimated scale and ψ is an influence
function (see [8]). Different π-weight functions exist
in the literature of GM-estimator, such as Krasker and
Welsch’s weight function (see [8]), [13] which depend
on the hat matrix (h) and written as:

πi = [(1− hii)/hii]1/2, (18)

hii = xTi (x
Tx)−1xi ; i = 1, 2, . . . , n, (19)

MM-estimator is a robust method introduced by
Yohai in 1987 (see [13]). It combines an elevated
breakdown point 50% and supreme efficiency (95% of
OLS efficiency under normal assumptions). The MM-
estimates include three-stage procedures (see [2]):

◦ Computes S-estimate as an initial consistent es-
timate with high breakdown point and bisquare
influence function as:

ρ(x) =

{
3(xc )

2 − (xc )
4 + (xc )

6 if |x|< c,

1 otherwise.

where c is the tuning constant selected as 1.548.

By using the results from the first stage, com-
putes the robust Mestimate of the error standard
deviation:

min

n∑
i=1

ρ(
yi − xTi β̂M

σ̂0
),

where ρ(x) is the influence function with value
of tuning constant 4.687 and σ̂0 is the estimate
of standard deviation of the residuals.

◦◦ The final stage is calculating the MM-estimate as
the solution to:

1

n− p

n∑
i=1

ρ(
yi − xTi β̂M

s
) = 0.5.

4 Robust latent root regression
(RLRR)

The LRR performs well in the presence of multi-
collinearity. Habshah and Lau [3] pointed out when
both multicolinearity and outliers are present in a data
set, the LRR is inefficient and they proposed a new
method, namely Robust Latent Root M-Based Regres-
sion (RLMB). This new suggested method does well
with outliers in Y-directions and it is not robust to
high leverage points. In this case, we suggest a ro-
bust method that can remedy the problems of multi-
collinearity in the presence of high leverage points.
Since the MM-estimator and GM-estimator are robust
in both Y and X-direction, we will incorporate both
estimators in the establishment of the Robust Latent
Root Regression (RLRR). The RLRR starts with im-
posing weights to the modified correlation matrix be-
tween the dependent and independent variables (Aug-
mented matrix). The modified pair-wise correlation
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coefficient (rw) can be written as:

rw =

n∑
i=1

wi(Yi − Ȳw)(Xi − X̄w)√[ n∑
i=1

wi(Yi − Ȳw)2
][ n∑

i=1
wiXi − X̄w)2

] ,
(20)

where

Ȳw =
( n∑
i=1

wiYi

n∑
i=1

wi

)
, X̄w =

( n∑
i=1

wiXi

n∑
i=1

wi

)
.

The weights, wi in Eqn.20 can be chosen from
the final stage of any robust method. Habshah and
Lau [3] suggested using the Tukey’s biweight func-
tion to compute the robust correlation coefficients for
the augmented matrix (Ω). Subsequently, the latent
roots and latent vectors are calculated. Following the
same procedure, we suggested using the final weights
of the MM-estimator and modified GM-estimator in
the development of the RLRR and called them LR-
MMB and LRMGMB, respectively. The algorithm of
modified GM-estimator (MGM) is summarized as fol-
lowes (see [1]).

Step 1 Calculate the residuals (ei, i = 1, 2, . . . , n) of S-
estimator and scale of residuals (τ̂) by applying:

ei = yi − β̂0 − β̂1xi1 − · · · − β̂pxip,
(21)

τ̂ = 1.4826(1 + 5/(n− p))Median|ei|.
(22)

Step 2 : Compute weight function wi as:

wi = min
[
1,
{ χ2

0.95,k

RMD2
i

}]
, i = 1, 2, . . . , n

(23)
where the degree of freedom (k) is the number
of independent variables including the constant
terms. RMD2

i is the squared of Robust Maha-
lanobis Distance based on Minimum Volume El-
lipsoid (MVE) which can be formulated as fol-
lows: (see [16])

RMD2
i =

√
(xi−M(X))S(X)−1(xi−M(X))T

where M(X) and S(X) are the robust locations
and shape estimates of the MVE, respectively.

Step 3 Compute Q = diag
[
ψ′( ei

τ̂×wi
)
]
, where ψ′ is a

derivative of Huber’s function (ψ).

Step 4 Letting β0 be the S-estimator, the MGM-
estimator can be derived from One-Step Newton
Raphson as:

β̂MGM = β̂0 + (XTQX)−1XWψ(
ei
wiτ̂

)τ̂

(24)
where W is an n × n diagonal matrix with wi ,
i = 1, 2, . . . , n, obtained from Step 2

5 Examples

Two sets of real data are used to compare the effi-
ciency of the suggested methods LRMMB and LR-
MGMB with the other existing methods such as OLS,
LRR and LRMB. The first data set is the Consumption
Income Expenditure (CIE) which is taken from Gu-
jarati (see [11]). The Consumption Expenditure (CE)
is the response variable and the Income and Wealth
are the explanatory variables. The data set is modified
to have one high leverage point by replacing the first
observation of each variable by multiplying the ob-
servation by 10 . The Diagnostic Robust Generalized
Potential (DRGP) and Variance inflation factor (VIF)
were used to identify the high leverage point (hlp) and
multicollinearity, respectively (see [6], [1]). It can be
observed from Table 1 that the original data has no
hlp but it has problem of multicollinearity, while the
modified data has combined problem of hlp and multi-
collinearity. However, the degree of multicollinearity
has increased by adding one high leverage point to the
original data as shown in Table 1 and 2

Table 1: Hlp and Multicollinearity Diagnostics for Gujarati
Data

Diagnostic Data hlp Detected x1 x2

DRGP Original - - -

Modified Case 1 - -

VIF >10 Original - 482.12 482.12

Modified - 5448.12 5448.12

The second empirical example is the Body Fat
data set. Kutner et al.[10] introduced this data set
with 20 observations and three independent variables
which are, the Triceps Skinold Thickness (TST),
Thigh Circumference (TC), and Midarm Circumfer-
ence (MC). To study the multicollinearity problem in
the presence of outliers, we modified the data set by
replacing the first observation for each variable by 100
to get the combined problem of multicollinearity and
outliers. Table 2 shows that the original data has no
hlp but it has problem of multicollinearity, while the
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modified data has combined problem of hlp and mul-
ticollinearity.

Table 2: Hlp and Multicollinearity Diagnostics for Body Fat
Data

Diagnostic Data hlp Detected x1 x2 x3

DRGP Original - - - -

Modified Case 1 - - -

VIF >10 Original - 708.84 564.34 104.60

Modified - 3437.3 1157.5 689.34

6 Simulation Study

A simulation study was conducted to compare the
efficiency of the preceding methods. Following
Lawrence and Arthur [15], two independent variables
are generated as follows.

yi = β0Xi1 + β1Xi2 + ei, i = 1, 2, . . . , n (25)

where the coefficients are fixed and equal to one. The
predictor variables were generated as below:

xij = (1− ρ2)zij + ρzij , j = 1, 2 (26)

where zij are independent standard normal random
numbers. The correlation coefficient between the ex-
planatory variables were chosen as 0.0, 0.5, and 0.99
with different samples of size 20, 40,100 and 200.
Two different distributions for the error terms were
considered:

• Standard normal distribution.

• Cauchy distribution with mean zero and scale pa-
rameter one.

The Cauchy distribution is a heavy tail distribu-
tion and it has symmetrical bell shape which tend to
produce a significant amount of outliers. The standard
error (SE), bias, and root mean square errors (RMSE)
over 1000 runs were used to compare the performance
of the estimation methods. Another measure for com-
parison is the efficiency of the regression estimators
by comparing the MSE ratio of two estimators. The
ratio less than one indicates that the first estimator is
more efficient than the second, while the ratio which
is more than one indicates that the second estimator
is more efficient and the ratio equal to one shows that
both estimators are of the same efficiency.

7 Discussion

Let as first focus to the first set of real data, i.e. con-
sumption income expenditure data. Table 3 exhibited
the parameter estimates and the standard errors of the
OLS, LRR, LRMB, LRMMB and LRMGMB for the
original data. It can be observed that when only mul-
ticollinearity is present in the data, all methods are ap-
proximately equally good, except the OLS because it
failed to remedy the problem of multicollinearity. It is
interesting to see the situation when both hlp and mul-
ticollinearity are present in the data. In the presence
of outliers in the Y-direction shows that the OLS and
the LRR are heavily affected by outliers, not only the
standard errors of their estimates become large, but
the sign of β̂2 for LRR had changed. The LRMGMB
has the least standard errors followed by both LRMB
and LRMMB. We can see all our robust methods give
good results since they down weight outliers that were
created in the Y-direction (see Table 5).

Table 3: The Estimate Values and Standard Errors (in
parenthesis) for Original Gujarati Data

Modified Data Modified Data

Original Data (outlier in Y (outlier in Y

direction and X direction

b1 b2 b1 b2 b1 b2

OLS 1.814 -0.834 3.491 -3.886 1.999 -1.006

(1.585) (1.585) (7.493) (7.493) (3.178) (3.178)

LRR 0.437 0.542 -0.202 -0.192 0.481 0.519

(0.160) (0.198) (0.986) (0.984) (1.180) (1.191)

LRMB 0.448 0.583 0.558 0.637 0.491 0.519

(0.158) (0.205) (0.714) (0.881) (0.190) (0.201)

LRMMB 0.448 0.583 0.523 0.652 1.751 2.162

(0.158) (0.205) (0.714) (0.881) (0.090) (0.111)

LRMGMB 0.446 0.573 0.347 0.357 1.756 2.065

(0.159) (0.203) (0.209) (0.211) (0.079) (0.093)

The results of Table 3 also show that the OLS and
LRR were more affected by outliers and have large
values for SE when multicollinearity comes together
with the presence of outliers in both Y and X- direc-
tions. The standard error of LRMB is also high since
it is well known that the M-estimator is robust only
in the Y-direction. The LRMGMB is slightly better
than LRMMB. The confidence interval lengths in Ta-
ble 4 support the earlier findings that the LRMGMB
and LRMMB provide the best results, with their con-
fidence intervals lengths being the shortest compared
to other estimators.

Now let us focus to the body fat data set. As
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Table 4: The Estimators (Est),Standard Error (SE) and
Confidenct Intervals (C.I) for Modified Gujarati Data

(outliers in both Y and X- directions)

b1 b2

OLS Est 1.999 -1.006

S.E 3.178 3.178

C.I (-5.51,9.51)[15.02](-8.52,6.50)[15.02]

LRR Est 0.481 0.512

S.E 0.180 0.191

C.I (0.05,0.90)[0.85] (0.05,0.96)[0.91]

LRMB Est 0.491 0.519

S.E 0.190 0.201

C.E (0.04,0.94)[0.90] (0.04,0.99)[0.95]

LRMMB Est 1.751 2.162

S.E 0.090 0.111

C.I (1.56,1.94)[0.38] (1.94,2.38)[0.44]

LRMGMBEst 1.756 2.065

S.E 0.079 0.093

C.I (1.56,1.94)[0.38] (1.84,2.28)[0.44]

Table 5: Robust Bisquare Weights for Robust Methods (M,
MM and MGM) for Gujarati data

1 2 3 4 5 6 7 8 9 10

M 0.97 0.68 0.92 0.99 0.97 1.00 0.91 0.99 0.86 0.94

Original Data MM 0.97 0.75 0.93 0.99 0.97 1.00 0.93 0.99 0.89 0.95

MGM 1.00 0.68 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Data with M 0.00 0.91 0.94 1.00 0.97 1.00 0.96 0.99 0.94 0.95

outlier in MM 0.00 0.93 0.95 1.00 0.98 1.00 0.96 0.99 0.95 0.96

Y-direction MGM 0.02 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Data with M 0.97 0.94 0.86 0.97 0.98 1.00 0.96 0.95 0.95 0.79

outlier in Y MM 0.00 0.93 0.95 1.00 0.98 1.00 0.97 0.99 0.95 0.96

and X direction MGM 0.02 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

already mentioned, the modified data has multi-
collinearity and outliers. It can be clearly seen from
Table 6 that the OLS has poor estimates resulting
in inflated standard error and wider confidence in-
tervals, while the LRR is less affected by this prob-
lem. The procedure of combining the classical la-
tent root regression with robust methods such as
LRMB,LRMMB and LRMGMB able to remedy the
multicollinearity problem in the presence of outliers.
The results of Table 6 show that the standard error for
the LRMGMB is slightly smaller than the LRMMB. A
reasonable explanation up to this point is that the LR-
MGMB is the best estimation method among the ex-
isting methods for data that has multicollinearity and
outliers.

Further, the results of the simulation study are dis-
cussed here. As previously mentioned, we had gen-

Table 6: The Estimators, Standard error and Length of
Coefficients Interval (L.C.I) for modified Body Fat Data

(outliers in both Y and X directions)

b1 b2 b3

OLS Est. 31.62 -16.82 -15.77

S.E. 6.31 3.66 2.82

L.C.I [26.77 ] [15.53] [11.99]

LRR Est. 0.397 0.520 -0.082

S.E 0.104 0.137 0.104

L.C.I [0.444] [0.585] [0.443]

LRMB Est. 0.396 0.529 -0.089

S.E 0.11 0.147 0.108

L.C.E [0.470] [0.626] [0.461]

LRMMB Est. -0.074 -0.218 0.137

S.E 0.038 0.043 0.037

L.C.I [0.160] [0.185] [0.160]

LRMGMB Est. -0.073 -0.219 0.138

S.E 0.036 0.040 0.033

L.C.I [0.161] [0.184] [0.161]

erated the error term with two different distributions:
standard normal and Cauchy. Table 7 shows the re-
sults for regression estimators when the error term
is distributed with standard normal without outliers.
When there is no and low degree of multicollinear-
ity problem (ρ = 0.0 and 0.5) the performances of all
five methods are approximately the same but OLS and
LRR are slightly better than the robust methods. Also
we can see the OLS and LRR performances are equiv-
alently good since all near singularities have predic-
tive values and none of these are equal to zero. With
high multicollinearity (ρ = 0.99), the OLS is poorly
estimated and it has inflated standard error while the
LRR, LRMB, LRMMB and LRGMB have good re-
sults. This results are supported by the MSE ratio
in Table 8 which shows the efficiency for OLS and
LRR is equally good where the values of MSE ratio
are greater than one . In the case of high collinear-
ity among regressor variables (ρ = 0.99), the LRR is
more efficient than other estimation methods. It can
be observed from Table 8 that increasing the sample
size, improves the performance for all methods. Let
us now focus to Table 9 and 10 when the error terms
are distributed as Cauchy distribution with (0,1) which
prone to create some outliers in the data. When there
is no or low multicollinearity (ρ = 0.0 and 0.5), the
OLS and LRR have poor estimates due to outliers cre-
ated in the data set. On the other hand, all the robust
methods (LRMB, LRMMB and LRMGMB) are much
better and more efficient than the OLS and the LRR.
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With high multicollinearity (ρ = 0.99), the perfor-
mance of OLS and LRR become very bad compared
to LRMB, LRMMB and LRGMMB. In this situation,
the RMSE of the OLS becomes very large. It is inter-
esting to see that the LRMGMB is slightly better than
the LRMMB having the smallest bias and RMSE, fol-
lowed by the LRMB estimator.

8 Conclusion

The main focus of this article was to develop a re-
liable alternative methods for rectifying the problem
of multicollinearity and outliers. In the presence of
multicollinearity, the OLS performs very poorly. On
the other hand, the performance of LRR, LRMB, LR-
MMB and LRMGMB are equally good. The LRR is
slightly better than the other three methods when only
multicollinearity problem occurs in the data set. How-
ever, the performance of LRR deteriorates very badly
in the presence of both multicollinearity and outliers.
With the combined problem of multicollinearity and
outliers in the Y- direction, the three robust meth-
ods are reasonably close to each other. However, the
LRMB is much affected by multicollinearity and out-
liers in both Y and X- directions. In this situation, the
LRMB is not efficient. The results of the study show
that the LRMGMB and LRMMB estimates are more
efficient and more reliable because they are not much
affected by the presence of outliers in Y as well as
outliers in both Y and X- directions. Hence, we can
consider the LRMGMB and LRMMB as a better esti-
mation methods for handling the problems of outliers
and multicollinearity.
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Table 7: Bias, RMSE and SE for β̂1 and β̂2 with error term distributed normal (0,1)

20 40 100 200
Mehod ρ Bais SE RMSE Bais SE RMSE Bais SE RMSE Bais SE RMSE
OLS * 0.0041 0.2243 0.2242 -0.0040 0.1570 0.1570 -0.0065 0.1019 0.1017 0.0000 0.0719 0.0719

** 0.0021 0.2099 0.2099 0.0020 0.1809 0.1808 -0.0067 0.1229 0.1228 -0.0004 0.0716 0.0716
LRR 0.0041 0.2243 0.2242 -0.0040 0.1570 0.1570 -0.0065 0.1019 0.1017 0.0000 0.0719 0.0719

0.0021 0.2099 0.2099 0.0020 0.1809 0.1808 -0.0067 0.1229 0.1228 -0.0004 0.0716 0.0716
LRMB 0.00 0.0040 0.2351 0.2350 -0.0047 0.1639 0.1638 -0.0052 0.1047 0.1046 -0.0011 0.0735 0.0735

0.0049 0.2226 0.2225 0.0010 0.1892 0.1892 -0.0070 0.1289 0.1287 -0.0010 0.0738 0.0738
LRMMB 0.0027 0.2338 0.2338 -0.0065 0.1623 0.1622 -0.0072 0.1047 0.1045 -0.0011 0.0735 0.0735

0.0037 0.2206 0.2206 -0.0026 0.1877 0.1877 -0.0089 0.1285 0.1282 -0.0010 0.0738 0.0738
LRMGMB 0.0047 0.2340 0.2340 -0.0046 0.1625 0.1624 -0.0052 0.1048 0.1047 -0.0011 0.0736 0.0736

0.0057 0.2208 0.2207 0.0019 0.1879 0.1879 -0.0069 0.1286 0.1284 -0.0010 0.0737 0.0737

OLS -0.0001 0.3591 0.3591 -0.0075 0.2391 0.2390 -0.0027 0.1466 0.1465 0.0000 0.1129 0.1129
-0.0050 0.4069 0.4068 0.0049 0.2407 0.2406 0.0019 0.1941 0.1941 -0.0015 0.1102 0.1102

LRR -0.0001 0.3591 0.3591 -0.0075 0.2391 0.2390 -0.0027 0.1466 0.1465 0.0000 0.1129 0.1129
-0.0050 0.4069 0.4068 0.0049 0.2407 0.2406 0.0019 0.1941 0.1941 -0.0015 0.1102 0.1102

LRMB 0.05 -0.0008 0.3751 0.3751 -0.0070 0.2466 0.2465 0.0000 0.1514 0.1514 -0.0009 0.1152 0.1152
-0.0018 0.4332 0.4332 0.0042 0.2507 0.2507 0.0000 0.1969 0.1969 -0.0019 0.1133 0.1133

LRMMB -0.0034 0.3747 0.3747 -0.0094 0.2455 0.2453 -0.0026 0.1512 0.1512 -0.0009 0.1152 0.1152
-0.0014 0.4330 0.4330 0.0031 0.2489 0.2489 -0.0018 0.1965 0.1964 -0.0019 0.1133 0.1133

LRMGMB -0.0054 0.3743 0.3743 -0.0075 0.2457 0.2456 -0.0006 0.1514 0.1514 -0.0009 0.1152 0.1152
-0.0005 0.4325 0.4325 0.0051 0.2492 0.2491 0.0001 0.1966 0.1966 -0.0019 0.1133 0.1133

OLS 0.2183 17.506 17.504 -0.3204 10.946 10.941 -0.1756 7.6163 7.6145 0.0512 5.0674 5.0671
-0.2286 17.570 17.569 0.3188 10.938 10.934 0.1781 7.6482 7.6464 -0.0523 5.0652 5.0650

LRR -0.0065 0.1361 0.1360 -0.0002 0.0762 0.0762 -0.0004 0.0509 0.0509 -0.0006 0.0365 0.0365
-0.0028 0.1363 0.1363 -0.0012 0.0761 0.0761 0.00241 0.0503 0.0502 -0.0004 0.0367 0.0367

LRMB 0.99 -0.0855 0.1948 0.1750 -0.0354 0.0948 0.0879 -0.0139 0.0568 0.0551 -0.0074 0.0390 0.0383
-0.0818 0.1941 0.1760 -0.0364 0.0961 0.0889 -0.0109 0.0557 0.0547 -0.0073 0.0390 0.0383

LRMMB -0.0859 0.1859 0.1649 -0.0341 0.0935 0.0870 -0.0137 0.0566 0.0549 -0.0009 0.0377 0.0377
-0.0823 0.1849 0.1655 -0.0351 0.0949 0.0881 -0.0108 0.0556 0.0545 -0.0008 0.0378 0.0378

LRMGMB 0.0783 0.1737 0.1550 -0.0020 0.0825 0.0825 -0.0017 0.0556 0.0556 -0.0055 0.0384 0.0380
-0.0774 0.1741 0.1559 0.0007 0.0827 0.0827 0.0019 0.0553 0.0553 -0.0057 0.0384 0.0379

* results for β̂1,
** results for β̂2.

Table 8: MSE ratio with error term distributed normal (0,1)

ρ 0.00 0.05 0.99
n 20 40 100 200 20 40 100 200 20 40 100 200

LRMGMB OLS 1.09 1.07 1.06 1.05 1.09 1.06 1.07 1.04 0.00 0.00 0.00 0.00
1.11 1.08 1.09 1.06 1.13 1.07 1.03 1.06 0.00 0.00 0.00 0.00

LRR 1.09 1.07 1.06 1.05 1.09 1.06 1.07 1.04 1.63 1.17 1.19 1.11
1.11 1.08 1.09 1.06 1.13 1.07 1.03 1.06 1.63 1.18 1.21 1.09

LRMB 0.99 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00
0.98 0.99 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00

LRMMB 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.87 0.78 0.96 1.04
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.76 0.99 1.03

LRMMB OLS 1.09 1.07 1.06 1.05 1.09 1.05 1.06 1.04 0.00 0.00 0.00 0.00
1.10 1.08 1.09 1.06 1.13 1.07 1.02 1.06 0.00 0.00 0.00 0.00

LRR 1.09 1.07 1.06 1.05 1.09 1.05 1.06 1.04 1.87 1.51 1.24 1.07
1.10 1.08 1.09 1.06 1.13 1.07 1.02 1.06 1.84 1.56 1.22 1.06

LRMB 0.99 0.98 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00
0.98 0.98 0.99 1.00 1.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00

LRMB OLS 1.10 1.09 1.06 1.05 1.09 1.06 1.07 1.04 0.00 0.00 0.00 0.00
1.12 1.09 1.10 1.06 1.13 1.08 1.03 1.06 0.00 0.00 0.00 0.00

LRR 1.10 1.09 1.06 1.05 1.09 1.06 1.07 1.04 2.04 1.54 1.24 1.14
1.12 1.09 1.10 1.06 1.13 1.08 1.03 1.06 2.02 1.59 1.22 1.29

LRR OLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00
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Table 9: Bias, RMSE and SE for β̂1 and β̂2 with error term distributed Cauchy (0,1)

20 40 100 200
Mehod ρ Bais SE RMSE Bais SE RMSE Bais SE RMSE Bais SE RMSE
OLS 1.4948 34.042 34.009 4.1634 141.09 141.03 0.4153 50.326 50.324 -0.6411 40.130 40.125

-2.659 68.322 68.271 5.1055 215.71 215.65 -1.6505 46.293 46.264 -0.9128 26.931 26.916
LRR 1.494 34.042 34.009 4.1634 141.09 141.03 0.4153 50.326 50.324 -0.6411 40.130 40.125

-2.659 68.322 68.271 5.1055 215.71 215.65 -1.6505 46.293 46.264 -0.9128 26.931 26.916
LRMB 0.00 -0.0323 0.5968 0.5960 0.0123 0.3236 0.3234 -0.0006 0.1807 0.1807 0.0023 0.1300 0.1300

0.0123 0.5292 0.5290 -0.0100 0.3140 0.3138 0.0094 0.1774 0.1772 0.0026 0.1214 0.1214
LRMMB -0.0229 0.6039 0.6034 0.0128 0.3299 0.3296 -0.0005 0.1828 0.1828 0.0027 0.1322 0.1322

0.0137 0.5258 0.5257 -0.0094 0.3167 0.3166 0.0099 0.1800 0.1797 0.0023 0.1227 0.1227
LRMGMB -0.0299 0.5239 0.5231 0.0158 0.3052 0.3048 -0.0096 0.1811 0.1809 0.0029 0.1293 0.1294

0.0064 0.5113 0.5113 -0.0114 0.2998 0.2996 0.0022 0.1706 0.1706 0.0023 0.1197 0.1127

OLS 3.2860 67.582 67.502 -1.8087 89.922 89.904 0.9286 74.635 74.629 -1.3063 46.259 46.241
-2.8033 70.056 70.000 1.8074 135.43 135.42 -3.5184 100.40 100.34 -2.1963 42.880 42.824

LRR 1.4336 28.667 28.631 -1.8011 89.920 89.902 0.9286 74.635 74.629 -1.3063 46.259 46.241
-0.706 28.026 28.017 1.8025 135.43 135.42 -3.5184 100.40 100.34 -2.1963 42.880 42.824

LRMB 0.05 -0.0566 0.9062 0.9045 0.0244 0.4845 0.4839 -0.0136 0.2767 0.2763 0.0011 0.1934 0.1934
0.0373 0.8417 0.8409 -0.0276 0.4687 0.4679 0.0053 0.2823 0.2823 0.0011 0.1919 0.1919

LRMMB -0.0556 0.8867 0.8849 0.0263 0.4912 0.4905 -0.0145 0.2806 0.2802 0.0020 0.1964 0.1964
0.0298 0.8467 0.8462 -0.0260 0.4743 0.4736 0.0067 0.2872 0.2871 0.0003 0.1952 0.1952

LRMGMB 0.0023 0.8204 0.8204 -0.0097 0.4479 0.4478 -0.0012 0.2742 0.2743 0.0072 0.1850 0.1848
-0.0218 0.8291 0.8289 0.0060 0.4405 0.4405 0.0011 0.2817 0.2814 0.0078 0.1878 0.1876

OLS 162.28 3459.9 3456.1 -94.909 5652.8 5652.0 110.30 3962.4 3960.9 18.165 1379.8 1379.7
161.72 3441.0 3437.4 92.985 5615.7 5614.9 -112.46 4000.2 3998.6 -20.736 1386.0 1385.8

LRR 0.1039 10.995 10.995 -0.9965 23.768 23.747 -1.1316 30.931 30.910 -1.2876 25.519 25.487
0.1333 11.206 11.205 -1.0047 24.417 24.396 -1.1065 30.284 30.264 -1.2838 25.484 25.451

LRMB 0.99 -0.0852 0.2830 0.2699 -0.0403 0.1605 0.1554 -0.0193 0.0926 0.0906 -0.0073 0.0612 0.0608
-0.0855 0.2831 0.2699 -0.0395 0.1604 0.1554 -0.0195 0.0925 0.0905 -0.0073 0.0611 0.0609

LRMMB -0.0064 0.2580 0.2579 -0.0005 0.1537 0.1537 -0.0041 0.0920 0.0919 0.0003 0.0612 0.0612
-0.0068 0.2580 0.2579 0.0002 0.1544 0.1544 -0.0044 0.0919 0.0918 0.0003 0.0610 0.0610

LRMGMB -0.0051 0.2508 0.2507 -0.0012 0.1506 0.1506 -0.0130 0.0904 0.0895 -0.0033 0.0607 0.0606
-0.0051 0.2519 0.2518 -0.0010 0.1500 0.1500 -0.0136 0.0904 0.0894 -0.0031 0.0608 0.0607

Table 10: MSE ratio with error term distributed Cauchy (0,1)

ρ 0.00 0.05 0.99
n 20 40 100 200 20 40 100 200 20 40 100 200

LRMGMB OLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRMB 0.77 0.89 0.99 0.98 0.81 0.85 0.98 0.92 0.78 0.88 0.95 0.99
0.93 0.91 0.92 0.97 0.97 0.89 0.99 0.96 0.79 0.87 0.95 0.99

LRMMB 0.75 0.86 0.98 0.95 0.86 0.83 0.95 0.89 0.94 0.96 0.97 0.98
0.94 0.90 0.89 0.95 0.96 0.86 0.96 0.93 0.95 0.94 0.97 0.99

LRMMB OLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRMB 1.02 1.04 1.02 1.03 0.95 1.03 1.03 1.03 0.00 0.00 0.00 0.00
0.99 1.02 1.03 1.02 1.01 1.03 1.03 1.03 0.00 0.00 0.00 0.00

LRMB OLS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LRR OLS 1.00 1.00 1.00 1.00 0.18 1.00 1.00 1.00 0.00 0.00 0.00 0.00
1.00 1.00 1.00 1.00 0.16 1.00 1.00 1.00 0.00 0.00 0.00 0.00
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